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Abstract: Aiming to solve the problems of poor CO2 displacement efficiency and serious gas-
channeling and low well-opening rates in ultra-low permeability reservoirs, we carry out CO2

displacement experiments under different permeability reservoirs by using different development
methods, water drive to gas drive procedures, and different fracture positions to clarify the effects
of physical formation properties, injection methods, and fracture parameters on CO2 displacement
efficiency in C8 ultra-low permeability reservoirs. The experimental results show that the recovery
degree of CO2 miscible drive increases with an increase in permeability. When the gas–oil ratio is
greater than 2000 m3/m3, serious gas channeling can be observed in both the miscible drive and im-
miscible drive. In addition, when the water drive is altered to be a gas drive, the water cut of 0.45 mD
and 0.98 mD cores decreased, and the recovery degree increased by 13.4% and 16.57%, respectively.
A long fracture length will deteriorate gas channeling and lower the CO2 oil-displacement efficiency.
However, the fracture location is found to have little impact on the recovery of CO2 displacement.

Keywords: ultra-low permeability reservoir; CO2 flooding; air water alternation; gas channeling;
injected pore volume

1. Introduction

With the deepening of oil and gas field exploration and development, the proportion
of ultra-low permeability oilfield production increases. An ultra-low permeability reservoir
is usually characterized by low permeability, low porosity, natural fracture development,
and serious heterogeneity [1,2]. Water-injection development has a slow effect, inadequate
recovery, and serious water channeling along with artificial fractures, which results in
ineffective water injection in ultra-low permeability reservoirs. CO2 flooding has become
the most important EOR technology after water flooding, and has been used as a long-term
tertiary oil-recovery technology by many oil companies around the world. Therefore, it
is necessary to seek new production methods to further improve the oil recovery of ultra-
low permeability reservoirs [3–5]. The mobility of CO2 is usually quite high, which can
effectively help CO2 flow into micropores to improve the sweeping efficiency and expand
the oil-displacement sweep area. CO2 is easily soluble in crude oil, effectively reduces the
viscosity and interfacial tension of crude oil, improves formation pressure, overcomes the
Jamin effect, effectively uses small-pore throat crude oil, greatly improves oil-displacement
efficiency, and is easy to capture and cheap. Therefore, CO2 flooding is an important
technology to improve the production efficiency and recovery efficiency of low-permeability
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reservoirs. CO2 injection can meet the dual needs of oil displacement and storage, and
is the main position for CCUS implementation [6–9], playing a dual role in improving
economic benefits and protecting the environment, and has broad application prospects.

Numerous field-scale applications show that CO2 flooding is one of the most promis-
ing oil-increase measures to improve the development effect of ultra-low permeability
reservoirs [10–14]. There are a total of 136 CO2 oil-displacement projects in the United
States, of which low-permeability reservoir projects account for 63.67%, with average
porosity and permeability of 13.23% and 38.1 mD, respectively, and enhanced oil recovery
by 8.00–25%, and oil change rate by 0.28–0.72 t/t [15,16]. Zhang Meng [17] studied the
influence of core permeability and heterogeneity on the effect of water alternate gas (WAG)
displacement. The lower the permeability, the later the gas-channeling time becomes; the
smaller the permeability difference, and the higher the gas–water ratio, and the better the
oil displacement becomes. Zou Jirui [18] aims at the problem of gas channeling occurring
during the CO2 injection in the fractured low-permeability reservoir. Shutting in gas chan-
neling wells can effectively inhibit gas channeling and further excavate the remaining oil,
and the recovery is increased by 7.52%. With the production well diversion control method,
Wang Zhixing [19] adopts the methods of low-permeability priority and low-permeability,
high-pressure difference to prolong the gas breakthrough time, and increases the liquid
production of production wells, and the recovery degree by 19.39% and 23.31%, respec-
tively. By using conventional PVT multiple contact experiments, Hu Wei [20] carried out
gas-injection displacement experiments and gas–water alternate displacement experiments
at different water cut stages. Under different water cuts, CO2 flooding will form different
three-phase seepage and distribution characteristics of oil, gas, and water in the reservoir,
thus affecting the recovery degree. Yuxia Wang [21] studied the influence of macrohetero-
geneity on CO2 recovery efficiency with indoor experiments and field data. The injection
wells located in high permeability areas and production wells located in low-permeability
areas can ensure CO2 gas injection capacity and improve the CO2 oil displacement effect of
tight sandstone reservoirs. Hao Shen [22] developed a new type of channeling plugging
agent for low-permeability fractured reservoir with rheological experiment, which can
effectively inhibit gas channeling and improve oil recovery by 21.7%. Zheng Chen [23]
found that the existence of water inhibits the contact between supercritical CO2 and crude
oil and reduces the diffusion of CO2 to crude oil. It leads to an early CO2 intrusion and a
good injection capacity. In different water-bearing stages, it is essential to select appropriate
gas-injection time. Hongda Hao [24] has set a high-strength temporary plugging agent
through laboratory experiments. A three-dimensional radial flow model with complex
cracks and heterogeneity has been designed according to the actual oilfield. The recovery
factor increased by 15.09% through high-strength gel and gas–water alternation.

However, due to the low viscosity of CO2 and the formation of an adverse mobility
ratio, viscous fingering and gas channeling very easily occur, which seriously lowers the
recovery degree of gas drive EOR [25–27]. Therefore, with the indoor physical simulation
experiment of core displacement, the effects of different permeability, different develop-
ment methods, water drive to gas drive, and the different fracture positions on the CO2
displacement effect and the gas-channeling law of ultra-low permeability reservoirs are
studied. The feasibility of CO2 flooding in ultra-low permeability reservoirs to improve
crude oil recovery is clarified to provide theoretical guidance and reference for improving
the recovery efficiency of CO2 flooding technology in oilfields.

2. Experimental Materials and Equipment
2.1. Experimental Materials

The H3 District of the Changqing oilfield is located in Yanchi County of Ningxia Au-
tonomous Region with an altitude of 1500~1800 m and an area of 170 km2. The sedimentary
environment of Chang 8 reservoir in H3 District belongs to delta front facies. The reservoir
sand body is mainly underwater distributary channel sand, and the local sand bodies are
estuary bar sand, underwater crevasse fan sand, and sheet sand. The reservoir is mainly
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feldspathic lithic sandstone, followed by lithic feldspathic sandstone. The buried depth is
about 2600 m, the average sand body thickness is 17.5 m, and the average oil layer thickness
is 15.7 m.

Core samples were collected from the C8 layer in the H3 area of Ordos Basin. The pulse
method is used to determine permeability and porosity. The core test results of this experi-
ment are shown in Table 1. The average porosity is 10.77%, and the average permeability is
0.51 md, making it a low-porosity–ultra-low porosity and ultra-low permeability reservoir.

Table 1. Porosity and permeability test results of experimental core.

Core
Number

Length
(mm)

Diameter
(mm)

Mass
(g)

Permeability
(mD)

Porosity
(%)

1 48.73 25.01 57.39 0.892 12.33

2 48.73 25.01 57.39 0.892 12.33

3 50.11 25.33 60.21 0.434 9.94

4 50.11 25.33 60.21 0.434 9.94

5 50.11 25.33 60.21 0.434 9.94

6 50.11 25.33 60.21 0.434 9.94

7 50.03 25.31 58.33 0.096 9.46

8 50.03 25.31 58.33 0.096 9.46

9 49.05 25.54 54.49 0.45 11.87

10 48.86 25.52 54.32 0.98 12.47

2.2. Experimental Equipment

Two control test groups are designed for different permeabilities, which are divided
into two states: miscible and immiscible. To ensure that the oil and gas are always miscible,
the injection pressure of the miscible experiment is 20 MPa, and the backpressure at the
outlet end is 15 MPa. The injection pressure of immiscible group is 13 MPa, and the
backpressure at the outlet is 8 MPa. The injection production pressure difference in the
above experiments is 5 MPa. This experiment adopts the multifunctional core displacement
experimental device independently developed by the Engineering Research Center of the
Ministry of Education for developing and treating Western low-permeability–ultra-low
permeability oil fields of Xi’an Shiyou University (Figure 1).
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3. Experimental Method
3.1. Core Displacement Experiment

The experimental procedure of core displacement is as follows,

(1) Dry the core in an oven at 110 ◦C, then inject formation water at a pressure of 15 MPa,
and the core saturates the formation water.

(2) Inject the formation oil into the core with an injection pressure of 15 MPa, saturate the
formation oil by displacing the formation water, establish irreducible water saturation,
and stop eviction after the liquid volume at the outlet is stable.

(3) Inject CO2 at a predesigned pressure, then measure the oil and gas production under
different injection times at a time interval of 1 min, and record the injection volume,
water yield, and oil yield, and calculate the water cut and recovery degree. When
the oil yield is unnoticeable, stop water injection, inject CO2 at the set pressure and
constant pressure, measure the oil yield and gas production at different injection times
at 0.5-min intervals, and calculate the recovery degree and gas–oil ratio.

3.2. Displacement Experiment of Long Fractured Core

The following three experiments shown in Figure 1 are designed for fractures of
different scales and positions to clarify their impact on the CO2 flooding. In Scheme 1 of
Figure 1, there are nine cores in total, and seven cores with artificial fractures are located
at the entrance. In Scheme 2, there are nine cores in total, and five cores with artificial
fractures are located at the outlet. In Scheme 3, there are nine cores in total, and seven cores
with artificial fractures are located at the outlet (Figure 2).
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Experimental process:

1. Artificial fractures are produced in the core, and the mass and permeability of the core
are measured.

2. The core is vacuumed and the saturated formation oil is weighed to calculate the
volume of saturated oil.

3. Put the core into the core holder in a particular order, then set the confining pressure
to be 30 MPa, drive CO2 into the rock core of the design scheme with 25 MPa constant
pressure, and record the pump inlet, oil output, and gas output at different times until
there is no oil output.

4. Experimental Results and Discussion
4.1. Analysis of Core Displacement Experiment Results

With an increase in recovery degree, the gas–oil ratio in the initial stage decreases.
When the gas–oil ratio is greater than 2000 m3/m3, the gas–oil ratio increases rapidly, and
the gas channeling of immiscible flooding occurs earlier. Correspondingly, the recovery
efficiency of gas channeling is much lower than that of miscible flooding. The gas–oil ratio
of miscible flooding after gas channeling is higher than that of immiscible flooding. The
recovery of CO2 miscible flooding in ultra-low permeability core is 21~24% higher than
that of immiscible flooding (Figures 3–5).
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With an increase in CO2 injection volume, the recovery degree of miscible flooding
increases. However, when the injection volume is greater than 1.5 PV, the increment of
recovery degree slows down. The higher the core permeability, the greater the recovery
degree of miscible flooding becomes (Figure 6). Before the injected CO2 volume reaches
0.5 PV, it is at the gas-free oil production stage; the gas seeing stage is 0.5~1.5 PV, and the
gas–oil ratio is less than 2000 m3/m3. After injecting about 1.5 PV gas, it enters the gas
channeling stage, and the gas–oil ratio after gas channeling is 6621 m3/m3, 7843 m3/m3,
and 9516 m3/m3, respectively (Figure 7).
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With an increase in CO2 injection volume, the recovery degree of core immiscible
flooding increases. However, when the injection volume exceeds 0.5 PV, the increment
of recovery degree gradually decreases. The greater the core permeability, the higher the
recovery degree of immiscible flooding becomes (Figure 8). A CO2 injection volume of
0.0 to 0.5 PV is the stage of gas-free production, and the stage of gas breakthrough is
0.5 PV~1.3 PV. The CO2 gas channeling of immiscible displacement is faster than that of
miscible displacement. The gas–oil ratio is less than 2000 m3/m3. After injecting about
1.3 PV gas, it enters the gas channeling stage. The gas–oil ratio can reach 4901 m3/m3,
5566 m3/m3, and 8010 m3/m3, respectively (Figure 9).
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Before CO2 breakthrough, the main oil displacement mechanisms are dissolved gas
drive, CO2 extraction, and volume expansion. The mass transfer and extraction of CO2
are enhanced, with a reduction in the interfacial tension. In addition, more gas enters the
small pores, and unlocks crude oil in the small pores. The viscosity of crude oil is reduced
and then increases the oil mobility. After CO2 breakthrough, due to the formation of a
gas-channeling channel, carbon dioxide forms a fingering phenomenon in the displacement
process, resulting in the reduction of oil recovery. Therefore, the development of tight
sandstone reservoir by carbon dioxide injection and the improvement of miscibility are
conducive to the improvement of oil recovery.

4.2. Analysis of Experimental Results of Water Drive to Gas Drive

(1) Oil displacement of 0.45 mD core

When the injection pressure of the core is 20 MPa, and the outlet pressure is 15 MPa,
the oil displacement potential of water injection to CO2 injection in 0.45 mD core is studied.
With an increase in injected water volume, the recovery degree of crude oil increases.
After 1.02 PV water is injected into the core, the water content reaches 91.2%, and the
recovery factor is 38.21%. When the core was alternated to CO2 flooding, the water cut
began to decline after a slight increase. After injecting 0.47 PV of gas, the gas broke
through, and the recovery reached 46.53%, which was 8.32% higher than that of water
injection (Figures 10 and 11). When the core was injected with CO2 again, the recovery
increased slightly.
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(2) Oil displacement of 0.98 mD core

The oil displacement potential of 0.98 mD core under the condition of water injection
to gas injection is studied. After 0.82 PV is injected into the water drive stage. The water
content reaches 89.3%, and the recovery degree is 55.31%. When the displacement method
is altered to CO2 flooding, the water cut increases by 6% after gas injection and decreases
rapidly. After gas injection of 0.45 PV, the gas breakthrough occurs. At this time, the
recovery is 71.42%, which is 16.11% higher than that of water injection (Figures 12 and 13).
The recovery increment of CO2 injection in 0.45 md core is small.
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During the process of water-injection development of an ultra-low permeability reser-
voir, water can easily enter the larger pores, then drives out the crude oil in the large pores
instead of the oil contained in micropore spaces, which apparently results in a low recovery
degree. CO2 has a strong fluidity compared with water and can easily enter the micropores,
so as to drive out the original oil in the pores and achieve the purpose of enhanced oil
recovery. Water helps to increase the oil scavenging area of carbon dioxide and reduce
the channeling of carbon dioxide. The injected carbon dioxide is mixed with crude oil,
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which reduces the interfacial tension between oil and water and the viscosity of crude oil,
and improves the fluidity of crude oil. Therefore, in the high water cut stage of ultra-low
permeability reservoir, the conversion of water injection to CO2 injection can not only
reduce the water cut but also improve the degree of crude oil recovery.

4.3. Analysis of Displacement Test Results of Fractured Core

(1) Scheme 1 core oil displacement efficiency.

The core injection pressure is 25 MPa and the outlet pressure is 15 MPa. CO2 and crude
oil should be in a miscible state. The gas channeling of seven cores with artificial fractures
at the inlet end under miscible conditions is studied. With an increase in CO2 injection
volume, the recovery degree and gas–oil ratio increase (Figure 14). When 0.74 PV of CO2 is
injected, the recovery degree of CO2 displacement in the fractured long core is 33.9%. With
a continuous increase in injected CO2 volume, the increase of recovery degree is gentle.
After the injection amount reaches 0.74 PV, the core gas channeling, and the gas–oil ratio
is about 29,750 m3/m3. Then the gas–oil ratio rises rapidly. After the gas channeling, we
continue to inject 0.92 PV CO2, and the recovery degree is only increased by about 1.2%.
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Figure 14. The relationship between CO2 injected volume and recovery degree, gas–oil ratio (Scheme 1).

(2) Analysis of core oil displacement efficiency in Scheme 2.

The gas channeling of five cores with artificial fractures at the outlet under miscible
conditions is studied. The experimental conditions are the same as in Scheme 1. With an
increase in CO2 injection volume, the core recovery degree and gas oil ratio also increases
(Figure 15). When CO2 is injected at 0.69 PV, the recovery degree of CO2 flooding in the
fractured long core is 45%. When CO2 is injected continuously, gas channeling occurs in
the core, and the gas oil ratio is about 2096 m3/m3. Then the gas–oil ratio rises rapidly.
After gas channeling, 0.8 PV CO2 gas is injected continuously, the gas–oil ratio is about
34,290 m3/m3, and the recovery factor is only increased by about 5%.
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(3) Analysis of core oil displacement efficiency in Scheme 3.

The experimental conditions are the same as Scheme 1 (Figure 16). With an increase in
CO2 injection volume, the core recovery degree and gas oil ratio increase, which is similar
to Scheme 1 and Scheme 2. When CO2 of 0.71 PV, the recovery degree of long fracture core
experiment is 32.14%. When CO2 is injected continuously, gas channeling occurs in the
core, and the gas oil ratio is about 6435 m3/m3. After that, the gas–oil ratio rises rapidly.
After gas channeling, 0.84 PV CO2 gas is injected continuously, and the gas–oil ratio is
about 86,450 m3/m3, and the recovery factor is only increased by about 6.55%.
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Figure 16. The relationship between CO2 injected volume and recovery degree, gas oil ratio (Scheme 3).

The matrix core of Scheme 1 is located at the outlet. CO2 is produced late at the
outlet end, which can inhibit gas channeling. The gas–oil ratio during gas channeling
is 3000~4000 m3/m3. The recovery degree of Scheme 1 is slightly lowered. After gas
channeling, some crude oil is still produced in Scheme 2, and the recovery factor is 4%
higher than Scheme 1. The fracture location has little impact on the CO2 oil displacement
(Figures 17 and 18).
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Figure 17. The relationship between CO2 injected volume and recovery degree (Scheme 1 and Scheme 3).

By analyzing the CO2 displacement characteristics with different fracture lengths, it
can be seen that the larger the fracture scale, the lower the core oil displacement efficiency.
The ultimate recovery degree of Scheme 2 is 51%, and that of Scheme 3 is 39%, which
is 12% lower than that of Scheme 2. The larger the fracture scale, the shorter the gas
channeling time, and the greater the production gas oil ratio with the same recovery degree
(Figures 19 and 20).
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Figure 19. The relationship between CO2 injected volume and recovery degree (Scheme 2 and Scheme 3).
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Figure 20. The relationship between recovery degree and gas–oil ratio (Scheme 2 and Scheme 3).

Fractures provide favorable flow channels for both oil and gas. The existence of
fractures increases the contact area between CO2 and crude oil. During oil production,
the resistance of crude oil seepage decreases. CO2 first flows along the fractures, mainly
producing crude oil in the macropores around the fractures. The large capillary pressure
caused by the small size of pores seriously impedes the flow of crude oil out of the ma-
trix. The pressure in the fractures decreases slowly. The crude oil in the matrix flows to
the fractures under the action of differential pressure. The CO2 has a strong extraction
ability, and it plays an important role during the development of ultra-low permeability
reservoirs. Light and medium hydrocarbons in crude oil are extracted in the gas phase.
The saturation of crude oil in the matrix is different from that in the fracture, and crude oil
flows from the matrix to the fracture. However, the uneven distribution of fractures in the
formation will aggravate the occurrence of gas channeling and reduce the development
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effect of gas flooding. The sweep volume is difficult to expand, and the EOR effect is
poor. The development of ultra-low permeability reservoir by CO2 injection needs to set a
reasonable fracture penetration ratio, prolong the soak time, and improve CO2 extraction
and differential diffusion of the crude oil concentration.

5. Conclusions

(1) For ultra-low permeability cores, the recovery rate of CO2 miscible flooding is 21~24%
higher than that of immiscible flooding. Before the injected CO2 volume reaches
0.5 PV, the gas production stage of core miscible flooding is in the range of 0.5~1.5 PV,
the gas production stage of core immiscible flooding is in the range of 0.5~1.3 PV,
and the gas–oil ratio in the gas production stage is less than 2000 m3/m3. When the
gas–oil ratio is greater than 2000 m3/m3, the core enters the gas channeling stage, and
the gas–oil ratio increases rapidly.

(2) With an increase in water injection volume, the recovery degree of crude oil increases,
and the core is replaced by CO2 injection. The water content increases slightly and
then begins to decrease. Compared with water injection, the recovery of CO2 injection
into 0.45 mD and 0.98 mD cores is increased by 8.32% and 16.11%, respectively. After
the breakthrough of core gas injection, the increase in CO2 injection recovery is small.

(3) With an increase in CO2 injection volume, the recovery degree and gas–oil ratio of
long cores with artificial fractures increase. The ultra-low permeability core crude
oil is mainly produced before gas channeling. After the core gas channeling, the
increase of the recovery degree is small. The fracture location has little impact on
the CO2 oil-displacement effect. The larger the fracture scale is, the lower the core
oil-displacement efficiency becomes, the shorter the gas-channeling time is, and the
greater the production gas oil ratio with the same recovery degree is. A reasonable
fracture penetration ratio should be set for CO2 oil injection.

(4) Enhanced miscibility, water–gas alternate displacement, reasonable fracture penetra-
tion ratio and reasonable contact time between carbon dioxide and crude oil can all
improve the recovery of ultra-low permeability reservoirs.
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