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Abstract: In this paper, an optimisation approach to prioritise buyers and sellers in a peer-to-peer
(P2P) energy trading market based on distances from the aggregator has been developed. The
proposed approach assigns higher preferences to buyers/sellers with a smaller distance, as this
will allow lower losses in the power transmission. Under this approach, the sellers and buyers
operate in a decentralised manner to optimise the preference coefficients along with the energy
sold/purchased to achieve certain profits/savings. The proposed approach is implemented using a
real-life dataset, and the impacts of different parameters, such as seasonal variations in renewable
generation, distances and profit thresholds for sellers, have been investigated. The results show that
the proposed approach allows buyers and sellers to purchase/sell more energy from the P2P trading
market (2.4 times increase when maximum energy sold is considered) in comparison to the case when
all participants are equally preferred. It has been observed that, with increasing distances, sellers
are assigned a smaller preference coefficient, which results in sellers being willing to sell a higher
amount of energy so that they can achieve the same profit threshold.

Keywords: peer-to-peer energy trading; microgrid; preference coefficient; distance; energy mismatch

1. Introduction

The energy demand across the world has been increasing exponentially over the past
decade. There has been a widespread growth of small-scale distributed energy generation,
which utilises the energy derived from renewable resources to support low-carbon electric-
ity production techniques and schemes initiated by governments [1]. This encompasses
rooftop solar systems, behind-the-meter generation, residential energy storage systems
and electric vehicle applications [2]. Residential solar energy generation can be used not
only to meet the growing electricity demand, but also to integrate cleaner energy into
the grid. To promote such local energy generation projects, many countries are offering
incentives for microgrids, a miniature version of the utility grid with local generation and
demand. In addition, a feed-in-tariff (FIT) scheme has been introduced so that consumers
with rooftop solar panels in a microgrid can sell their excess energy back to the utility grid,
thereby becoming proactive consumers, also called prosumers [3]. However, the decline
in the FIT rate has slowed down the pace of solar panel uptakes and caused a lack of
motivation for participation as a prosumer. This has instigated next generation techniques,
called peer-to-peer (P2P) energy trading, where the prosumers/consumers can buy or sell
energy based on their needs and priorities.

In P2P energy trading, prosumers actively participate in an energy market and directly
exchange energy with their peers to maintain a supply and demand balance [4,5]. P2P
network architecture is divided into two layers, a virtual layer and a physical layer. The
virtual layer is a secure platform through which an information exchange is processed and
the proper matching of buying or selling orders via the appropriate market mechanism
is performed. Financial transactions are also initiated after the successful matching of
orders [6]. The physical layer is the traditional distributed grid system or separate microgrid
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in conjunction with the main grid system that facilitates the flow of electricity between
the peers once the financial settlement is finalised [6]. The advantages of incorporating
P2P energy trading include improving the power system’s reliability and lowering the
investments and operational costs of the grid, as well as significantly reducing the peak
demand with minimised storage requirements. However, overly decentralised energy
trading without any coordination and control can compromise the electricity network’s
operation. Proper market paradigms, information exchange and pricing mechanisms can
ensure that the energy exchange between peers is performed within the technical limits of
the grid system and with maximum efficiency.

It is important to note that participation in the P2P trading market is often influenced
by the user’s behaviour and choices, and different customer segments can be profiled
accordingly to identify their market potentials. From this perspective, research has investi-
gated business models and user preferences for P2P trading. For example, the authors of [7]
investigated optimal business models considering user beliefs, attitudes and behavioural
controls and evaluated the resulting cost savings for a case study in Germany. On the
other hand, for a real P2P trading platform in Switzerland, the authors of [8] studied user
interaction and participation in the P2P market through surveys and interviews. They
identified two customer segments related to preferences on pricing, which include pref-
erences for fixed pricing set by the regulatory body and automated pricing set by the
market. The authors in [9] studied the consumer engagement framework for P2P trading
and investigated how this framework motivates consumers to become prosumers and
increases energy awareness. Note that this paper studies the design of preferences based
on distances only, and thus the consideration of human parameters is outside the scope of
this paper.

1.1. Related Works

The various technical paradigms and clearing mechanisms of the P2P energy trading
market have been studied with the aims of limiting the energy flow within the technical
constraints of the grid and maximising the trading parameters of the prosumers. As men-
tioned in [6], there are primarily four types of technical approach for designing a P2P
energy trading strategy. They are game theory, auction theory, blockchain and constrained
optimisation. Game theory is a mathematical approach of strategic decision making among
participants, where the action of one player depends on and affects other players in the
market. There are non-cooperative games, which involve attaining a stable state called
Nash equilibrium, where deviating from their actions from this point unilaterally cannot
be any better paid off [10]. On the other hand, cooperative games unite all participants
in achieving a stable and optimal solution that is mutually beneficial for all the peers
involved in the trading market. Examples of such game theory approaches are the Stack-
elberg game [11], the coalition formation game [12], the canonical coalition game and
Nash games [6]. Double auction theory for P2P energy trading is explained in [13], where
potential buyers submit their bids to an auctioneer who is simultaneously responsible for
providing information about the electricity prices to potential sellers. The auctioneer will
arrange the bids in decreasing order and the reservation prices from sellers in increasing
order to generate supply and demand curves with intersection points. The intersection
points establish the auction price for corresponding buyers and sellers who then engage in
the P2P energy exchange. A clearing policy is usually defined for the allocation of resources
and payment activation between the peers [10].

Auction-based pricing strategy using the Recursive Least Square (RLS) method is
explained in [2], where each buyer or seller provides an estimated clearing price based
on the amount of energy they have to buy/sell according to the energy demand and
clearing price at previous points in time. For a buyer, the clearing price is the bidding price,
whereas, for a seller, the clearing price is the offer price. All clearing prices are arranged
in ascending order, and the absolute difference between the buyer’s bidding price and
the clearing price is calculated for obtaining the customer’s priorities. The smaller the
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difference, the higher the priority. Finally, the selling or buying price is calculated for
the present time, and the process is recursive in nature. Another pricing strategy is the
mid -market rate (MMR) [2], where the energy exchange price is mid-way between the
electricity buying price and selling price. Here, the buying and selling price depends on
the amount of generation and demand within a neighbourhood. On the other hand, with
the bill sharing (BS) method [2], a single electricity bill of a community is shared among the
households within that community according to the reading in the utility meter connected
at a point between the community microgrid and main grid. Every customer will pay the
same unit price for their energy consumption and receive payment at another unit price for
their energy generation.

Enabling technologies for P2P energy trading include blockchain-based platforms
for a secure and transparent trading through a data structure that can be shared between
the involved parties of the market. Information, including the time period for the energy
exchange, the amount of energy to be exchanged, the price of the energy to be exchanged
and the transaction details about the seller and buyer, can be securely stored and examined
using this data structure [14]. This avoids the need for a centralised authority and reduces
the reliance on a third-party agent. Blockchain-based platforms such as Elecbay, Smart con-
tract, consortium blockchain, Ethereum and Hyperledger follow this decentralised process,
which can be utilised for P2P trading. The impact of information sharing uncertainties
and an effective communication scheme to mitigate such uncertainties in a blockchain
based system for P2P energy trading applications were investigated in [15]. A smart en-
ergy hub that utilises cooperative-relay-aided communication between prosumers and
distributed control-architecture for P2P energy trading was proposed in [16]. Another key
aspect of P2P energy trading is the optimisation tools, which are required to optimise how
much energy needs to be sold/purchased in the P2P market. In particular, constrained
optimisation techniques maximise or minimise soft and hard constraints imposed by the
power system and market, according to the required optimisation levels for P2P trading [6].
Popular methods of constrained optimisation technique include linear programming (LP),
mixed-integer linear programming (MILP), the alternating direction method of multipliers
(ADMM) and nonlinear programming (NLP) [6,17].

Bilateral contract networks are used to create forward and real-time scalable markets,
as explained in [18], involving energy contracts among three types of agents—prosumers,
suppliers and generators. Characteristics such as the upstream—downstream balance of
energy and forward market uncertainty are considered in this method. Upstream contracts
need to be selected from the lowest to highest prices by the market participants, whereas
downstream contracts need to be selected from the highest to lowest prices. The utility-
maximising preferences for forward and real-time are presented, which facilitates a stable
network of contracts with information regarding energy trades and prices. The optimisation
of preferences in [18] poses a distributed price adjustment process that requires decision
making and communication between local agents or peers only when there is no central
entity. A direct energy-trading method among multiple microgrids is presented in [19] as a
Generalised Nash Bargaining (GNB) problem. This technique considers the operational
constraints of a distribution network and maximises social welfare by distributing the
revenue among the microgrids accordingly. The non-convexity of the problem is managed
with two phases. In the first phase, an optimal power flow is solved to determine the
energy exchange volume using ADMM. The second phase determines the market clearing
price and mutual payments of the microgrids [19].

A decentralised market-clearing mechanism is analysed in [20], which considers the
privacy of prosumers, power losses in the transmission line and the cost of utilising a third-
party-owned network. The welfare of prosumers is maximised in this method by taking
into account the grid usage of each customer, the distance of each energy transaction and
the supply—demand balance in the market. A non-convex equality constraint is converted
to a convex problem through the Lagrangian relaxation [21], so that it can be solved in a
decentralised manner through sub-problems. The power transfer distance from one node
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to another node in the network is calculated using the Power Transfer Distribution Factor
(PTDEF). The optimisation problem for the method in [20] is formulated as the difference
between the utility of the power demanded and the total money paid, including the energy
transaction fee and the network utilisation fee. A modified path optimisation approach
is presented in [22], which applies the Physarum Polycephalum algorithm in an energy
network for optimising the parameters during P2P energy trading. The variables under
consideration are the capacity constraint, the energy flow between producer and consumer,
the link cost on the distribution link, the pressure on the links, and the energy density
between nodes. This technique can ensure the selection of the optimised path as well as
avoiding the usage of congested energy paths as the energy flow and cost of the energy in
each link are continuously iterated in every cycle. Another market-clearing mechanism
using the knapsack approximation algorithm is presented in [23], which is utilised for
trades between one seller and multiple buyers.

A Network Permission structure is explained in [10], where bilateral transactions are
estimated using three sensitivity coefficients—the voltage sensitivity coefficient, PTDF
and loss sensitivity factors. When a transaction starts, the energy flow and the external
or internal costs and losses are estimated with the aforementioned three factors to check
whether energy trading is performed within the voltage limits and network capacity. Only
those transactions that obey the constraints are initiated in this mechanism. Risk—cost
allocation is completed in [24] for the payment transacted by community members, where
the Jain index is used as a fairness metric for all cost allocations. Risk-hedging mechanisms
in the form of financial contracts are introduced to prevent second-stage losses of agents
and to restore fairness in the trading market. In [21], a peer-to-peer automated bilateral
negotiation strategy for the energy contract settlement between prosumers is analysed. This
technique considers heterogeneous prosumer preferences to make a contract that specifies
the volume of energy exchange and the return time of exchanged energy. The negotiating
prosumers navigate through a common negotiation domain comprising of potential energy
contracts and evaluate those contracts against a utility function. Automated negotiation
is an effective strategy for P2P energy trading, as the peers gradually understand their
compatibility with other participants in obtaining energy contracts closer to Nash solutions.
Moreover, the technique does not require central coordination and a market operator, which
is an advantage.

Optimal P2P energy trading needs to take into account the distances between dif-
ferent participants in the market, as a longer distance can add line losses and reduce the
effectiveness of local trading. It has been pointed out in the existing literature that the
benefits of peer-to-peer energy trading are often outweighed by the network constraints
caused by power losses [25,26]. These losses serve as functions of distance [27], and thus
users need to be prioritised based on the distance parameters [28]. In this regard, the
existing research has considered an electrical distance-driven decentralised double-auction
mechanism, which computes a preference list for different buyers/sellers through the
distribution system operator [25]. However, this approach does not consider the differ-
ent weights for participants with different distances, and the preferences are computed
centrally. Similarly, the authors in [28] consider priorities based on generation, price or
geographical distance, but the pairing between sellers/buyers is coordinated by the central
aggregator. The approach in [10] takes into account consumer preferences in terms of user
satisfaction to develop the optimisation problem. However, these preferences have not been
used to weight the amount of energy sold and purchased. A priority-based optimisation
problem for P2P energy trading was considered in [29], but it considers the different energy
purchase levels as the priority thresholds and does not account for the distances between
sellers/buyers. The authors in [27] considered a system loss-minimisation approach based
on non-linear distance optimisation. On the other hand, the authors in [26] incorporate
the network topology in the game theoretic model to minimise network losses while max-
imising profits. However, these papers did not consider the prioritisation of prosumers
with smaller distances. A comparison of the proposed approach against related works is
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illustrated in Table 1. This shows that, to the best of our knowledge, there has not been any
research that weighs the energy sold/purchased with the preference coefficients optimised
by sellers/buyers in a decentralised manner based on distance.

Table 1. Comparison of related works against the proposed approach.

Related Mathematical  Decentralised Distance Based Weighting with
Works Optimisation Approach Prioritisation Coefficients
[2] v X X x
[6] v v X X
[10] v v X X
[11] X v X X
[12] v v X x
[13] v X X X
[14] X v X X
[15] X v X X
[16] X v x x
[17] v v X X
[30] X v x x
[19] v v X X
[25] v v v X
[28] v v v X
[29] v X X x
Fropewd ‘ / /

1.2. Contributions and Paper Organisation

Though existing research has studied the impact of distances on the power losses in
a P2P trading network and prioritising buyers/sellers based on distances, a holistic ap-
proach to optimise the energy selling/purchasing decisions while scaling down the energy
sales/purchases from participants with larger distances has not been investigated yet. Since
users with larger distances can experience more power losses, selling /purchasing more en-
ergy to/from these users can result in non-profitable and non-optimal solutions. As a result,
it is important that buyers/sellers assign a scaling factor to reduce their energy trading with
users at larger distances. Thus, the optimum preference coefficients to scale up/down the
energy sale/purchase quantities along with designing the energy sale/purchase decisions
need to be optimised jointly to ensure a more efficient P2P trading mechanism.

In this paper, we aim to address the aforementioned research gap through the follow-
ing contributions:

* An optimisation approach for P2P energy trading is developed to account for the
preferences of buyers and sellers based on the distances of the participants from the
aggregator. The proposed approach offers a decentralised solution to prioritise buyers
and sellers, while considering the fact that buyers/sellers with smaller distances will
cause fewer losses in the transmission, leading to the higher effectiveness of the P2P
trading mechanism.

¢ The optimisation approach allows individual sellers to optimise the preference coef-
ficients for each buyer in the first stage. In the second stage, each buyer optimises
the preference coefficients for each seller based on the energy to be sold and the price
asked by that seller. The preference coefficients are utilised as weights of the energy to
be sold/purchased by sellers/buyers.
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*  The proposed approach is evaluated for a real-life energy generation and demand
dataset under different scenarios and parameter variations. It can be observed that,
when sellers/buyers have a larger distance from the aggregator, they are assigned
a smaller preference coefficient.

The rest of the paper is organised in the following manner. Section 2 outlines the
approach implemented for the preference coefficient optimisation of the sellers and buyers
along with the energy sold and purchased. Section 3 demonstrates the impact of different
parameters on the optimisation outcomes by using a real-life dataset. Section 4 elaborates
the key findings of this study and their technical and social implications. Finally, Section 5
concludes the paper.

2. Optimisation of Preference Coefficients of Buyers and Sellers

In this section, we outline the optimisation approach for designing the preference
coefficients of buyers and sellers in the P2P market while considering distances. We
consider a residential microgrid that has houses incorporated with solar panels and/or
storage. In addition, we have some more houses which do not have either solar panels or
storage, and they participate in the P2P market only as buyers.

As the first step, the daily demand/generation data of all the houses in the P2P market
are extracted and forwarded to the aggregator embedded with an energy management
system. Based on the excess energy present and electricity deficit, the peers are categorised
as sellers and buyers. For houses with a higher distance from the aggregator, power loss
in the transmission line is expected to increase as well. This may incur additional charges
to the participants in the P2P market, since they must cater for the lost energy in the
network links. Therefore, in the proposed approach, sellers with smaller distance from the
aggregator will be prioritised by the buyer, and sellers will prefer buyers who are nearest
to the aggregator.

Once the aggregator identifies the sellers and buyers, the energy deficit information
related to each buyer is forwarded to the sellers. The sellers then optimise the preference
coefficients for each buyer and how much energy is to be sold to each buyer so that the
sellers can achieve the desired profit threshold. The profit threshold is the minimum profit
that the seller wants to achieve in a certain time interval by selling energy to the P2P market.
Note that the price for energy trading is set by the seller at a value between the utility rate
and the feed-in tariff. This is to ensure that P2P trading allows savings/earnings for both
buyers and sellers in comparison to the case when they sale/purchase energy to/from
the utility. After that, the sellers forward the bids (prices and energy to be sold) to the
buyers through the aggregator. Then, the buyers optimise how much energy they want to
purchase from each seller and the preference coefficients for each seller in such a way that
the buyers can maintain the desired savings threshold. The savings threshold is the savings
in electricity cost that the buyer aims to achieve when purchasing energy from the P2P
market. The savings in the electricity cost would be the difference between the cost when
the entire energy deficit is met from the utility and the cost when the optimum amount of
energy is purchased from the P2P market. Finally, the buyers send the bids (energy to be
purchased) to the sellers through the aggregator. Any surplus/deficit energy that could not
be balanced in the P2P market will be sold to or purchased from the utility grid.

The optimisation approach considers two different stages. In the first stage, the sellers
optimise the preference coefficients for individual buyers. Then in the second stage, the buy-
ers optimise the preference coefficients for all available sellers. Note that the optimisation
process takes place at the individual sellers/buyers in a decentralised manner without
any intervention from the aggregator. The optimisation approach is illustrated in Figure 1.
The optimisation problem associated with the two stages is described in the following
subsections. The notations in the following subsections have been elaborated in the nomen-
clature in the Appendix and have not been repeated here for brevity. The Appendix also
lists the acronyms used in this paper.
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Figure 1. Optimisation of preference coefficients at sellers and buyers.

2.1. Optimisation at the Seller Side

The optimisation problem at the jth seller at a certain time interval can be formu-
lated as:

i V. X;;P;, 1
Vimgzll 3iXiP; €]
subject to:
Xj; >0 @)
0<V;; <1 3)
Vit >Vip>..>V;p for dy <dy<..<dp (4)
ZX]‘,,' < G] — D]‘ + M(S; — S]) 5)
1
V;iXji < D; —G; (6)
P; ) V;iXji > Pihresh (7)
i

0 <S; < Smax- 8)

The objective function in (1) aims to minimise the energy cost of the total energy
sold by the seller to each buyer in the market by optimising the preference coefficient
from the jth seller to the ith buyer and the energy sold by the jth seller to the ith buyer.
The constraint in (2) ensures that the energy sold is a non-negative value. The trading
process will only initiate if the amount of energy to be sold is a non-negative value. The



Energies 2022, 15, 4212

8 of 29

purpose of Equation (3) is to limit the priority coefficient values between one and zero.
The buyer with the least distance from the aggregator will be preferred most by the seller.
Hence, the priority coefficient of the highest proximity buyer will be the largest, and the
priority coefficient of the farthest buyer will be the lowest as constrained by (4). The sellers
must meet their demands through their own solar generation and stored energy before
selling energy to prospective buyers. Hence, (5) ensures that only the excess energy is sold
to the buyers. Moreover, the excess energy sold by a seller should not be more than the
energy deficit at any buyer involved in P2P trading, as represented in (6). Equation (7)
is a constraint developed to take into account the profit of the energy trading process
from sellers’ perspective. The total cost of the energy sold by the seller to all buyers must
be higher than the set profit threshold. The storage requirements of a seller with energy
storage is satisfied using (8). The excess energy of the seller is stored up to the maximum
storage capacity and cannot be discharged beyond the minimum stored energy level.

The aforementioned optimisation problem can be expressed as a non-convex quadratic
programming problem and solved with standard solution techniques, such as branch and
bound method for non-convex problems in the YALMIP package [31]. The solver utilises
linear programming relaxations and convex envelope approximations for implementing
the branch and bound method for non-convex problems. The solution approach is based on
deploying a lower solver that solves the lower-bounding relaxation problems and an upper
solver that computes upper bounds using nonlinear solvers [31]. In this paper, linear
programming is chosen as the lower solver, and fmincon (a gradient based optimisation
solver for nonlinear continuous functions) is chosen as the upper solver.

Once the optimum energy sold and the preference coefficients are computed by each
seller for each buyer and communicated, the second stage of the optimisation approach
initiates. The next subsection outlines the optimisation problem on the buyer side.

2.2. Optimisation on the Buyer Side

The optimisation problem on the buyer side can be formulated as:

YI’I]IILII"[] 2 P] ul,]Yl,] (9)

ijYi, j

subject to:
Y, >0 (10)
0<u,; <1 (11)
U,-,l > Ui,2 > > Lli,S for dy <dp <..<dg (12)
U Yij < X (13)
ZYi,]’ <D,;—-G; (14)

j
(Di - Gi)Pu - ijui,jyi,j > Psavings- (15)
j

Here, the objective function in (9) is formulated to minimise the energy cost of the total
energy purchased by the ith buyer from each seller in the market, by optimising preference
coefficient from the ith buyer to all sellers and the energy purchased by the ith buyer
from all sellers in a certain time interval. The constraint in (10) ensures that the energy
purchased by the ith buyer from the jth seller is a non-negative value. Equation (11) limits
the preference coefficient values between zero and one. The highest proximity seller will
have the highest preference on the buyer side, as the transmission losses will be significantly
less for smaller distances between the seller and the aggregator. Hence, the preference
coefficient of the nearest seller will be the largest, and the preference coefficient of the
farthest seller will be the smallest, as established in (12). The constraint in (13) ensures that
the energy purchased by the ith buyer from the preferred seller is limited by the amount of



Energies 2022, 15, 4212

9 of 29

energy bid by the seller to the ith buyer. Moreover, the total energy purchased by the buyer
from all the sellers in the P2P market should not be higher than their actual energy deficit,
as represented in (14). Equation (15) is a constraint developed to check for the savings of
the energy trading process from buyers’ perspective. The difference between the cost of
buyer’s deficit energy purchased at the utility rate and the cost of energy purchased from
all the sellers in the P2P market at an energy trading price must be higher than the set
savings threshold.

Similar to the seller-side optimisation problem, the optimisation problem on the buyer
side is expressed as a non-convex quadratic programming problem and solved using the
modified branch and bound method for non-convex problems. Once the optimum prefer-
ence coefficients and energy to be purchased are computed, the information is forwarded
to the sellers through the aggregator. Based on this information, the aggregator settles the
P2P market between the sellers and the buyers.

3. Simulation Results

In this section, we consider a case study based on the Ausgrid Solar Electricity
dataset [32]. Our case study evaluates the optimum preference coefficients of the sell-
ers and buyers to minimise the energy cost in the P2P energy market comprised of six
households whose electricity generation and demand data are obtained from the Ausgrid
dataset. Among these houses, houses 1 and 2 are connected with both solar panels and
batteries. Houses 3 and 4 are connected with solar panels only. On the other hand, houses
5 and 6 are connected to neither solar panels nor batteries. The solar panel capacities
for houses 1, 2, 3 and 4 are 3.78 kW, 1.62 kW, 1 kW and 1 kW, respectively. The storage
capacities for houses 1 and 2 are 3 kWh and 1.5 kWh, respectively. Note that the Ausgrid
dataset was chosen to utilise real-life generation and demand data in the case study, and
other similar datasets can also be used.

The utility rate and the feed-in tariff are considered as 0.3 AUD/kWh and 0.1 AUD/kWh,
respectively. The energy trading prices are defined as uniformly distributed random vari-
ables between the feed-in tariff and the utility rate. The reasoning behind this assumption is
that it motivates buyers to purchase at a rate lower than the utility rate and sellers to sell at
a rate higher than the feed-in tariff, thus encouraging P2P trading among the participants.
The profit and savings thresholds are assumed to be 0.003 AUD and 0.001 AUD, respec-
tively. These thresholds can be set to different values as well. However, these thresholds
need to be in such a range that the sellers/buyers can achieve them with their given excess
generation/energy deficit. The normalised distances of the houses from the aggregator are
0.1, 0.4, 0.3, 1, 0.2 and 0.8, respectively. Note that these distances are normalised by the
maximum distance between the individual houses and the aggregator. These distances are
chosen as representative examples and can be set to any other values between 0 and 1 to
repeat this analysis. Figure 2 shows how the different houses are located in the P2P trading
network for the case study.

The energy sold/purchased in P2P trading is often impacted by seasonal parameters,
given that a higher solar generation can lead to a higher energy excess. Moreover, the profit
threshold serves as a critical factor for sellers, as it determines how much energy the
seller will sell to achieve at least this threshold. In addition, it is important to assess
whether the proposed approach can optimise energy sale/purchase values under different
distance parameter settings. To ensure that the aforementioned factors are considered in
the evaluation process of the proposed approach, we consider four different scenarios in
this case study and compute the energy sold /purchased by different participants, as well
as the preference coefficients of different buyers/sellers. These scenarios include: (i) an
evaluation of the proposed approach for winter data, (ii) the impact of generation changes
during summer, (iii) the impact of the distances between houses and the aggregator and
(iv) the impact of the profit threshold. The demand and generation data were collected
from 1 July 2012 for all scenarios unless otherwise specified.
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Figure 2. Illustration of the considered P2P trading network structure in the case study.

The proposed approach is evaluated based on the energy sale and purchase values for
the aforementioned scenarios, and the results are compared to identify which simulation
parameters increase/decrease these quantities. Note that a loss factor is assumed for each
participant in the case study, which is inversely proportional to distance. Then, this loss
factor is multiplied by the energy excess/deficit values so that smaller energy amounts are
available to sell/consume at the seller/buyer. An accurate estimation of the network losses
will require a power flow study, which is beyond the scope of this work.

3.1. Scenario 1: Performance for Winter Data

Figure 3 shows the optimum energy sold during July 2012 when the proposed ap-
proach is implemented to optimise the preference coefficients for sellers and buyers in the
P2P energy market. The evaluation is performed based on the average generation and
demand data over 31 days in July 2012 for all six houses. It can be observed that trading
took place between 7 a.m. and 6 p.m., when there was plenty of solar generation. It can be
observed that house 1 has the highest energy sold for most of the time intervals. This is be-
cause house 1 has the highest generation capacity. House 3 sells a higher amount of energy
than other houses between 9 a.m. and 2 p.m. This is because house 3 has a higher amount
of energy excess during this time period. House 2 could sell energy only at 2.30 p.m., when
it had a high preference coefficient.

On the other hand, Figure 4 shows the energy purchased by the buyers during the
same time interval. It can be seen that buyers 5 and 6 purchased energy during all time
intervals. The peak demand for houses 5 and 6 occurred at 9 a.m. and 6 p.m., respectively.
However, house 2 purchased the highest amount of energy, as it had an energy deficit for
most time intervals. House 4 purchased energy only at 6 p.m., when all houses except
house 1 were buyers. House 1 purchased energy only during 7-8 a.m., when it did not
have sufficient solar/stored energy.
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Figure 3. Optimum energy sold during winter months.
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Figure 4. Optimum energy purchased during winter months.

Figures 5 and 6 illustrate the average preference coefficients for sellers and buyers,
respectively. The average preference coefficients for each seller (buyer) are computed by
averaging the preference coefficient of that seller (buyer) to all buyers (sellers) in a certain
time interval. House 3 has the highest preference of all buyers on average, followed by
house 4. This is because house 3 and 4 have a smaller energy excess, and they are required
to assign higher preference coefficients to achieve the same profit threshold. House 2
has non-zero preference coefficient only at 2.30 p.m., when it had energy excess. When
considering buyers, house 3 assigned the highest preference coefficient to sellers, as it had
a higher energy deficit along with a small distance from the aggregator, allowing the sellers
to sell a larger amount of energy without higher losses. Houses 5 and 6 had non-zero
preference coefficients for all time intervals, as they did not have any generation to support
their demand.
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Figure 5. Optimum preference coefficients for sellers during winter months.
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Figure 6. Optimum preference coefficients for buyers during winter months.

To demonstrate the effectiveness of the proposed approach, a comparison is included
in Figures 7 and 8, where the sellers and buyers are preferred equally irrespective of their
distances. It can be seen that the maximum energy sold (0.009 kW) is much smaller than
that achieved when buyers are preferred based on distance (0.02 kW). Similar observations
can be made for energy purchased values. The reason for this is that, when buyers/sellers
are equally preferred, they have equal opportunities to purchase/sell from the P2P trading
market. However, the energy available from a seller with larger distances will be less,
because some part of it will be lost. Similarly, for buyers with larger distances, less energy
will be available to consume due to losses.
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Figure 7. Optimum energy sold for equally preferred sellers and buyers during winter months.
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Figure 8. Optimum energy purchased for equally preferred sellers and buyers during winter months.

3.2. Scenario 2: Impact of Excess Generation during Summer

Since excess generation can be a contributing factor for increased trading in the P2P
market, the impact of increased generation during summer needs to be considered. Having
more generation allows sellers to sell larger amounts of energy and buyers can have
more energy available to them. Figures 9 and 10 demonstrate how excess generation
during summer influences the energy sold and purchased, respectively, when preference
coefficients are optimised. The analysis is performed considering the generation and
demand data from January 2013 averaged over 31 days. It can be observed that the highest
amount of energy sold (0.065 kW) is higher than that in the winter month (0.02 kW). A
similar observation can be made about the energy purchased. This is because there is excess
generation during the summer months, which can be utilised for energy sale/purchase in
the P2P trading market. During January, house 1 sells the highest amount of energy, as it
has higher generation during the late afternoon hours when all other houses experience an
energy deficit. House 5 purchases the highest amount of energy, as it has a higher demand
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and no generation/storage. House 1 did not need to purchase energy throughout the day
as it had higher solar generation to sell in the P2P market.
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Figure 9. Optimum energy sold for sellers during summer months.
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Figure 11 illustrates that house 1 assigns a higher preference coefficients to buyers
during early morning/late afternoon periods. On the other hand, house 4 assigns the
highest preference coefficient at 9.30 a.m. This is because house 4 did not have high energy
excess during this time period. Similarly, from Figure 12, houses 5 and 6 have non-zero
preference coefficients during all time intervals, as these houses always have a non-zero
energy deficit. Among the houses with energy generation/storage, house 3 assigns a higher
preference coefficient during the late afternoon hours. This is because house 3 has a smaller
energy deficit during this period and assigns a higher preference coefficient to achieve the
same savings threshold. It is worth noting that buyers prefer sellers almost equally during
most time intervals in summer. This is because all houses have a higher solar generation,

leading to more energy being available for trading.
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Figure 11. Optimum preference coefficients for sellers during summer months.
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Figure 12. Optimum preference coefficients for buyers during summer months.

Figures 13 and 14 show the energy sold and purchased values during the summer
months when all participants are equally preferred. Similar to the proposed approach,
the energy sale/purchase increased for the equally preferred sellers/buyers as well, due
to the increased excess energy. The increase in the maximum amount of energy sold
is 1.66 times, as compared to the winter months. On the other hand, for the proposed
approach, the increase is 3.1 times. Now, seller 3 can sell energy at the same level as seller 4,
and seller 2 also has an opportunity to sell energy. However, for the proposed approach,
energy is sold mostly by seller 1 due to its smaller distance from the aggregator and the
higher preference coefficient which is assigned to it as a result.
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Figure 13. Optimum energy sold for equally preferred sellers and buyers during summer months.
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Figure 14. Optimum energy purchased for equally preferred sellers and buyers during summer months.

3.3. Scenario 3: Impact of Distances

Since the preference coefficients are optimised based on distances, it is important to
identify how different settings for distances affect the optimisation outcomes. To ensure
that this analysis is tractable and easily interpreted by readers, we consider two extreme
examples of the distance settings. The first example sets the distance of the house closest to
the aggregator to the largest possible value. The second extreme example sets the distance
of the house farthest from the aggregator to the smallest possible value. Thus, in this section,
we consider two sub-cases: (i) when the distance between house 1 and the aggregator is
increased from 0.1 to 0.9 and (ii) when the distance between house 4 and the aggregator is
decreased from 1 to 0.1. Considering these two extreme cases is sufficient to identify the
impact of distance on the proposed approach as it is reasonably expected that the other
distance settings will result into similar trends that lie between the trends observed from
the two extreme cases. It can be observed from Figure 15 that the energy sold did not
change significantly when compared to Figure 3, where house 1 has a smaller distance.
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The only exception is during the late afternoon periods, when the amount of energy sold
by house 1 is significantly smaller. This is because the distance between house 1 and the
aggregator has increased. In addition, the energy sold by the other houses (e.g., house 4)
increases, as these houses are more or less equally preferred due to the increased distance
between house 1 and the aggregator. Similarly, it can be seen from Figure 16 that house 1
assigns a similar preference coefficient to buyers as compared to Section 3.1. This is because
the distances of the buyers” houses have not changed, meaning that house 1 can assign the
same preference coefficients as before.
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Figure 15. Optimum energy sold when distance between house 1 and the aggregator is increased.
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Figure 16. Optimum preference coefficients for sellers when distance between house 1 and the
aggregator is increased.

It can be observed from Figure 17 that the energy purchased by the buyers has in-
creased. The maximum amount of energy is purchased by house 5, mostly during the early
morning and late afternoon periods when house 1 had energy excess. Similarly, house 2
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purchases an increased amount of energy at 12.30 p.m., as it has a higher demand at that
time. From Figure 18, it can be seen that the maximum preference coefficients of the buyers
have increased due to the increase in house 1’s distance. This is because house 1 has less
energy available for buyers to purchase. However, the buyers are required to achieve
the same savings threshold, and so they choose to assign a higher preference coefficient
on average.
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Figure 17. Optimum energy purchased when distance between house 1 and the aggregator is increased.
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Figure 18. Optimum preference coefficients for buyers when distance between house 1 and the
aggregator is increased.

When the distance of house 4 is decreased to a smaller value, while keeping the dis-
tances of other houses same as in the scenario 1, the energy sold by house 1 decreases, while
the energy sold by house 4 increases significantly, as can be seen from Figures 3 and 19.
This is because house 4 has a smaller distance from the aggregator. When the energy sold
values are higher, a smaller preference coefficient is assigned by house 4 to achieve the
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same profit threshold, as can be observed from Figure 20. On the other hand, the energy
purchased by house 5 increases to a higher value at 9 a.m., as can be seen from Figure 21.
This is because house 5 is able to assign a higher preference coefficient to house 4, and the
overall energy purchased by house 5 has an increase. It can be seen from Figure 22 that
house 3 assigns a higher preference coefficient at 2 p.m. to sellers so that it can maintain its
savings threshold while it purchases a smaller amount of energy.
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Figure 19. Optimum energy sold when distance between house 4 and the aggregator is decreased.
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Figure 20. Optimum preference coefficients for sellers when distance between house 4 and the
aggregator is decreased.
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Figure 21. Optimum energy purchased when distance between house 4 and the aggregator is decreased.
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Figure 22. Optimum preference coefficients for buyers when distance between house 4 and the

aggregator is decreased.

Figures 23 and 24 demonstrate how the energy sold and purchased values change,
respectively, when participants are equally preferred and the distance between house 1 and
the aggregator is increased. It can be observed that the overall energy sale/purchase has
decreased due to higher losses at house 1. On the other hand, the energy sale/purchase

values for the case when the distance between house 4 and the aggregator decreases for the

equal preference case has been shown in Figures 25 and 26. It is observed that house 4 now
sells a higher amount of energy, as it has smaller losses, and, in effect, the energy purchase
also increases due to the availability of a higher amount of energy.
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Figure 23. Optimum energy sold for equally preferred sellers and buyers when distance between
house 1 and the aggregator is increased.
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Figure 24. Optimum energy purchased for equally preferred sellers and buyers when distance
between house 1 and the aggregator is increased.



Energies 2022, 15, 4212

22 of 29

0.012 w
I sl ler 1
I <cller 2
0.01 [sdler3
I cller 4

Energy sold (kW)
o o
S8 8
()] oo

5
=

0.002 - ]

9am. 11.30 am. 2p.m. 4.30 p.m.
Timeinterval (30 min)

0 |

Figure 25. Optimum energy sold for equally preferred sellers and buyers when distance between
house 4 and the aggregator is decreased.
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Figure 26. Optimum energy purchased for equally preferred sellers and buyers when distance
between house 4 and the aggregator is decreased.

3.4. Scenario 4: Impact of Profit Threshold

Since the energy sold by the sellers must satisfy the profit threshold, it is impor-
tant to investigate how the setting of the profit threshold influences the trading patterns.
The achievable profit threshold depends on the excess energy available at the sellers. Thus,
the profit threshold cannot be increased arbitrarily, since constraints (5) and (7) will con-
tradict each other. As a result, the maximum possible profit threshold that will not cause
the violation of the constraints has been set in the simulation settings. This value has been
tested through simulation, and it can also be obtained numerically based on the minimum
generation values. To be specific, in this scenario, the profit threshold of the sellers is
increased to a value of 0.003 AUD. It can be observed from Figure 27 that the energy sold by
the sellers increases to a larger value, especially during the early morning/late afternoon
hours. This is because the sellers need to sell a higher amount of energy to achieve a higher
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profit threshold. It can be noted that during 5-6 p.m., only house 1 is able to sell energy,
whereas, with a smaller profit threshold, both houses 1 and 4 were selling energy. This is
because house 4 did not have sufficient energy to achieve the increased profit threshold.
As a result, the required energy is obtained from house 1 alone. The preference coefficients
of the sellers do not change significantly apart from the early morning/late afternoon
periods, as seen from Figure 28. During 7-8 a.m., house 4 has a higher preference coefficient
to ensure that it achieves the required profit threshold. For similar reasons, house 1 has a
higher preference coefficient at 6 p.m.
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Figure 27. Optimum energy sold when profit threshold is increased to a larger value.
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Figure 28. Optimum preference coefficients for sellers when profit threshold is increased to
a larger value.

From Figure 29, it can be seen that most buyers have an increased energy purchase
due to the higher availability of energy from the sellers. For houses 1 and 4, the increase
is not observed, because they have a smaller energy deficit as compared to other houses
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and can achieve the savings threshold even with a smaller energy purchase. The average
preference coefficients of all buyers increase when the profit threshold is increased, as seen
from Figure 30. This is because a higher amount of energy is available to the buyers as
compared to that available in scenario 1. However, the maximum preference coefficient
of buyer 3 has increased at 2 p.m., which can be attributed to its lower distance from
the aggregator, and, for the same level of energy deficit, a higher preference coefficient is
assigned to utilise the higher amount of energy excess from the sellers.
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Figure 29. Optimum energy purchased when profit threshold is increased to a larger value.
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Figure 30. Optimum preference coefficients for buyers when profit threshold is increased to
a larger value.

Figures 31 and 32 show the impact of an increased profit threshold on the energy sold
and purchased values for the equally preferred participants. As expected from previous
discussions, the energy sold increases so that the sellers can achieve the higher profit
threshold. Due to the increased availability of energy, the energy purchase also increases.
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It can be noted that, for the equal preference case, the energy sold values are more or less
equal for all sellers, irrespective of their distances. This is because all houses are equally
preferred, and, when the profit threshold is set to a higher value, all sellers aim to sell as
much energy as possible to achieve that profit threshold.
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Figure 31. Optimum energy sold for equally preferred sellers and buyers when when profit threshold
is increased to a larger value.
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Figure 32. Optimum energy purchased for equally preferred sellers and buyers when profit threshold
is increased to a larger value.

3.5. Summary of the Simulation Results

To summarise the aforementioned findings, it can be observed that the proposed
approach, which applies unequal priority coefficients to energy sold/purchased from
different users, outperforms the equal preference based approach. This is because the
proposed approach takes into account the distances between the users and the aggregator,
while the existing approach does not. The increased generation during summer results in
increased trading for both approaches. However, the sold/purchased energy is still higher
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for the proposed approach. The two extreme cases for measuring the impact of distance
lead to the fact that the energy sold by a seller decreases with distance when there are
other sellers with a sufficient amount of energy to satisfy the demand at that time. When
the existing and proposed approaches are compared, the existing approach has an overall
smaller amount of energy sold, due to higher losses for users with increased distance.
On the other hand, the proposed approach adapts the optimisation based on the fact that
some users have higher distances, and, as a result, another seller needs to be preferred.
With the increase in profit threshold, it can be observed that sellers are now able to sell
more energy to achieve the increased profit threshold, though the increase is higher for
the proposed approach in comparison to the existing approach. Thus, the aforementioned
comparison clearly shows that the proposed approach outperforms the existing approach
for all designed scenarios.

4. Discussion of Key Findings

In this section, we highlight the key findings of the proposed research that has emerged
from the evaluation of the case study and relate these to the relevant literature. From a
technical perspective, the proposed method has been able to achieve an increased energy
sale/purchase in the P2P trading market by ensuring that users with smaller distances
are preferred more by sellers and buyers. It can also be observed that the increased
excess generation during the summer months will further increase the benefits of P2P
trading, which can be a motivating factor for potential participants and used to develop
marketing strategies accordingly. The preference coefficients vary for users with different
distances mainly during periods of lower solar generation and when sellers do not have
sufficient energy excess. This can motivate the design of different pricing signals and can be
integrated further to enhance the economic aspects of the P2P trading mechanism. Another
key finding is that sellers with larger distances aim to sell more energy as they are assigned
a smaller preference coefficient, and they still want to achieve the same profit threshold
similar to sellers with smaller distances. This fact can inform the selection of the trading
prices by the sellers with larger distances.

The findings from the proposed study can be compared with [25,28], which are relevant
studies which consider the impact of distance-based priorities in P2P energy trading.
The authors in [25] combine the total energy sale/purchase information as traded energy
and statistically represent the amount of energy traded. However, the energy trading
information for different time slots is not available. In [28], the authors demonstrate
the power flow for individual participants only during selected time slots. Moreover,
the overall profit/savings of the participants are illustrated. The system losses due to
distances between prosumers as well as the resulting voltage profiles are shown in [27],
but the energy sale/purchase is not presented. Similarly, in [26], the costs for individual
participants over the entire day are shown without demonstrating the energy sale/purchase
profiles. On the other hand, the proposed work adds value to these findings by including
information on how much energy is sold/purchased by individual houses throughout the
entire trading period. This information will be more suitable for identifying individual
participant strategies regarding P2P energy trading.

Apart from these technical aspects, there are a number of managerial implications
of this study, which apply to the regulatory bodies and utilities. For example, since
participants with larger distances have a reduced opportunity to achieve profit/savings
from the P2P market, more incentives could be provided to them so that users with larger
distances are also encouraged to participate. In addition, the market structure can be
designed in such a way that the preference coefficients are applied during periods of
high variation in generation or demand, and, during other times, the participants will
be equally preferred. This will help utilise the benefits of the proposed approach in the
best possible way. From the utility perspectives, the pricing strategies can be designed
for users participating in P2P energy trading considering the seasonal variations in excess
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generation, which largely influence how much the participants will depend on the utility
grid to achieve a supply/demand balance.

In addition, the social implications of the proposed approach can be significant. P2P en-
ergy trading in general establishes a sense of energy independence among the participating
users and enhances their decision-making capacities from energy sale/purchase perspec-
tives. The proposed approach assigns smaller scaling factors to the energy sold/purchased
values of the participants with larger distances. In this way, users with larger distances
still have the opportunity to participate in the market while ensuring other users are not
impacted by the losses caused by energy sale/purchase with users at larger distances.
This essentially enhances the social bonding between different community groups but not
at the cost of decreased profit/savings. The outcomes of this study will help individual
participants to design strategies for maximising their profits/savings from P2P energy
trading by identifying prices and understanding the trends in the P2P market. As a result,
user awareness of energy consumption and sustainable energy use practices is expected
to rise, which will improve the socioeconomic status of the participants. The proposed
approach can also lead to the generation of local jobs for maintaining the energy manage-
ment systems and installing solar panels, as well as integrating the web-based systems.
Future research on this method can innovate new strategies for cost and profit sharing and
investigate the fairness aspects of the P2P trading mechanism.

5. Conclusions

This paper has investigated an optimisation approach which assigns higher prefer-
ences to participants with smaller distances from the aggregator. The proposed approach
allows each seller /buyer to optimise the preference coefficient for each buyer/seller along
with energy to be sold/purchased. Given that users with larger distances can cause
more power losses in the P2P trading network, it is essential to scale down their energy
sale/purchase values to ensure an efficient trading mechanism. In comparison to the
case when all participants are preferred equally, the proposed approach achieves a higher
energy sold/purchased for P2P trading. For the considered case study, this improvement is
more than two times. It can also be observed that the sellers sell 3 times higher amounts
of energy during summer months in comparison to the winter months. However, when
the distance of a seller increases, the buyers assign a lower preference coefficient, and,
as a result, the seller offers a higher amount of energy to maintain its profit threshold.
Future work will focus on integrating different pricing models and auction mechanisms
with the preference coefficient optimisation approach. The findings from this study will
allow participants to optimise their pricing strategies considering the impact of other users’
preferences and energy consumption trends.
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Nomenclature

i Index of the buyer

j Index of the seller

B Total number of buyers

S Total number of sellers

d; Distance of the ith buyer from the aggregator

d; Distance of the jth seller from the aggregator

Vii Preference coefficient from the jth seller to the ith buyer
Xji Energy sold from the jth seller to the ith buyer

Ui, Preference coefficient from the ithbuyer to the jth seller
u Storage availability, 0 means seller has no storage and 1 means seller has storage
D; Demand at the ith buyer

D, Demand at the jth seller

G; Generation at the ith buyer

G; Generation at the jth seller

P Price asked by the jth seller for P2P energy trading

Py Utility rate

Yi Energy purchased by the ith buyer from the jth seller
Ps Feed-in tariff

S; Stored energy of the seller at the current instant

S; Stored energy of the seller at the previous instant

Smax Maximum storage capacity

Piyresh  Profit threshold of sellers
Peavings ~ Savings threshold of buyers

Acronyms

FIT Feed-In Tariff

MMR Mid-Market Rate

BS Bill Sharing

AUD Australian dollars
LP Linear Programming

MILP Mixed Integer Linear Programming
ADMM  Alternating Direction Method of Multipliers

NLP Nonlinear Programming
P2pP Peer-to-Peer
RLS Recursive Least Square
GNB Generalised Nash Bargaining
PTDF Power Transfer Distribution Factor
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