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Abstract: In this paper, qualitative theoretical derivations, finite element analysis (FEA) and exper-
iments are used to investigate the electromagnetic force (EF) and vibration characteristics of end
windings. In contrast to previous studies, this study focuses not only on end winding EF/vibration
under normal and radial static air gap eccentricity (RSAGE) conditions, but also for the cases of
radial dynamic air gap eccentricity (RDAGE) and radial dynamic static hybrid air gap eccentricity
(RHAGE). Firstly, the magnetic flux density (MFD) is derived for normal and radial air gap eccentric-
ity (RAGE) faults, and detailed EF expressions are obtained before and after the RAGE fault. The
finite element analysis (FEA) and experimental studies were performed on a four-pole DFIG at a
speed of 1500 rpm to verify the proposed theoretical analysis. It is shown that RSAGE only enlarges
the EF/end winding vibration and does not introduce new frequency components. RDAGE not only
increases EF/end winding vibration but also introduces new frequency components. RHAGE can be
seen as a superimposed effect of RSAGE and RDAGE.

Keywords: doubly fed induction generator (DFIG); radial air gap eccentricity (RAGE); electromag-
netic force (EF); end winding vibration

1. Introduction

According to the “Global Wind Report 2022”, the global new wind power capacity
was 93.6 GW in 2021. The cumulative wind power installed capacity reached 837 GW, an
increase of 12.4% from the previous year. Large-capacity wind power generation units
are the future development trend, and DFIG is currently the mainstream model of land
wind power. The stator winding is the key component of the generator [1], and the stator
winding insulation is one of the most vulnerable parts of the generator [2]. In addition to
normal aging factors, the vibration wear of the winding is an important factor that damages
the stator winding of the generator [3,4]. In fact, the windings are constantly vibrating
due to the electromagnetic forces (EF) acting on the stator windings during the normal
operation of the generator. [5]. With the increase in generator capacity, the EF will also
increase [6], and the insulation layer of the winding will be more severely tested. The stator
end winding is a fault-prone part due to its complex structure and special position [7].

A large number of scholars have studied the vibration and insulation wear of generator
windings. As early as 1931, J.F. Calvert researched the forces in turbine generator stator
windings [8]. In 1996, J.A. Tegopoulos set out from the density of magnetic flux to calculate
and analyze the EF of turbine generator winding [9,10]. Ranran Lin analyzed the end
winding vibration caused by the steady-state magnetic force in the induction machine [11].
R. Albanese proposed a novel numerical approach to calculate the time evolution of
the three-dimensional distribution of the EF in the end winding regions of large-turbine
generators [12]. Alireza Ghaempanah studied the influence of rotor winding and stator
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stepped-end iron core on the EF distribution of the turbine generator stator end winding
by means of simulation [13]. D. Lin proposed a new analytical method that considers both
fringing and leakage fluxes in the winding end region to compute the end-winding leakage
inductance [14]. Katsutoku Takeuchi optimized the 2D finite element calculation model
to achieve the accuracy of the 3D model to calculate the end magnetic field in a shorter
time [15]. P.G.S. Kumar studied the vibration characteristics of stator end windings [16].
Jiang H-C et al. comprehensively analyzed the transient EF of the turbine generator stator
winding [17] and studied the EF and mechanical response of the stator winding before and
after the rotor inter-turn short-circuit fault [18].

More notably, most generators run in a sub-health state. The occurrence of faults
such as the eccentricity of the generator will increase the mechanical stress [6] and thermal
stress [19] of the winding, which will aggravate the damage of the winding insulation.
The air gap eccentricity fault is a common mechanical fault of generators [20] which is
usually divided into static air gap eccentricity (RSAGE), radial dynamic air gap eccentricity
(RDAGE) and radial dynamic static hybrid air gap eccentricity (RHAGE) [21].

Scholars have conducted extensive research on magnetic field characteristics [22–24],
current characteristics [25,26], electromagnetic torque [27] and vibration characteristics [28–32]
under air gap eccentricity faults. The air gap eccentricity fault of the generator will distort the
air gap magnetic field which will affect the current fluctuation and aggravate the vibration
of the stator, rotor and winding. S.T. Wan analyzed the vibration characteristics of the stator
and rotor caused by a RHAGE fault in the turbogenerator [28]. J. Zhang diagnosed the rotor
eccentricity faults of a high-voltage motor by analyzing vibration signals [29]. Zaixin Song
studied eccentricities and the resulting vibration characteristics of an interior permanent
magnet synchronous generator, and introduced the method of eccentricity detection by
vibration characteristics [30]. Y.-L. He et al. considered the effect of short-circuit location on
stator end winding vibration in relation to static air gap eccentricity [6].

Regrettably, research on the vibration of DFIG has mainly focused on the vibration
characteristics of the stator [31] and rotor [32], ignoring the winding vibration characteristics.
In fact, studying the vibration characteristics of stator winding under the air gap eccentricity
fault is of great value for detecting air gap eccentricity and preventing winding from
winding vibration wear.

This article explores the vibration characteristics of stator windings before and after
DFIG eccentricity. The rest of this paper is organized as follows. Section 2 presents the
detailed theoretical analysis procedure, while Section 3 validates the proposed model by
both finite element calculation and experimental test on a four-pole DFIG. Finally, the main
conclusions are drawn up in Section 4.

2. Theoretical Analysis
Effect of RAGE on MFD

The magnetic flux density (MFD) of DFIG is the product of magnetomotive force
(MMF) and permeance per unit area (PPUA), which can be expressed as

B(αm, t) = f (αm, t)Λ(αm, t) (1)

where B is MFD, f is MMF, and Λ is PPUA.
The MMF can be written as

f (αm, t) = fp(αm, t) + ∑
v

fv(αm, t) + ∑
µ

fµ(αm, t)

= F0 cos(pαm −ω1t− ϕp) + ∑
v

Fv cos(vαm −ω1t− ϕv) + ∑
µ

Fµ cos(µαm −ωµt− ϕµ)
(2)

where 
v = ±k1Z1 + p, k1 = 1, 2 · · ·
µ = ±k2Z2 + p, k2 = 1, 2 · · ·
ωµ = ω1[1 + k2Z2(1− s)/p]

(3)
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where fp (αm, t), fv (αm, t), and fµ (αm, t) are, respectively, the main wave synthetic MMF,
the stator harmonic MMF, and the rotor harmonic MMF. F0, Fv, and Fµ are the main wave
synthetic MMF amplitude, stator harmonic MMF amplitude, and rotor harmonic MMF
amplitude, respectively. ϕp is the initial angle of the main wave synthetic MMF, ϕv and ϕµ

are the initial angles of the stator v and rotor µ sub-harmonic MMF. In addition, p is the
number of pole pairs, µ is the polar logarithm of the tooth harmonic magnetic potential of
the rotor winding, and v is the polar logarithm of the tooth harmonic magnetic potential
of the rotor winding. Z1 is the number of stator slots; Z2 is the number of rotor slots;
s is the doubly fed induction generator sliding rate; ωµ is the angular frequency of the
µ-order harmonic magnetic potential of the rotor relative to the stator; and ω1 is the angular
frequency of the synthesized magnetic potential of the main wave.

The size of the air gap PPUA is closely related to the air gap length, which can be affected
by eccentric failure. The schematic diagrams of RSAGE and RDAGE are shown in Figure 1, and
the air gap length expressions under normal and eccentric conditions are as follows:

g(am, t) =


g0 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · normal
g0(1− δs cos αm) · · · · · · · · · · · · · · · · · · · ·RSAGE
g0[1− δd cos(ωrt− αm)] · · · · · · · · · · · · · ·RDAGE
g0[1− δs cos αm − δd cos(ωrt− αm)] · · · ·RHAGE

(4)

where t is time; αm is the position angle of the air gap along the circumferential direction;
g is the length of the radial air gap that changes with t and αm; g0 is the uniform air gap
length under normal conditions; ωr is the rotational angular frequency of the rotor; and δs
and δd are the value of static eccentricity and dynamic eccentricity, respectively.
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Figure 1. Schematic diagram of generator eccentricity: (a) RSAGE; and (b) RDAGE.

PPUA can be obtained as

Λ(am, t) =
µ0

g(am, t)
≈



Λ0 + ∑
k1

λk1 + ∑
k2

λk2 + ∑
k1

∑
k2

λk1 λk2 ···································normal(
Λ0 + ∑

k1

λk1 + ∑
k2

λk2 + ∑
k1

∑
k2

λk1 λk2

)(
1 + δs cos αm + δ2

s cos2 αm

)
······RSAGE(

Λ0 + ∑
k1

λk1 + ∑
k2

λk2 + ∑
k1

∑
k2

λk1 λk2

)
[1 + δd cos(ωrt− αm)]············RDAGE(

Λ0 + ∑
k1

λk1 + ∑
k2

λk2 + ∑
k1

∑
k2

λk1 λk2

)
[1 + δs cos αm + δd cos(ωrt− αm)]·RHAGE

(5)

where Λ0 is the unchanged part of the air gap magnetic permeability; λk1 is the harmonic
magnetic permeability that occurs when the surface of rotor is smooth and the stator is
slotted; λk2 is the harmonic magnetic permeability that occurs when the surface of stator is
smooth and the rotor is slotted; and λk1λk2 is the harmonic magnetic permeability caused
by the interaction when the stator and the rotor are simultaneously slotted.

Feeding (2) and (5) into (1), MFD can be written as:
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B(αm, t) = f (αm, t)Λ(αm, t)
= F0Λ0 cos

(
pαm −ω1t− ϕp

)
+ ∑

v
FvΛ0 cos(vαm −ω1t− ϕv) + ∑

µ
FµΛ0 cos

(
µαm −ωµt− ϕµ

)
+

∑
k1

F0Λ0λk1
2 cos(vαm −ω1t− ϕv) + ∑

k2

F0Λ0λk2
2 cos

(
µαm −ωµt− ϕµ

)
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·normal

(6)

Due to limited space, only the air gap MFD expression under normal conditions is
listed here, and the detailed equations can be seen in Appendix A.

As indicated in Equation (6), the frequency components of the air gap magnetic
density will not be changed by the occurrence of the radial static air gap eccentricity fault.
However, the frequency component related to fr (where f = 2πω) will be increased due
to the occurrence of a radial dynamic air gap eccentricity fault. According to the above
discussion of the correspondence between the PPUA and air gap length, after the occurrence
of the radial static air gap eccentric fault, the frequency component of the air gap magnetic
density increases when the air gap length decreases. In addition, the air gap length changes
with time after RDAGE occurs, so the main frequency components (fu/f 1) of MFD will not
change significantly. However, the amplitude of the frequency components related to fr
will add significantly with the deepening of the fault degree. Furthermore, the influence of
radial dynamic static hybrid air gap eccentricity on the air gap magnetic density frequency
components can be regarded as the superposition of radial dynamic air gap eccentricity
and radial static air gap eccentricity.

The diagram of the stator core and winding are shown in Figure 2. In fact, the straight
parts of the stator windings are exposed to more EF (the MFD is larger here). However,
the straight part is fixed by the stator core, so the vibration of this part is generally not
considered. The end part of the stator windings extend beyond the stator core and are less
structurally rigid than the straight part. The end winding structure can be regarded as a
beam structure fixed at both ends, which is susceptible to vibration caused by the excitation
of the winding EF. Due to torsion in the position of the structure, the nose end is more
susceptible to deformation and wear under the action of vibration and stress. The system
differential equation corresponding to the stator end winding is:{

[m]{y′′ (t)}+ [D]{y′(t)}+ [K]{y(t)} = { f (t)}
y′′ (t) = ay

(7)

where [m] is the mass matrix of the stator core mass point; [D] is the damping matrix in
radial direction; [K] is the stiffness matrix in radial direction; y(t) is the displacement of
the unit mass point; y’(t) is the speed; y”(t) is the acceleration; and f(t) is the excitation
force of the system, that is, the winding EF. Here, the displacement response matrix is
periodic and can be treated as the mathematical description of the mechanical vibration.
According to the same frequency correspondence relation between the exciting force and
the movement, the vibration should have the same frequency/harmonic components
as the radial electromagnetic force. In practice, forces are very difficult to measure due
to measurement conditions. Alternatively, one tests acceleration, which is a common
parameter representing vibration (and the method used in this paper), because the force is
proportional to the acceleration of the end winding.
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The EF expression for the stator end winding can be calculated by processing the air-gap
MFD for normal and RAGE faults. The calculation process and results are as follows:

Fr= ηB(αm, t)IL1 = Bend(αm, t)IL1 = B2
end(αm, t)L2

1v/Z

=
L2

1vΛ0
2

2Z
{F0

2[1 + cos 2
(

pαm −ω1t− ϕp
)]

+ 2 ∑
v

F0Fv cos
[
(p± v)αm − (ω1 ±ω1)t−

(
ϕp ± ϕv

)]
+

2 ∑
µ

F0Fµ cos
[
(p± µ)αm −

(
ω1 ±ωµ

)
t−
(

ϕp ± ϕµ

)]
+ ∑

v1
∑
v2

Fv1 Fv2 cos
[
(v1 ± v2)αm − (ω1 ±ω1)t−

(
ϕv1 ± ϕv2

)]
+

2 ∑
µ

∑
v

FµFv cos
[
(µ± v)αm −

(
ωµ ±ω1

)
t−
(

ϕµ ± ϕv
)]

+ ∑
µ1

∑
µ2

Fµ1 Fµ2 cos
[
(µ1 ± µ2)αm −

(
ωµ1 ±ωµ2

)
t−
(

ϕµ1 ± ϕµ2

)]
}···········normal

(8)

where v is the line velocity of the magnetic field cutting the winding; Z is the reactance
of the winding; and L1 is the length of the stator winding perpendicular to the direction
of the magnetic field. In order to save text space, only the EF formulas under normal
circumstances are listed here, and the detailed equations are shown in Appendix B. The
MFD and EF frequency components under normal and RAGE faults are summarized, as
shown in Table 1.

Table 1. Frequency components before and after RAGE fault.

Case MFD EF
Normal fµ, f 1 fu1 ± fµ2, f 1 ± fµ, f 1 ± f 1, 2f 1
RSAGE fµ, f 1 fu1 ± fµ2, f 1 ± fµ, f 1 ± f 1, 2f 1
RDAGE fµ ± fr, fµ, f 1 ± fr, f 1 fu1 ± fµ2, f 1 ± fµ, f 1 ± f 1, 2f 1, fu1 ± (fu2 ± fr), f 1 ± (fu ± fr), f 1 ± (f 1 ± fr)
RHAGE fµ ± fr, fµ, f 1 ± fr, f 1 fu1 ± fµ2, f 1 ± fµ, f 1 ± f 1, 2f 1, fu1 ± (fu2 ± fr), f 1 ± (fu ± fr), f 1 ± (f 1 ± fr)

As shown in Equation (8) and Table 1, the frequency components of the winding EF
are only fu1 ± fµ2, f 1 ± fµ, f 1 ± f 1, 2f 1 and fu1 ± fµ2 in the normal state, and the frequency
components will not change after the RASGE fault. However, the appearance of RDAGE and
RHAGE will bring new frequency components of fu1 ± (fu2 ± fr), f 1 ± (fu± fr), f 1 ± (f 1 ± fr).

In addition, the EF of the stator end winding at the minimum air gap increases after the oc-
currence of RSAGE. Additionally, the amplitude of each frequency component will expand as the
fault increases. The appearance of RDAGE will make the air gap length of DFIG change continu-
ously, so the EF experienced by each winding also changes accordingly. With the increase in the
fault degree, the amplitude of each frequency component in the EF will become larger, and the
frequency components related to the rotation speed fu1 ± (fu2 ± fr), f 1 ± (fu± fr), f 1 ± (f 1 ± fr)
will add more obviously. It is worth noting that, in this paper, RHAGE denotes the accumulation
of RDAGE and RSAGE to the identical degree (RHAGE(0.1) = RDAGE(0.1) + RSAGE(0.1)),
where the frequency components are consistent with RDAGE and the amplitude increases with
the degree of eccentricity.

3. FEA and Experiment Study
3.1. FEA and Experiment Setup

The simulation and experiments in this paper are based on a 5.5 kW DFIG experimental
unit, as shown in Figures 3 and 4, and the main parameters of DFIG are shown in Table 2.

Table 2. Parameters of the DFIG Prototype Generator.

Parameters Value Parameters Value

Rated capacity 5.5 kW Rated rotating speed nr= 1500 rpm
Stator core length l = 155 mm Stator external diameter 210 mm
Parallel branches a = 2 Rotor external diameter 134 mm

Air-gap length 1 mm Power factor cos ϕ = 0.8
Rated voltage 380 V Stator slots Z1 = 36

Pole pairs p = 2 Rotor slots Z2 = 24
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In order to comprehensively analyze the EF of the stator winding, this paper uses
Ansys Electronics 18.2 to establish a Maxwell 3D simulation model, as seen in Figure 3a. The
external circuit of the model is shown in Figure 3b. The generation of the RAGE fault models
is implemented by the “Maxwell Eccentricity” module in “ACT Extensions”, as shown
in Figure 3c. To be specific, by changing the parameters behind both the “rotating part”
and the “rotating axis” to simulate the RSAGE fault, the RDAGE fault only changes the
“rotating part”. The RHAGE is the combined state of RSAGE and RDAGE, i.e., RHAGE(0.1)
= RDAGE(0.1) + RSAGE(0.1). The number after RAGE is the amount of eccentricity in
millimeters. Since the eccentricity direction is in the positive direction of the x axis, the
stator winding corresponding to the minimum air gap position in RSAGE is Coil_0.

Since the rotor is fixed to the base through the bearing housing, the eccentric setting
in this paper is achieved by moving the stator and windings. The experimental unit is
shown in Figure 4a, and the drive motor and control cabinet are shown in Figure 4b. The
radial displacement of the stator can be achieved by adjusting the two screws on the front
side and another two screws on the back side, as shown in Figure 4e, whilst the specific
radial offset is measured by the dial indicators. Additionally, RDAGE is simulated by
slotting the rotor, and the experimenters adjusted the degree of RDAGE by controlling the
size of the wedges embedded in the eccentric groove. Specifically, the higher the wedges
embedded in the eccentric groove are, the greater the degree of RDAGE eccentricity is.
The PCB accelerometer is installed in the radial direction on the stator winding to test the
radial vibration, as indicated in Figure 4c. The external equipment of the generator (load
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bank) is shown in Figure 4d. The specific parameters of the experimental fault settings are
consistent with the simulation.

3.2. Results and Discussion

In this paper, the actual speed of the simulation model is consistent with that of the
experimental device, which is 1460 rpm. The sliding rate can be calculated by substituting
the actual velocity into “s = (1500 − 1460)/1500 = 2.7%”. Only the case where k2 is ±1 was
selected for analysis. Through further calculation, the value of fµ can be obtained as 535/635.
Due to space limitations, in this paper, the position (as shown in Figure 1) at minimum air
gap are used for MFD analysis and the corresponding winding positions is Coil_0. The
changes in the amplitude and frequency components of the MFD corresponding to this
point before and after RAGE are shown in Figure 5.
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Figure 5. The MFD at minimum air gap under normal and RAGE conditions: (a) the MFD time domain
in RSAGE; (b) the MFD time domain in RDAGE; (c) the MFD time domain in RHAGE; (d) the frequency
domain in RSAGE; (e) the frequency domain in RDAGE; and (f) the frequency domain in RHAGE.

According to Figure 5a,d, the MFD and its frequency components at the minimum air
gap will increase after RSAGE. After RDAGE, the minimum air gap position in an RSAGE
fault may be at its minimum or maximum in an RDAGE fault as the minimum air gap
position is in constant change. Therefore, the MFD amplitude at this point is constantly
changing under an RDAGE fault, as shown in Figure 5b. However, the amplitude of
each frequency component increases as the degree of the fault increases, as indicated
in Figure 5e. For RHAGE, the magnitude of the MFD will increase overall, but some
moments are consistent with the normal situation, as shown in Figure 5c. In addition, all
eigenfrequency components will increase after RHAGE, as can be seen in Figure 5f.

As the three phase windings are symmetrically distributed in the stator slot, the electro-
magnetic forces of phases A, B, and C windings have similar variations. In the interest of space,
this paper only takes the A-phase winding as an example to illustrate the electromagnetic
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force variation characteristics. The simulation results of the Coil_0 end winding (the smallest
air gap position) EF before and after SAGE fault are shown in Figure 6.
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The stator end winding EF under normal and RAGE conditions are shown in Figure 6.
According to Figure 6a,c,e, it can be seen that the stator end winding EF increases after the
RAGE fault occurs. As shown in Tables 1 and 3 and Figure 6, under normal conditions,
the frequency components of EF are fµ1 ± fµ2(0/100), f 1 ± fµ(485/585/685), f 1 ± f 1(0/100),
and 2f 1(100). In the case of RSAGE, the frequency components of stator EF will not alter,
as shown in Figure 6b, but the frequency amplitude will increase with the extent of the
fault. However, the new frequency components of fµ1 ± (fµ2 ± fr) (25/75/125), f 1 ± (fµ ± f r)
(460/560/510/610/660/710) and f 1 ± (f 1 ± fr) (25/75/125) are added after the RDAGE fault,
as shown in Figure 6d. RHAGE will have the same frequency components as RDAGE, as
illustrated in Figure 6f. In general, the more severe the RAGE, the greater of the winding EF.

Table 3. Frequency components of MFD, EF before and after RAGE fault (FEA and experiment).

Case MFD (FEA) EF (FEA and Experiment)
Normal 50, 535, 635 0, 100, 485, 585, 685
RSAGE 50, 535, 635 0, 100, 485, 585, 685

RDAGE 50, 535, 635,
25, 75, 510, 560, 610, 660

0, 100, 485, 585, 685
25, 75, 125, 460, 510, 560, 610, 660, 710

RHAGE 50, 535, 635,
25, 75, 510, 560, 610, 660

0, 100, 485, 585, 685
25, 75, 125, 460, 510, 560, 610, 660, 710
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The time and frequency domains of the stator end winding vibrations obtained by
experiment are as shown in Figure 7. As shown in Figure 7a,c,e, the experimental data
are complex (the data are interwoven and not easily distinguishable) due to the number
of external influences on the generator during the experiment. Therefore, the root mean
square values in the time domain are derived. It can be seen that the presence of RAGE will
increase the stator end winding vibration, which will intensify with the increase in eccentricity.
Furthermore, the vibration frequency components of the end winding are consistent with
the EF of stator winding. Specifically, as shown in Figure 7b, there is no alteration in the
frequency components of the winding vibration after the RSAGE fault, however, the amplitude
of each vibration frequency component increases. However, the RDAGE fault not only
introduced new frequency components such as: fµ1 ± (fµ2 ± fr) (25/75/125), f 1 ± (fµ ± f r)
(460/560/510/610/660/710), and f 1 ± (f 1 ± fr) (25/75/125), but also caused the amplitude of
each frequency component to increase with the magnitude of the fault, as shown in Figure 7d.
From Figure 7f, it can be seen that, in the RHAGE case, the vibration frequency components
of the stator end winding include both the frequency components under the RSAGE and
RHAGE faults, and increase with the degree of the fault.
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4. Conclusions

In this paper, the vibration characteristics of the stator end windings of DFIG before
and after RSAGE, RDAGE, and RHAGE faults were studied. The detailed expressions for
the stator end windings EF before and after eccentric faults were derived. The results of
the FEA and experiments verified the correctness of the theoretical part. Several important
conclusions were obtained, as follows:

(1) When the DFIG operates normally, the stator end windings are constantly vibrated
by the action of EF. The frequency components of the vibration are fu1 ± fµ2, f 1 ±
fµ, f 1 ± f 1, 2f 1. The RSAGE fault will increase the vibration amplitude of the stator
winding end at the air gap reduction side without affecting the vibration frequency
component.

(2) After the RDAGE fault occurs, the stator end winding EF will generate new frequency
components fu1 ± (fu2 ± fr), f 1 ± (fu ± fr), and f 1 ± (f 1 ± fr). The vibration of the same
frequency components will also be excited. With the increase in the RDAGE fault
degree, the amplitudes of the vibration frequency components will also increase.

(3) RHAGE is the accumulation of RDAGE and RSAGE, and it is consistent with the
vibration frequency of the stator end winding under a RDAGE fault. The amplitude
of the vibration and each characteristic frequency component will increase with the
deepening of the RAGE fault.
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Appendix A

B(αm , t) = f (αm , t)Λ(αm , t)

=



F0 Λ0 cos
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Appendix B
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