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Abstract: Transverse vibration of drillpipe in coring drilling is undesirable. Here, the influence of the
core on drillpipe vibration is considered for the first time. Attention is focused on the vibrations of
the coring drillpipe as these vibrations lead to contact and collision between drillpipe and core. A
reduced-order model of drill string motion is established considering fluid load and core constraints.
This model considers fluid action as distributed load and drillpipe as beam structure. The constraint
of the core on lateral vibration of the drillpipe is simplified as a nonlinear force. The method of
multiple scales is used to analyze the disturbance of the drillpipe’s primary resonance and harmonic
resonance, and the influence law of different parameters on the drillpipe resonance is obtained.
The results show that damping inhibits resonance vibration, and external excitation determines the
resonance type. The existence of the core will aggravate the resonance vibration of the drillpipe. The
analysis results are helpful in understanding the resonance of the drillpipe in coring drilling. Some
measures to suppress resonance are given in this paper. This study can provide guidance for further
research on drillpipe resonance in core drilling.

Keywords: core drilling; lateral oscillation; nonlinearity; resonance; vibration response

1. Introduction

Nowadays, exploring and developing various energy sources is still critical and a
hot topic [1]. Core drilling is one of the most effective means of obtaining formation data
for recognizing and evaluating reservoirs. In Figure 1, the principle of coring drilling is
explained. The bottom hole assembly rotates to obtain the core and takes it to the ground.
The drillpipe transmits pressure, impact, and rotary torque to the bottom hole. The working
state of the coring bit depends on the performance of the drillpipe and formation factors.
The complex borehole working environment will strongly impact the slender drill string.
These complex working environments include but are not limited to high temperature
and high-pressure working environments, the influence of mud drilling fluid flushing the
bottom hole on the drillpipe, the interaction between bottom hole formation and the drill
bit, and the collision between drillpipe string and the borehole wall, etc. These effects
can cause the drillpipe to vibrate violently underground and often lead to the failure of
the drillpipe. The failure of the drillpipe will damage the safety and economy of drilling
work [2].

Today, although vibration is used for drilling in many projects, we need to avoid
harmful vibrations underground. Many scholars have studied the vibration of drillpipes.
The longitudinal vibration, torsional vibration, and transverse vibration of the drillpipe
were studied by Nikolaos. The results show that the transverse vibration of the drillpipe
is the most serious [3]. Ritto established the nonlinear dynamic model of the drillpipe
and analyzed the contact problem between the drillpipe and borehole wall [4]. Apostal,
Haduch, and Williams [5] examined the lateral vibrations of a drillpipe by employing the
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finite element method. They also considered damping during failure analysis based on
frequency responses. Jansen [6] modeled the drillpipe model and considered the effects of
drilling fluid, stabilizer clearance, and stabilizer friction. Vaz and Patel [7] carried out an
investigation into drillpipe dynamic stability and static deflection. Transverse vibrations
were considered in this work. Following prior studies, Khulief and Al-Naser [8] conducted
finite element analysis to include the BHA and drillpipe sections. Omojuwa E [9] studied
the lateral vibration of BHA and analyzed the influence of drilling parameters on drillpipe
failure. In recent work, Zhao [10] studied the resonance problem in coring drilling and
believed that the contact between the drillpipe and rock stratum was nonlinear. Liang [11]
simplified the composite coring drillpipe into a fully elastic beam structure and studied
the lateral vibration of the drillpipe under different drilling pressures and speeds. Liu [12]
considered the nonlinear vibration of the drillpipe affected by stabilizers and drilling fluid
and discussed the stability of solutions and sensitivity to parameters. Kamgue Lenwoue,
and Arnaud Regis′s study [13] on the lateral vibration of drillpipes found that the lateral
vibration of drillpipes can also affect the stability of wellbore.

Figure 1. Schematic diagram of core drilling.

The complex bore-hole environment leads to complex and changeable vibration of
the drillpipe. The actual vibration of the drillpipe is usually the coupling of transverse,
torsional, and longitudinal vibrations. Compared to comprehensive drilling, core drilling
has a small annular gap and high rotation speed. The transverse vibration of the drill
string is more intense, and excessive transverse vibration will collide with the core. The
core becomes a constraint on the transverse vibration of the drillpipe. This is also a
feature of core drilling. In this work, the authors mainly focus on constructing analytical
approximations for a better understanding of nonlinear behavior of drillpipes subjected to
fluid forces. Compared to previous studies, the drillpipe is simplified as a simply supported
beam structure at both ends. This is the first time that the core has been introduced as the
constraint of transverse vibration of drillpipes and simplified as a cubic nonlinear spring
force. On this basis, the motion control equation of drillpipe lateral vibration is established,
and the motion equation is discretized into an ordinary differential equation using the
Galerkin method. The corresponding equation of frequency amplitude is obtained through
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the method of multiple scales, and the influence of different parameters on resonance is
analyzed.

2. Model Development
2.1. Simplified Model

As shown on the right of Figure 1, the drillpipe between the bit and the nearest
stabilizer is selected as the research object. Bits and stabilizers are seen as hinged joints.
The influence of drill mud is acting throughout the length of the beam. The force form can
be simplified as a harmonic distributed force with an amplitude of P(N/m). The damping
force associated with the fluid around the drillpipe is also considered. This force has the
form Ff =

1
2 C f

∂y
∂t . The direction of the force is opposite to the speed of lateral movement of

the drillpipe, where C f is the viscous damping coefficient (Ns/m2).
We can write the governing equation of motion based on the Bernoulli–Euler beam

theory and the depiction shown in Figure 2.

Figure 2. Mechanical model of coring drillpipe under fluid action.

EI
∂4y
∂x4 + ρA

∂2y
∂t2 + f (y) +

1
2

C f
∂y
∂t
− P cos

(
ω f t

)
= 0 (1)

Here, y(x, t) is the transverse vibration displacement of the drillpipe, x is the spatial
coordinates along the drillpipe axis, t is time coordinate, EI is the bending stiffness of the
drillpipe, ρ is the density of the drillpipe, A is the cross-sectional area of the drillpipe, f (y)
is the impact force between the inner wall of the drillpipe and core.

Transverse vibration and buckling deformation of the drillpipe in the complex under-
ground environment can lead to contact collision between the drillpipe and core. As shown
in Figure 3, it shows the equilibrium state of the drillpipe, distributed constraints, and two
possible collision situations.
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Figure 3. Several forms of contact between coring drillpipe and core.

Here, f (y) is the nonlinear collision constraint force acting on the drillpipe along the
pipe axis.

f (y) = k1

[
y− 1

2
(|y + s| − |y− s|)

]3
(2)

where S is the distance between the inside of the drillpipe and the core, k1 is the third-order
nonlinear stiffness coefficient. The force model is in good agreement with the characteristic
curve of the constraint force measured by the Paidoussis experiment, so it is widely used
to simulate the collision between structures [14]. The qualitative characteristic curve of
collision force is shown in Figure 4. When the transverse vibration is less than the distance
between the drillpipe and the core, it indicates that there is no contact constraint force and
no contact between the drillpipe and the core. On the contrary, collision constraints are
generated.

Figure 4. The relationship between collision force and distance between drillpipe and core.
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2.2. Governing Equations

Making the study universal, the following dimensionless parameters are introduced.

w = y
L ,ξ = x

L ,d = s
L ,τ = t

L2

√
EI
ρA ,C′ f = C f L2

√
ρA
EI ,P′ = PL3

EI ,k2 = k1L5

EI ,ω′ f =

ω f L2
√

ρA
EI .

The dimensionless equations of motion can be obtained as follows

∂4w
∂ξ4 +

∂2w
∂τ2 + f (w) +

1
2

C′ f
∂w
∂τ
− P′ cos

(
ω′ f τ

)
= 0 (3)

The dimensionless collision binding force between drillpipe and core is as follows

f (w) = k2

[
w− 1

2
(|w + d| − |w− d|)

]3
(4)

For convenience, formula (3) can be simplified as follows

w′′′′ +
..
w + f (w) +

1
2

C′ f
.

w− P′ cos
(

ω′ f τ
)
= 0 (5)

Here, the overdot (
.

w) denotes the derivative with respect to the dimensionless time
τ, while the prime (w′) represents the derivative with respect to the dimensionless spatial
variable ξ. The boundary conditions can be obtained as

w(0, τ) = 0, w(1, τ) = 0,
∂2w(0, τ)

∂ξ2 = 0,
∂2w(1, τ)

∂ξ2 = 0 (6)

2.3. Discretization, Linear System, and Nonlinear Systems

The Galerkin technique simplifies the governing partial differential equation as a set
of ordinary differential equations. The solution is assumed to be in the following form.

w(ξ, τ) =
N

∑
n=1

ϕn(ξ)qn(τ) (7)

where ϕn(ξ) is the nth-order vibration mode function and qn(τ) is the corresponding
generalized coordinate. Substituting Equation (7) into Equation (5), multiplying by the trial
function ϕk(ξ) and integrating from 0 to 1, a nonlinear ordinary differential equations in
matrix form can be obtained

M
..
q + C

.
q + Kq + f(q)− P = 0 (8)

where q = [q1, q2, · · · , qN ]
T,

.
q =

[ .
q1,

.
q2, · · · ,

.
qN
]T,

..
q =

[ ..
q1,

..
q2, · · · ,

..
qN
]T represent the dis-

placement, velocity and acceleration column vectors of the drillpipe after discretization,
respectively. M, C, K, f(q), P represent the mass matrix, damping matrix, stiffness matrix,
nonlinear collision force, and mud column vector of discrete systems, respectively. The
following formulas can calculate the elements of these matrices and vectors.

Mnk =
∫ 1

0
ϕn ϕkdξ (9)

Cnk =
∫ 1

0

1
2

ϕkC′ f dξ (10)

Knk =
∫ 1

0
ϕn

(4)ϕkdξ (11)
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fnk =
∫ 1

0
ϕk f

[
N

∑
n=1

ϕn(ξ)qn

]
dξ (12)

Pk =
∫ 1

0
P′ cos

(
ω′ f τ

)
ϕkdξ (13)

In fact, any vibration beam’s eigen functions, also called mode shape functions, can be
inherited from the base beam mode. For this paper, the trial function of the hinged beam
at both ends can be selected as ϕk(ξ) = sin(kπξ), and by substituting ϕk(ξ) into Equation

(8), then introducing ω =
ω′ f
(nπ)2 as a dimensionless excitation frequency, Equation (8) is

converted to the following form

..
q + c1

.
q + c2q + c3q3 − fp cos(ωτ) = 0 (14)

where
c1 =

1− cos nπ

nπ
C′ f (15)

c2 = (nπ)4 (16)

fk =
2(1− cos nπ)

nπ
fnk (17)

fp =
2(1− cos nπ)

nπ
P′ (18)

3. Perturbation Solution for Response

For governing an equation with a cubic nonlinearity term and small excitation am-
plitude, the standard multiple scales method is used to obtain the approximate solution.
Based on this method, the solution for the response can be written as

q(τ, ε) = q0(T0, T1, T2, · · · , Tn) + εq1(T0, T1, T2, · · · , Tn) + · · · (19)

T0 = τ, T1 = ετ, T2 = ε2τ, · · · , Tn = εnτ (20)

Therefore, the following can be obtained:

q(τ)→ q(T0, T1, T2, · · · Tn) (21)

.
q =

dq
dτ

=
∂q

∂T0
+ ε

∂q
∂T1

+ ε2 ∂q
∂T2

+ · · ·+ εn ∂q
∂Tn

(22)

In addition, the derivative operator (Dn = d
dTn

) is introduced, which results in different
derivatives as

.
q = D0q + εD1q + ε2D2q + · · ·+ εnDnq =

(
D0 + εD1 + ε2D2 + · · ·+ εnDn

)
q (23)

the derivative operator is also applicable to the calculation of the second derivative
..
q.

3.1. Primary Resonance

Considering weak damping and a small excitation term, Equation (14) can alternatively
be written as

..
q + εc1

.
q + c2q + εc3q3 − ε fp cos(ωτ) = 0 (24)

For the primary resonance, the excitation frequency approaches the system’s natural
frequency. Here, the dimensionless excitation frequency is expressed as

ω = 1 + εσ (25)
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where σ is the detuning parameter. In this paper, two time dimensions are solved as

T0 = τ, T1 = ετ (26)

q(T0, T1) = q0(T0, T1) + εq1(T0, T1) (27)

After substituting Equations (25)–(27) into (24) and casting out the multiple terms of ε
we can obtain

D0
2q0 + εD0

2q1 + 2εD0D1q0 + εc1D0q0
+c2q0 + εc2q1 + εc3q0

3 − ε fp cos(τ + εστ) = 0
(28)

using Euler′s formula, we can obtain

ε fp cos(τ + εστ) = ε
fp

2
eiT0+iσT1 + ε

fp

2
e−iT0−iσT1 (29)

We yield by multiplying the coefficients of each order ε from 0 to 1.

ε0 : D0
2q0 + c2q0 = 0 (30)

ε1 : D0
2q1 + c2q1 = −2D0D1q0 − c1D0q0 − c3q0

3 +
fp

2
eiT0+iσT1 +

fp

2
e−iT0−iσT1 (31)

The solution of the second-order ordinary differential Equation (30) can be expressed
as

q0 = AeiT0 + Ae−iT0 (32)

A =
1
2

aeiβ (33)

Here, in which a and β are natural functions of T1, A is the complex conjugate of A.
Substituting Equation (32) into Equation (31) we can obtain

D0
2q1 + c2q1 = −i2

.
AeiT0 − ic1 AeiT0 − 3c3 A2 AeiT0 + c3 A3ei3T0 +

fp

2
eiT0+iσT1 + c.c (34)

where c.c indicates the complex conjugate. Now, one can separate the secular term from
Equation (34) and let the sum of the secular term′s coefficient equal zero.

i2
.
AeiT0 + ic1 AeiT0 + 3c3 A2 AeiT0 −

fp

2
eiT0+iσT1 = 0 (35)

Multiplying the e−iT0 to Equation (35) and substituting Equation (33) into Equation
(35) with rearrangement results in

i
.
a− a

.
β + i

c1a
2

+
3c3a3

8
−

fp

2
eiσT1−iβ = 0 (36)

Introducing ψ = σT1 − β into Equation (36) and converting Equation (36) into trigono-
metric form, and separating the result into real and imaginary parts, one can obtain the
modulation equations.

Real part : − a
.
β + 3c3a3

8 − fp
2 cos ψ = 0

Imaginary part :
.
a + c1a

2 −
fp
2 sin ψ = 0

(37)

When
.
a and

.
ψ tend toward zero, Equation (37) reflects the steady-state response of the

system.
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3.2. Secondary Resonances

This section will focus on finding the secondary resonances that can occur in the
system. Firstly, Equation (24) will be converted into the following form

..
q + εc1

.
q + c2q + εc3q3 − fp cos(ωτ) = 0 (38)

After substituting Equations (26–67) into (38) and casting out the multiple terms of ε
we can obtain

D0
2q0 + εD0

2q1 + 2εD0D1q0 + εc1D0q0
+c2q0 + εc2q1 + εc3q0

3 − fp cos(ωτ) = 0
(39)

Extracting the coefficients of each order of ε from 0 to 1 yield.

ε0 : D0
2q0 + c2q0 = fp cos(ωτ) (40)

ε1 : D0
2q1 + c2q1 = −2D0D1q0 − c1D0q0 − c3q0

3 (41)

The solution of the second-order ordinary differential Equation (40) can be expressed
as

q0 = AeiT0 + Ae−iT0 + BeiωT0 + Be−iωT0 = AeiT0 + BeiωT0 + c.c (42)

B = B =
fp

2(1−ω2)
(43)

where A contains the amplitudes and phases information and B is the complex conjugate
of B. When putting Equation (42) into (41), it results

D0
2q1 + c2q1 = −i2

.
AeiT0 − ic1 AeiT0 − ic1BωeiωT0 − c3 A3ei3T0 − c3B3ei3ωT0

−3c3 A2 AeiT0 − 3c3 A2Bei(2+ω)T0 − 3c3 A2Bei(2−ω)T0

−3c3 AB2ei(1+2ω)T0 − 3c3 AB2ei(−1+2ω)T0 − 3c3B2BeiωT0

−6c3 AABeiωT0 − 6c3 ABBeiT0 + c.c

(44)

Equation (44) can be used to determine the form of secondary resonance based on
different ω, which determines whether the secular term appears or not. Judging from
the right part of Equation (44), one can obtain that the system will occur as a third order
subharmonic and third order superharmonic resonances. The detailed description of
subharmonic and superharmonic resonances are as follows.

3.2.1. Subharmonic Resonance

Based on the aforementioned analysis and introducing the detuning parameter σ,
when the third order subharmonic resonances occur in the system, the dimensionless
excitation frequency is expressed as

ω = 3 + εσ (45)

Substituting Equation (45) into (44) and separating the secular term

i2
.
AeiT0 + ic1 AeiT0 + 3c3 A2 AeiT0 + 6c3 ABBeiT0 + 3c3 A2Bei(1+εσ)T0 = 0 (46)

Similar to Equation (33), A can be expressed as

A =
1
2

aeiβ

Substituting A into Equation (46) and multiplying the e−iT0 , with rearrangement,
results in

i
.
a− a

.
β + i

c1

2
a +

3
8

c3a3 + 3c3aB2 +
3
4

c3a2Bei(σT1−3β) = 0 (47)
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Introducing ψ = σT1 − 3β into Equation (47) and converting Equation (47) into
trigonometric form, and separating the result into real and imaginary parts, one can obtain
the modulation equations.

Real part : − a
.
β + 3

8 c3a3 + 3c3aB2 + 3
4 c3a2B cos ψ = 0

Imaginary part :
.
a + c1

2 a + 3
4 c3a2B sin ψ = 0

(48)

When
.
a and

.
ψ tend toward zero, Equation (49) reflects the steady-state response of the

system.
.
a = − c1

2 a− 3
4 c3a2B sin ψ

a
.
ψ = σa− 9

8 c3a3 − 9c3aB2 − 9
4 c3a2B cos ψ

(49)

3.2.2. Superharmonic Resonance

When the third order superharmonic resonances occur in the system, the dimensionless
excitation frequency is expressed as

3ω = 1 + εσ (50)

Just like solving the third order subharmonic resonances problem, the secular term is
derived as

i
.
a− a

.
β + i

c1

2
a +

3
8

c3a3 + 3c3aB2 + c3B3ei(σT1−β) = 0 (51)

Similarity, substituting and resetting, and separating the real and imaginary parts of
Equation (51), we obtain

.
a = − c1

2 a− c3B3 sin ψ

a
.
ψ = σa− 3

8 c3a3 − 3c3aB2 − c3B3 cos ψ
(52)

4. Amplitude-Frequency Response Analysis
4.1. Principal Resonance Response

To investigate the influence of different factors on the principal resonance response of
the drillpipe, when ω ≈ 1, we selected different parameters for analysis.

Figure 5 shows the effect of different factors on frequency response during primary
resonance. In Figure 5a, when c3 = 2.3562, fp = 1.2732, the amplitude-frequency re-
sponse curves of the primary resonance of the system under different damping values
c1 are shown. It is obvious that with the increase in damping value, the primary reso-
nance amplitude of the system decreases, and the unstable region is gradually narrowing.
However, the backbone curve does not change with the damping value. In Figure 5b,
when c1 = 0.6366, c3 = 2.3562, the amplitude-frequency response curves of the primary
resonance of the system under different external excitations fp are shown. It is obvious
that with the increase in the external excitation value, the resonant region of the primary
resonance of the system is increasing, and the maximal amplitude is also increasing. The res-
onant point constantly shifts to the right, increasing the unstable region, but the backbone
curve does not change with the damping value. In Figure 5c, when c1 = 0.6366, fp = 1.2732,
the amplitude-frequency response curves of the primary resonance of the system under
different cubic nonlinear stiffness c3 are shown. With the cubic nonlinear stiffness increase,
the resonance point shifts to the right, and the unstable region increases. However, the
maximal amplitude of the primary resonance of the system does not change, and the
backbone curve tilts right.
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Figure 5. Frequency response for primary resonance: (a) different damping values, (b) different
external excitations, (c) different cubic nonlinear stiffness.

The influence law of primary resonance of drillpipe systems can be obtained by
analyzing the above three cases: damping term and external excitation affect the maximum
amplitude of primary resonance of the drillpipe system; damping term, external excitation,
and cubic nonlinear stiffness coefficient affect the size of instability region of the system; in
the unstable region, the system will incur irregular vibrations and even chaos.

When
.
a = 0,

.
β = 0, by using Equation (37), we can obtain

(c1a)2 +

(
3
4

c3a3
)2

= fp
2 (53)

By selecting the parameters in Table 1, the approximate solution of the first-order
dynamic response of the primary resonance of the system can be obtained. Figure 6 shows
the dynamic response diagram of primary resonance.

Table 1. Primary resonance dynamic response parameter table.

ξ c1 c3 fp a β

0.5 0.5 2.3562 1 0.8032 −0.4133
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Figure 6. Dynamic response diagram of primary resonance: (a) diagram of transverse displacement
versus time, (b) Phase portrait.

4.2. Secondary Resonances Response
4.2.1. Subharmonic Resonance Response

To investigate the influence of different factors on the subharmonic resonance response
of the drillpipe, when ω ≈ 3 we selected different parameters for analysis. Expanding
Equation (49) to

9
64

c3
2a4 +

(
27
16

c3
2B2 − 1

4
σc3

)
a2 +

1
4

c1
2 +

1
9

σ− 2σc3B2 + 9c3
2B4 = 0 (54)

For Equation (54), the quadratic term of frequency a2 must have real roots so it can be
obtained that

∆ =

(
27
16

c3
2B2 − 1

4
σc3

)2
− 9

16
c3

2
(

1
4

c1
2 +

1
9

σ− 2σc3B2 + 9c3
2B4
)
≥ 0 (55)

a2 =
−
(

27
16 c3

2B2 − 1
4 σc3

)
±
√

∆
9

32 c32
≥ 0 (56)

Figure 7a shows the range of values for B and a2 that satisfies Equations (55) and
(56). Not all tuning parameters σ and external excitations obviously have subharmonic
resonance. With the increase in tuning parameters σ, under the external excitation B within
a certain range, the subharmonic resonance of the system will significantly affect the entire
drillpipe system. Figure 7b shows the effect of damping c1 on the resonance region. As
the damping increases, the curve moves right, and the resonance region becomes smaller.
This shows that with the increase in damping value, it requires more significant external
excitation and excitation frequency to resonate.
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Figure 7. Range of subharmonic resonance: (a) subharmonic resonance response range, (b) the
influence of different damping values on the response range of subharmonic resonance.

Figure 8 shows the effect of different factors on frequency response during subhar-
monic resonance. In Figure 8a, when c3 = 2.3562, B = 1, the amplitude-frequency response
curves of the subharmonic resonance of the system under different damping values c1 are
shown. It is obvious that with the increase in damping, the maximal amplitude of resonance
decreases, and the resonance region decreases. In Figure 8b, when c1 = 0.1, c3 = 2.3562,
the amplitude-frequency response curves of the subharmonic resonance of the system
under different external excitations B are shown. Obviously, with the increase in external
excitation, the maximal amplitude and resonance region of resonance will decrease. In
Figure 8c, when c1 = 0.1, B = 0.3, the amplitude-frequency response curves of the subhar-
monic resonance of the system under different cubic nonlinear stiffness c3 are shown. It is
obvious that with the increase in cubic nonlinear stiffness, the maximum amplitude and
resonance region of resonance become smaller.

The influence law of subharmonic resonance of the drillpipe system can be obtained
by analyzing the above three cases: when the external excitation increases to a certain
range, there will be obvious subharmonic resonance with the increase in frequency, and the
damping value will shift the range to the right. The damping term, the external excitation,
and the stiffness coefficient of the third nonlinear term affect the amplitude and the size of
the resonance region of the third harmonic resonance of the drillpipe system.

When
.
a = 0,

.
β = 0, by using Equation (49), we can obtain(

3
8

c3a3 + 3c3aB2
)2

+

(
1
2

c1a
)2

=

(
3
4

c3a2B
)2

(57)

By selecting the parameters in Table 2, the approximate solution of the first-order
dynamic response of the subharmonic resonance of the system can be obtained. Figure 9
shows the dynamic response diagram of subharmonic resonance.

Table 2. Subharmonic resonance dynamic response parameter table.

ξ c1 c3 fp a β

0.5 0.5 2.3562 16
0.1418 1.5026
1.9950 0.0710
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Figure 8. Frequency response for subharmonic resonance: (a) different damping values, (b) different
external excitations, (c) different cubic nonlinear stiffness.

Figure 9. Dynamic response diagram of third harmonic resonance displacement.
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4.2.2. Superharmonic Resonance Response

To investigate the influence of different factors on the superharmonic resonance re-
sponse of drillpipe, when ω ≈ 1

3 we selected different parameters for analysis.
Figure 10 shows the effect of different factors on frequency response during superhar-

monic resonance. In Figure 10a, when c3 = 2.3562, fp = 1.2732, the amplitude-frequency
response curves of the superharmonic resonance of the system under different damping
values c1 are shown. It is obvious that the effect of damping on superharmonic resonance
is similar to that of damping on primary resonance. With the increase in damping value,
the superharmonic resonance amplitude of the system decreases, and the unstable region is
gradually narrowing. However, the backbone curve does not change with the damping
value. In Figure 10b, when c1 = 0.6366, c3 = 2.3562, the amplitude-frequency response
curves of the superharmonic resonance of the system under different external excitations fp
are shown. It is obvious that with the increase in external excitation, the resonance region
increases, the maximal amplitude increases, the resonance point shifts to the right, the
unstable region increases, and the ridge line of the response curve shifts to the right. In
Figure 10c, when c1 = 0.6366, fp = 1.2732, the amplitude-frequency response curves of
the superharmonic resonance of the system under different cubic nonlinear stiffness c3 are
shown. It is obvious that with the increase in cubic nonlinear stiffness, the resonance point
shifts to the right, the unstable region increases, and the maximal amplitude increases.

Figure 10. Frequency response for superharmonic resonance: (a) different damping values, (b) differ-
ent external excitations, (c) different cubic nonlinear stiffness.
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The influence law of superharmonic resonance of drillpipe systems can be obtained by
analyzing the above three cases: the damping term, external excitation, and the stiffness
coefficient of the third-order nonlinear term jointly affect the amplitude and instability
region of the third-order superharmonic resonance of the drillpipe system.

When
.
a = 0,

.
β = 0, by using Equation (52), we can obtain(

3
8

c3a3 + 3c3aB2
)2

+

(
1
2

c1a
)2

=
(

c3B3
)2

(58)

By selecting the parameters in Table 3, the approximate solution of the first-order
dynamic response of the superharmonic resonance of the system can be obtained. Figure 11
shows the dynamic response diagram of superharmonic resonance.

Table 3. Superharmonic resonance dynamic response parameter table.

ξ c1 c3 fp a β

0.5 0.5 2.3562 1 0.1839 0.1099

Figure 11. Dynamic response diagram of superharmonic resonance: (a) diagram of transverse
displacement versus time, (b) phase portrait.

Through the comparison and analysis of the response diagram, the corresponding
dynamic laws of the system can be obtained. It can be seen from Figure 6, Figure 9,
and Figure 11 that the approximate solution of the nonlinear vibration of the drillpipe is
obtained by using the first-order accuracy of the multi-scale method. The displacement
dynamic response curves of the three resonances have similar variation laws of chord
function, but the amplitude and phase angle of the three resonance response curves differ.
In general, the dynamic response law of the primary resonance is similar to that of the
third-order superharmonic resonance.

The comparison between Figures 6a and 11a shows that under the same parameters,
the dynamic response of the primary resonance displacement is significantly greater than
that of the third-order superharmonic resonance. This indicates that the effect of the
primary resonance is the most obvious in the three resonances when resonance occurs. The
difference in the phase angle makes the maximum displacement caused by the primary
and third-order superharmonic resonance appear alternately in the resonance problem.
Figures 6 and 11 show that the resonance phenomena of the primary resonance and the
third-order superharmonic resonance under the selected parameters are stable periodic
motions.
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Figure 9 shows that when the third subharmonic resonance occurs in the system with
the increase in external excitation, the dynamic response of displacement has two solutions,
and the dynamic response of displacement may jump between the two amplitudes, indi-
cating that the system will be in an unstable state when the third subharmonic resonance
occurs.

5. Summary

In this paper, the authors considered the damping and external excitation of mud,
introduced the nonlinear term of the third contact force between coring drillpipe and core,
and established a reduced-order model of coring drillpipe. The study of the system′s pri-
mary and harmonic resonance shows that the damping term c1 has a significant inhibitory
effect on the amplitude of resonance, and external excitation fp affects the intensity of
resonance when the drilling speed and pressure are constant. Research also shows that the
resonance of the drillpipe is intensified due to the core limitation.

From the analysis of the three resonance problems, it can be known that under specific
system parameters, the subharmonic resonance of the drill pipe system is more unstable.
Still, the primary resonance is the strongest, indicating that the vibration caused by the
primary resonance will be more intense. It suggests that the drilling parameters should be
changed to keep the system from the influence of the primary resonance. These findings
are helpful for field drilling, and changing the corresponding parameters can avoid the
adverse effects of resonance. Appropriately increasing the viscosity of mud and reducing
the value of external excitation are effective means to reduce the resonance amplitude.
These findings also help design coring tool combinations. For example, increasing the
distance between the core and the core tube can avoid more intense resonance of the core
tube. Appropriately increasing the stiffness of the drill pipe can make the drill pipe away
from the resonance region. These proposals can effectively improve drilling efficiency,
reduce downhole accidents, reduce labor intensity, and reduce drilling cost.
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