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Abstract: A case study of solar collector outdoor test of the experimental technique conducted at
Avadi, Chennai. To lower the temperature of solar PV panels, water, and water-based nanofluids were
utilized concurrently. Higher cell temperatures restrict the effectiveness of solar PV systems since
only a minor amount of power from the sun is gathered as electricity from the energy conversion,
and the remaining energy is squandered as heat. The study aimed to develop and build a hybrid
collector while also analyzing its electrical and thermal energy performance. The effort was invested
in improving the system’s performance; the PVT collector was tested at volume concentrations of two,
such as 0.5 and 1.0 L per minute (LPM). The PV/T collector determined thermal efficiency as highest
was 48.38 percent and 54.03 percent, respectively, at 0.5 LPM and 1.0 LPM of volume flow rates.
The PV/T collector’s highest electrical efficiency was 18.32 percent and 19.35 percent, respectively,
for 0.5 LPM and 1.0 LPM of volume flow rates. The results demonstrate that nanofluid has more
excellent thermal conductivity than a base fluid with a little change in the fluid viscosity and density.

Keywords: standalone hybrid collector; TiO2; flow rate; nanofluid; thermal performance; electrical;
energy; renewable

1. Introduction

The increase in global energy requirements every year, and the gradual depletion
of traditional fuels necessitates technological advancements based on alternative energy
sources [1]. Solar collectors for industries and households are frequently used to heat
water with solar energy. Out of two collectors, one is called a Solar flat plate collector
and the other is called an evacuated tube collector. To increase productivity, two different
power conversion systems, known as hybrid power or photovoltaic thermal systems, can
be coupled together [2,3]. Solar renewable energy is a popular renewable source because it
is free, feasible, durable, has a low maintenance cost, is environmentally friendly, and has a
wide range of applications. However, it has drawbacks, such as increasing the solar panel’s
temperature by 10 degrees Celsius, resulting in a 0.5 percent decrease in electrical efficiency
for silicon cells because cooling of the solar panel may be required for improved efficiency.

Cooling liquids such as air or water are used in the solar panel system to reduce
the temperature [4–9]. There are two ways that the performance of a solar panel can be
increased. First is solar panel cooling, and another is a medium for storing waste heat.
Air and water are commonly used to cool solar panels as a traditional cooling method.
Nonetheless, it has its own set of virtues and merits. As a result of the foregoing encounters,
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many researchers worldwide have been using nanomaterials as a superior cooling fluid
to improve thermal and electrical performance. As a result, overall performance can be
improved. The following are some examples of successful studies conducted around the
world. Choi and Estman [10] pioneered nanofluids as a cooler in PVT systems, which
sparked considerable interest due to their superior thermophysical properties examined
to the standard fluids. The solid-liquid synthesized nanoparticles in a company with
diameters typically ranging from 1–100 nm drifting in water [11].

Many experiments demonstrated that water nanofluid has a significantly larger heat
transfer coefficient occurs than basic fluids [12–14]. The enrichment of heat transfer was
done by nanofluids in hybrid collectors, with a few negative impacts, such as increased
pressure drop in the system [15], a limited period of its stability, and a higher cost of
nanoparticles. Sardarabadi et al. [16] experimented with water as a base fluid with PVT
systems and at various concentrations of SiO2 nanofluid. It was concluded that overall
performance attained 3.6 to 7.9 percent for 1 to 3 wt. percent. Ghadiri et al. [17] examined
water and ferrofluid with varying compositions using an indoor PVT system. The overall
efficiency was 45 percent when compared to a hybrid system. Sardarabadi et al. [18] used
deionized water to dissolve three types of nanoparticles (AL2O3, TiO2, and ZnO).

Al-shamani et al. [19] experimented with various nanofluids at different flow rates.
According to the results, sic had the highest electrical performance of about 13.52 percent
and the overall maximum efficiency of 78.24 percent. Soltani et al. [20] demonstrated an
investigational study in a hybrid system using water nanofluid. It was discovered that full
enactment and power generation increased by 3.13 percent and 52.4 percent, respectively.
The authors also revealed that SiO2 improved total performance and power generation by
3.29 percent and 43.36 percent, respectively. Al-Waeli et al. [21] used collectors to investigate
three types of nanofluids.

Al-Waeli et al. [22] demonstrated the influence of Silicon chloride/water nanofluid on
hybrid systems, which improved electrical energy efficiency to 23.9 percent and heat power
efficiency to 99.23 percent. It also discovered that it had a superior overall performance
of approximately 88.9 percent when compared to a PV system. Mohammad Sardarabadi
et al. [23] examined the silica nanofluid’s efficiency in a PVT system experimentally. It
concluded with a 7.9 percent improvement in overall performance and a 24.3 percent
improvement in exergy. For long-term stability, Ag/water nanofluid was processed by
electrical explosion of wire [24,25]. The system was evaluated using a thermodynamic
study, specifically energy and exergy efficiency. This experiment was carried out using
various flow patterns and concentrations.

Muhammad Azam investigated a mathematical model of a chemically reactive Maxwell
nanofluid for axisymmetric flow using the Cattaneo-Christov heat flux model and a revised
nanofluid model. [26]. The impact of Arrhenius activation energy and melting events on
chemically reactive Falkner-Skan flow of cross nanofluid across a moving wedge with
viscous dissipation and nonlinear radiation impacts are studied using a theoretical nu-
merical communication [27]. The primary goal of this paper is to investigate the effects of
melting phenomena and nonlinear chemical reactions on transient bioconvection flow of a
sutterby nanoliquid with gyrotactic microorganisms and heat source/sink [28]. Muham-
mad Azam [29] studied the unsteady bio-convection flow of nanofluid under the impact of
microorganisms and nonlinear radiation using mathematical modeling and simulation.

The research goal is to demonstrate manganese chloride as a coolant to improve the
PVT collector performance. The manganese chloride nanofluid has been experimentally
explored for the first time to cool and improve the performance of a single glazing surface
PVT system. The developed PVT collector and PV module were tested outdoors at the
Chennai meteorological station using 0.5 wt. percent concentrations of nanofluids and pure
water as coolants at 0.5 and 1.0 L per minute. The energetic study of a hybrid collector with
nanofluid coolants was carried out, and comparisons to PV modules and water-cooled PVT
systems were. It was also discovered that the findings of this inquiry were equivalent to
those published in peer-reviewed journals.
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2. Experimental Study Procedure

The findings are from tests conducted in Avadi, near Chennai (The Capital of Tamil
Nadu, Southern India). Chennai city is located on the thermal equator and the coast, which
prevents seasonal temperature variations from becoming considerable. The average relative
humidity is 69%, the average ambient temperature ranges from 24.8 ◦C to 33.1 ◦C, and the
average number of sunshine hours is 7.8. The suggested approach was built, produced,
and tested to determine the efficiency of nano-PCM and nanofluid PVT systems, then
compared to liquid PVT systems and freestanding PV modules. In addition, water as a
cooler with varied flow rates was tested in the PVT system, while nano-PCM and nanofluid
with varying concentrations and flow rates were tested in the hybrid collector. The finished
system is a self-contained PV module that usually works—an experimental setup at the
specific location in Figure 1. As per the Indian subcontinent is located in the northern
hemisphere of the earth where a 13-degree inclination is measured. In this study, there is
no variation in inclination.
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Figure 1. Experimental setup at the specific location.

A multi-silicon glass panel with 1640 mm × 992 mm × 35 mm was purchased to
construct a Photovoltaic Thermal Collector. Because of the platform’s insulating effect, a
0.4 mm copper sheet was used for heat absorption on the back of the solar panel. Fur-
thermore, the external and internal diameters of the copper tube are 1.0 cm and 0.8 cm,
respectively, and are placed to observe heat behind the solar panel. Table 1 shows the
performance of the solar panel under normal test conditions. The photovoltaic thermal
system was oriented 13 degrees south. Every day, between 8 a.m. and 5 p.m., readings for
all weather conditions and output power were obtained for fifteen minutes. A copper tube
connected to a solar panel is shown in Figure 2. This copper tube is used because of high
heat conduction from the solar panel to the water which is passing through the pipe. When
placing the copper pipe, it must be taken care that the entire length is in contact with the
solar panel, and a special arrangement using a clamp was used to make sure that the pipe
is always in contact with the solar panel.

To increase heat transmission and reduce material costs, the nanofluid was used
in the solar panel system. The single-phase method explains the heat conductivity and
properties of nanofluid TiO2. The basic assumption of this technique is thermal equilibrium
is maintained for nanoparticles and base fluid, causing the suspension to behave like
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a regular fluid. The fluid characteristics are then presumed to have been altered as a
result of the introduction of nanoparticles. The essential part of the single-phase method
under these assumptions is determining the effective thermo-physical characteristics of
the nanofluids. Therefore, the selection of competent drivers with reasonable costs that
may be sold together is an essential consideration. Figure 3 shows the image of SEM of
TiO2 nanoparticles.

Table 1. Details of the solar panel.

Parameter Value Unit

Pmax 260 Watts

Amps in Pmax 8.42 Amps

Volts in Pmax 30.9 Volts

Current in Maximum Load 8.89 Amps

Voltage in Maximum Load 37.7 Volts

Weight 18.2 Kilogram
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3. Analytical Methodology

Electrical and thermal energy analyses were carried out in this methodology, which
are detailed below [30–34]. The governing differential equation for the behavior of the
systems are based on:

1. Steady-state operation.
2. The inlet mass flow rate into the solar thermal storage tank is constant.
3. The radiation heat transfer is negligible.
4. The dust deposition on the solar panel is meager.

3.1. Performance of Electrical Energy

The ratio of electrical energy is electrical power, and the panel energy observation and
equation are given below.

ηelec =
Pmax

.
Qs

(1)

Pmpmpmax (2)
.

Qs = Acol IG (3)

3.2. Performance of Thermal Energy

The efficiency of thermal energy is employed to characterize the performance of a
PV/T system.

ηther =

.
Qu
.

Qs

(4)

.
Qu =

.
mCp∆T =

.
mCp(To − Ti) (5)

.
m = ρAcolV (6)

These equations are based on the solar radiation falling on the particular area of the
solar panel being well defined in the solar radiation observations. These observations are
known as

.
Qs. The mass flow rate of coolant, heat carrying capacity of the coolant difference

of inlet, and the output of the coolant are combined, producing what is known as heat
energy generation

.
Qu.

3.3. Uncertainty Analysis

The individual calibration distortion parameters for the PVT collector are shown in
Table 2. Uncertainties analysis is required to confirm the accuracy of each experimental
setup. Data extraction mistakes, example calibration problems, data processing errors, and
unique instrument ambiguities are all examples of errors. The majority of the inaccuracies
in this study were produced by the overestimation of each variable, such as temperature,
solar irradiation, stress, and fluid velocity. The most significant uncertainty in predicting
solar collector efficiency is about 3.6 percent (Table 3).

Table 2. Individual calibration distortion parameters for the PVT collector.

Sensor Distortion Type

Ambient air temperature ±0.2 ◦C K-thermocouple

Heat pipe temperature ±0.2 ◦C K-thermocouple

Rotameter ±2.3% UKL

Solar power meter ±4 W/m2 TM-206

Inlet & outlet temperature ±0.2 ◦C K-thermocouple

Data logger ±3.4% Agilent 34980A
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Table 3. Percentage increase of thermal efficiency %.

Sl. No Working Fluid Thermal Efficiency (%)

Average At Extreme Solar Radiation

1 0.5 LPM 25.76% 35.31%

2 1.0 LPM 29.88% 40.96%

3 0.05% TiO2 with 0.5 LPM 36.32% 49.79%

4 0.05% TiO2 with 1.0 LPM 40.70% 55.80%

4. Results and Discussion

According to the findings, the temperature gradient panels grew throughout the
day as sun irradiation increased. The pattern of air temperature and solar radiation is
similar; however, the PV surface temp/radiation factor for PV panels is substantially more
significant than for cooled panels. Furthermore, the temperature differential between the
cooling PV panel and the baseline panel dropped; for example, at midday, the difference
was 12.6 ◦C, but at the end of the day, it was only 7.2 ◦C due to Nanofluid obstructing the
cooling function. This study also includes several other parametric tests detailed below.

In Figure 4, the solar radiation intensity for chosen days was given for comparison
as an example of a similar metrological state. Every 15 s, the data is collected and used
for further analysis. The environmental data, solar intensity, and weather conditions from
the initial days were gathered, which are shown in Figure 4. From this graph, the diurnal
average incoming solar radiation dispersion over the experiment period is a whistle shape.
It was observed during the test that the smallest values were 307.18 W/m2, recorded on
morning 7, and 219 W/m2 on evening 5. The daily average air temperature rises from 29.36
to 34.23 degrees Celsius from 9 a.m. to 5:00 p.m.
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Figure 4. Average experimental day of the weather information at a specific location.

The incident solar radiation on chosen days is depicted in Figure 5 at a certain point in
the experimental research in a sample of identical metrological situations. Solar radiation
is an essential factor in boosting the performance of both fluids. The solar radiation and
ambient temperature at the exact area displayed similar patterns throughout the day.
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Figure 5. Three experimental test days of solar radiation in W/m2.

The TiO2 nanofluid utilized had an ideal volume level of 0.05 percent. Figure 6
demonstrates trends in electrical efficiencies, such as freestanding PV, two types of water
flow rates, and TiO2 nanofluid volume concentration. The system efficiency was increased
by 67.25 percent on average during the trial day when the optimal concentration of the
chosen Nanofluid was used compared to the non-cooled module. The fluctuation in solar
cell efficiency with respect to time and air mass flow rate is demonstrated in Figure 7. The
graph demonstrates that the increased mass flow rate in the PVT collector results in lower
cell temperature and greater cell efficiency.
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Figure 6. Efficiency of PV and PVT modules with working fluids.

As illustrated in Figure 7, cooling devices lowered the average temperatures of PV
and PVT modules, whether employing filtered water or introducing nanofluid into the
liquid. The temperature of the PV and PVT panels increased as the solar radiation levels
increased during the day. Even though the maximum surface temperature of the modules



Energies 2022, 15, 4425 8 of 12

has followed the same trajectory as the solar radiation, the temperature of PV is significantly
greater for PV panels than for cooling panels. The PV panel and the regular panel difference
in temperature decrease during the day. The temperature difference at midday was 16 ◦C,
and at the end of the day was 15 ◦C, because the heat stored in the Nanofluid began to
have a reverse impact. The average temperature of the trial day, a freestanding PV module,
and the highest nanofluid concentration with a high-volume flow rate were 51.3 ◦C and
38.8 ◦C, respectively.
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Figure 7. PV and PVT module temperature with different working fluids.

Figures 8 and 9 depict various working fluids and their electrical efficiency and sun
radiation in the morning and afternoon. According to the diagram, when solar radiation
increases, electrical performance decreases, which is especially important during the front-
line and after midday. Excessive sunshine has a significant negative effect on the electrical
solar panels’ performance. Solar radiation is an excellent parameter for influencing the
electrical properties of water and water-nanofluid mixtures.

Figure 10 depicts the fluctuation of input and output fluid temperatures with varying
volume flow rates and concentrations. The inlet air temperature linearly followed the
ambient air temperature. The variation in ∆T was caused by the different concentration and
volume flow rates of the nanofluids. In general, lower rates of water and nanofluid mixed
with water resulted in the most significant temperature changes, whereas higher volume
flow rates resulted in the smallest. According to the following graphic, an 11.8 ◦C difference
was achieved at a water flow rate of 0.5 LPM at noon. As a result, a 13.3 ◦C difference was
obtained at 0 LPM on the testing day’s midday. Furthermore, around midday on the trial
day, a difference of 12.5 ◦C was achieved with water mixed with a nanofluid of 0.5 LPM.

After that, at midday on the trial day, a difference of 9.3 TiO2 manganese oxide.
The PVT collector was tested at two different volume concentrations, 0.5 and 1.0 Liters
per minute (LPM). The highest thermal efficiency of the system was determined to be
48.38 percent and 54.03 percent, respectively, at the volumes of 0.5 LPM and 1.0 LPM. The
highest electrical efficiency of the PV/T collector was determined to be 18.32 percent and
19.35 percent, respectively, for 0.5 LPM and 1.0 LPM of volume flow rates. The results
demonstrate that nanofluid has more excellent thermal conductivity than a base fluid with a
little increase in viscosity and fluid density. It was achieved in water mixed with nano 1.0 LPM.
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Figure 11 depicts a PVT module thermal efficiency with various working fluids.
Equations (4)–(6) are used to assess multiple equations to get the hybrid collector thermal
efficiency. It is estimated using quantifiable criteria such as the temperature differential
between the exit and intake air, air mass flow rate, air-specific heat, solar panel area,
and solar radiation. When the flow rate changes from 0.5 LPM to 1.0 LPM, the thermal
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performance improved. Maximum heat efficiency rose from 35.31 percent, 40.96 percent,
49.79 percent, and 55.80 percent with regard to flow rate (0.5 and 1.0 LPM) and water
mixed with nanofluid (0.5 and 1.0 LPM), respectively. Table 3 displays the percentage
improvement in thermal efficiency. Analytical values of Qs and Qu are confirmed that the
trend matches experimental data values. As per the present study, it is compared with
previous literature and found significantly better.
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5. Conclusions

As per the above findings, the experimental study provides the following conclusions:
the stand-alone PV and highest values of nanofluid with a high-volume flow rate were
found at 64.3 ◦C and 47.3 ◦C. The efficiency was increased by 62.35 percent on average
during the experiment, utilizing the optimal concentration of the specified nanofluid.
Electrical efficiency was maximized at a solitary PV module, 0.5 LPM, 1.0 LPM, 0.05 percent
TiO2 with 0.5 LPM, and 0.05 percent TiO2 with 1.0 LPM. Similarly, thermal efficiency
was maximized with 0.5 LPM of water, 1.0 LPM, 0.05 percent TiO2 with 0.5 LPM, and
0.05 percent TiO2 with 1.0 LPM, respectively.
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editing, R.Č. All authors have read and agreed to the published version of the manuscript.
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