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Abstract: Accurate short-term wind speed forecasting plays an important role in the development
of wind energy. However, the inertia of airflow means that wind speed has the properties of time
variance and inertia, which pose a challenge in the task of wind speed forecasting. We employ the
variable support segment method to describe these two properties. We then propose a variable
support segment-based short-term wind speed forecasting model to improve wind speed forecasting
accuracy. The core idea is to adaptively determine the variable support segment of the future wind
speed by a self-attention mechanism. Historical wind speed series are first decomposed into several
components by variational mode decomposition (VMD). Then, the future values of each component
are forecast using a modified Transformer model. Finally, the forecasting values of these components
are summed to obtain the future wind speed forecasting values. Wind speed data collected from a
wind farm were employed to validate the performance of the proposed model. The mean absolute
error of the proposed model in spring, summer, autumn, and winter is 0.25, 0.33, 0.31, and 0.29,
respectively. Experimental results show that the proposed model achieves significant accuracy and
that the modified Transformer model has good performance.

Keywords: wind speed forecasting; variable support segment; VMD; Transformer; attention mechanism

1. Introduction

Wind energy has become the most promising clean energy due to its large reserves [1]
and good foundation. The Global Wind Energy Council has indicated that the installed
global wind power capacity provide be up to 20% of global electricity by 2030 [2]. The
development and utilization of wind energy are critical to alleviating the pressure generated
by traditional energy sources such as fossil fuels. The conversion and management of wind
energy is closely related to wind speed. Accurate short-term wind speed forecasting, which
estimates the wind speed 30 minutes to 6 hours ahead [3], is essential for optimizing power
grid scheduling, reducing system rotating reserve capacity, and guaranteeing stable grid
operation [4,5]. However, the accuracy and reliability of wind speed forecasting are affected
by the stochastic nature and nonlinear characteristics of wind speed. Various models for
improving wind speed accuracy have been proposed [6–9], which can be divided into the
categories of single models and combined models based on their structure. The most widely
used single models include the backpropagation (BP) neural network [10], extreme learning
machine (ELM), Kalman filtering, the autoregressive moving average (ARMA) [11], and
support vector regression (SVR) [12] models.

A single model is unable to achieve satisfactory forecasting accuracy due to the
intermittency of wind speed. Thus, combined models consisting of multiple single models
are widely applied. Extensive studies have shown that combined models have better
performance [13,14]. There are two sorts of combined models. The first weights the
forecasting values of different models to obtain the final forecasting values. In [15], the
weight coefficients of three different models were determined via modified support vector
regression. In [16], the partial least squares algorithm was used to optimize the weight
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coefficients. Wang et al. [17] proposed a combined model in which the coefficients of four
artificial neural networks’ forecasting results are determined using the multi-objective bat
algorithm (MOBA).

However, the original wind speed series often appears as a broadband signal in the
frequency domain, which is difficult to forecast directly. Therefore, a second sort of com-
bined model has been presented to solve this issue. First, a historical wind speed series
is broken into narrowband components using the signal decomposition method. Then,
each narrowband component’s future values are forecast separately by the forecasting
models. The final forecasting values are the sum of each component’s forecasting val-
ues. The most commonly used signal decomposition methods include wavelet transform
(WT) [18], empirical mode decomposition (EMD) [19] and its variants, and variational
mode decomposition (VMD) [20]. In [21], WT was employed to reduce wind speed fluctu-
ation characteristics. Naik et al. [22] utilized EMD to preprocess wind speed data. In [23],
VMD was used to overcome the intermittency of the wind and eliminate noise signals. WT
requires the wavelet function and the decomposition layers to be selected artificially, which
is non-adaptive. Although EMD and its variants are adaptive, they have limitations such as
mode mixing and endpoint effect. VMD has good noise robustness, which is an adaptive
signal decomposition method. Here, we employ VMD as the signal decomposition method.

Forecasting models are another key component of combined models; research [24,25]
has shown that deep learning models have better performance in extracting and learn-
ing complex quantitative relationships hidden in wind speed data. Altan et al. [26] used
the long short-term memory (LSTM) model for the forecasting of narrowband compo-
nents, which showed good performance. In [27], the bidirectional LSTM model was
utilized to forecast the sub-series. In [28], a combined model which incorporated VMD,
differential evolution (DE), and echo state network (ESN) was proposed. In [29], the
significant spatiotemporal characteristics in wind speed data were extracted by a graph
deep learning model.

The Transformer model [30] is a deep learning model based on the self-attention
mechanism which is good at capturing dependencies in long sequences and is not affected
by distance. The Transformer model outperforms other deep learning models on process se-
quence data, hence, we employ it here as the forecasting model. However, the Transformer
model cannot be employed for time series forecasting tasks directly due to its particular
structure. Therefore, the structure of the Transformer model is modified in this paper.
According to the above analysis, we first use VMD to obtain the narrowband components
decomposed from historical wind speed series, then utilize the modified Transformer model
to obtain each component’s forecasting values. The final forecasting values are the sum of
each component’s forecasting values. The following are this paper’s major contributions:

(1) We employ the variable support segment method to describe the time-varying and
the inertia properties of wind speed;

(2) We modify the Transformer model in order to approximate the variable support
segment and complete the forecasting task of each narrowband component;

(3) We propose a combined model based on the modified Transformer model and VMD.
Two evaluation indicators and thirteen baseline models were used for a compar-
ative experiment; the results indicate that our model has higher accuracy than
comparative models and that the modified Transformer model outperforms other
forecasting models.

The structure of this paper is as follows: Section 2 provides the mathematical descrip-
tion of wind speed forecasting; Section 3 briefly introduces VMD and the Transformer
model; Section 4 presents the modified Transformer model and the proposed model;
Section 5 analyzes the forecasting results of different models; and the final section contains
our conclusions.
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2. Mathematical Description of Wind Speed Forecasting

At present, most wind speed forecasting models assume that the future wind speed in
the short term is only related to the historical wind speed:

xN = f (xM) (1)

where xN = [xi, . . . , xi+N−1] denotes the future wind speed series and xM = [xi−M, . . . , xi−1]
denotes the historical wind speed series (i.e., the support segment of xN); f : RM → RN

is the function that describes the mapping relationship between xM and xN . Thus, the
wind speed forecasting task can be achieved by constructing a model to approximate the
function f . Wind speed series often appear as broadband signals in the frequency domain,
while narrowband signals are generally assumed to have a stable future trend and are
easier to forecast. As a result, one feasible approach is to forecast the future values based on
the narrowband components of historical wind speed series. The wind speed forecasting
process based on signal decomposition can be formulated as

xN = ∑
k

xk
N = ∑

k
fk(x

k
M) (2)

where xM = ∑k xk
M, xk

M represents the narrowband component of the historical wind speed
series, i.e.,the support segment of xk

N . Therefore, the function fk : RM → RN describes the
quantitative relationships between xk

M and xk
N .

The inertia of airflow means that the wind speed shows time-varying and inertial
properties, which influences the accuracy of wind speed forecasting. As Equation (2) fails
to describe these two properties of wind speed effectively, there is room for improvement.
Hence, the parameter τ, which is related to delay, can be introduced to the mathematical
description of wind speed forecasting, and the parameter p, which denotes the length of
the support segment, is set as a time variable. As a result, the mathematical description of
wind speed forecasting can be formulated as

xN = ∑
k

xk
N = ∑

k
fk(Sk

pk ,τk
) (3)

where Sk
pk ,τk

= [xk
i−pk−τk

, . . . , xk
i−1−τk

] is the variable support segment of xk
N . In Formula (3),

the parameters τ and p vary with the historical wind speed series; thus, the inertia property
of wind speed is described by the parameter τ, while the time-varying property of wind
speed is described by the parameters τ and p jointly. When N = 1, Equation (3) corresponds
to the one-step wind speed forecasting problem, which can be reformulated as

xi = ∑
k

fk(Sk
pk ,τk

) (4)

Unless otherwise specified, the remainder of this paper concentrates on the issue of
one-step wind speed forecasting.

Figure 1 shows the schematic diagram of the variable support segment; [x1
2, x1

3, x1
4, x1

5],
which contributes to the formation of x1

11, is the variable support segment of x1
11, that is,

p1 = 4 and τ1 = 5. Similarly, the variable support segment of x2
11 is [x2

3, . . . , x2
7]; p2 = 5 and

τ2 = 3.
According to Equation (4), we can forecast the future wind speed via the follow-

ing steps.

(1) Decompose the wind speed series into narrowband components based on the signal
decomposition method;

(2) Complete the forecasting task of each narrowband component by estimating the
variable support segment corresponding to each narrowband component;

(3) Superimpose the forecasting value of each narrowband component to obtain the
future wind speed forecasting value.
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Figure 1. Schematic diagram of the variable support segment.

Approximating the variable support segment accurately is the key to reducing the
errors in wind speed forecasting. Existing forecasting models struggle with adaptively
approximating the variable support segment. In our approach, the variable support seg-
ment is approximated using the self-attention mechanism, the specific process of which is
introduced in Section 4.1.

3. VMD and Transformer

For the purposes of this paper, VMD was selected as the signal decomposition method
and the Transformer model was selected as the forecasting model; this section briefly
introduces them.

3.1. VMD

VMD decomposes an input signal into a number of intrinsic mode functions which are
band-limited. It includes two main parts, variational problem construction and variational
problem solving.

VMD uses an input signal, g(t), equal to the sum of all the modes as its premise and
seeks K mode functions, uk(t), to obtain the minimum sum of the estimated bandwidths of
each mode. Thus, the constrained variational problem can be formulated as

min
{uk},{ωk}

{
∑
k
||∂t[(δ(t) +

j
πt ) ∗ uk(t)]e−jωkt||22

}
s.t. ∑

k
uk = g(t)

(5)

where uk is the mode function, ωk is the mode center frequency, K is the number of modes,
δ is the Dirac disturibution, ∗ is convolution, and g(t) is the input signal.

By introducing the quadratic penalty term α and the Lagrangian multiplier λ(t),
the constrained variational problem of Equation (5) becomes an unconstrained varia-
tional problem:

L({uk(t)}, {ωk}, λ(t)) =

α ∑
k
||∂t[(δ(t) +

j
πt

) ∗ uk(t)]e−jωkt||22 + ||g(t)−∑
k

uk(t)||22 +
〈

λ(t), g(t)−∑
k

uk(t)

〉
(6)

In order to solve the unconstrained variational problem, VMD alternately updates
un+1

k (t), ωn+1
k , and λn+1

k (t) to find the “saddle point” of the extended Lagrangian expres-
sion. Here, the iterative formula of the Fourier transform of uk(t), ωk and λ(t) can be
expressed as
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ûn+1
k (ω)←

ĝ(ω)− ∑
i 6=k

ûi(ω) + λ̂(ω)
2

1 + 2α(ω−ωk)2 (7)

ωn+1
k (ω)←

∫ ∞
0 ω|ûk(ω)|2dω∫ ∞

0 |ûk(ω)|2dω
(8)

λ̂n+1(ω)← λ̂n(ω) + η[ĝ(ω)−∑
k

ûn+1
k (ω)] (9)

where η is an update factor.

3.2. The Transformer Model

The Transformer [30] model is a model based on an “encoder–decoder” structure,
shown in Figure 2. The model consists of an input layer, encoder stack, decoder stack, and
output layer.

Figure 2. The structure of the Transformer model.

The word embedding module and positional encoding module, which correspond to
“Input Embedding” and “Positional Encoding” in Figure 2, respectively, make up the input
layer. The word embedding module is utilized to convert input words into computable
vectors, as words cannot be directly input into the model. The positional encoding module
embeds positional information into the input sequence, as the Transformer model abandons
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the traditional recurrent neural network structure and is therefore unable to directly receive
the position information of the input sequence. The encoder stack which is responsible for
encoding the input information and generating intermediate vectors as the input of the
decoder stack is composed of several encoders. Each encoder contains two modules, the
multi-head attention mechanism module and the feed-forward neural network module,
corresponding to “Multi-Head Attention” and “Feed Forward” in the Figure 2, respectively.
Here, we use relu as the activation function in the feed-forward neural network module.
Residual connections are used between each module and normalization is carried out,
which is indicated by the “Add & Norm” part in the Figure 2.

The multi-head attention mechanism module calculates the attention based on a self-
attention mechanism, which can deeply explore the internal relationship of input sequences,
focus on important information, and filter out unimportant information. The self-attention
mechanism first maps the input matrix X into the query matrix Q, the key matrix K, and
the value matrix V, then calculates the attention distribution by the scale dot production,
and finally performs a weighted summation of the value matrix according to the attention
distribution. Specifically, this is shown in Equations (10)–(13):

Q = WQX (10)

K = WKX (11)

V = WVX (12)

Attention(Q, K, V) = so f tmax(
QKT
√

d
)V (13)

where WQ, WK, and WV are the weight matrix corresponding to Q, K, and V, respectively,
and
√

d is a scale factor.
The information learned by a single self-attention mechanism is relatively simple. In

order to fully mine the correlation information between input sequences, the Transformer
model further adopts the multi-head attention mechanism in order to learn information
from different subspaces, then splices the outputs of different subspaces to obtain the final
output, as shown in detail in Equations (14) and (15):

Mutilhead(Q, K, V) = Concat(Head1, . . . , HeadH)WO (14)

Headi = Attention(XWQ
i , XWK

i , XWV
i ) (15)

where WQ
i , WK

i , and WV
i are the weight matrices corresponding to Q, K and V, in Headi,

Concat is used to splice the output of each Head, and WO is the projection matrix, which is
used to realize the projection of the stitching result.

The decoder stack, which is responsible for decoding the input information, is com-
posed of several decoders. Compared to the encoder, the decoder includes an additional
mask multi-head attention mechanism module to prevent information leakage. Residual
connections between the modules of the decoder are used and normalized.

The output layer includes the Linear module and the Softmax module, which are used
to convert the vector output by the decoder stack into a probability and then output the
word corresponding to the highest probability.

4. The Wind Speed Forecasting Model
4.1. The Modified Transformer Model

The structure of the original Transformer model is not suitable for time series forecast-
ing tasks; therefore, we conducted several specific modifications:

(1) The word-embedding module was replaced by a fully-connected neural network
(FCNN) to allow the wind speed series to be input directly into the model;
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(2) In the decoder, the masked multi-head attention mechanism was replaced by a multi-
head attention mechanism, as only a single data source is fed into the decoder stack
and the information of the subsequent sequence is not subsequently involved;

(3) The original output layer was removed and the output of the encoder stack directly
mapped into the wind speed forecasting result from the FCNN.

For convenience, the modified Transformer model, shown in Figure 3, is called M-
Transformer in this paper.

Figure 3. The structure of the M-Transformer model.

Drawing on the large number of previous experimental results, the Head number was
set as 8 and the input length of the narrowband component as 10. Without loss of generality,
the historical wind speed components were represented as [x1, . . . , x10]. It should be noted
that x1 ∼ x10 were fed into the FCNN. As shown in Figure 4, xi is mapped into a row vector
by the FCNN with the length ds = 512. The matrix X is concatenated from ten row vectors
generated from the narrowband modes of the historical wind speed, which is then fed into
Head1 ∼ Head8 in order to separately calculate the attention distribution.

Using Head1 as an example, the matrix X is multiplied by WQ
1 , WK

1 , WV
1 to generate

Q1, K1, V1. The attention distribution of Head1 (i.e., the weight matrix W1 in Figure 4) is
calculated based on Equation (16):

W1 = so f tmax(
Q1KT

1√
d

) (16)
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after which we multiply W1 and value matrix V1 to obtain the output Z1 of Head1:

Z1 = W1V1 (17)

Figure 4. The schematic diagram of the multi-head attention mechanism.

The ith row of Z1 can be considered as the weighted sum of all rows of the matrix
V1, and the weight of each row is the numerical value of the corresponding element on
the ith row of W1. The jth row of V1 is determined by the unique historical wind speed
component sample value xj; thus, the weight matrix, W1, determines which sample values
in the narrowband components of the historical wind speed series contribute to the output
Z1 of Head1. Thus, the weight matrices {W1, . . . , W8} of all Head of the first encoder in
the encoder stack together to determine the variable support segment of the narrowband
modes of the historical wind speed series, which can be expressed as

Sp,τ =
⋃
h

⋃
max(Wj

h)>0

xj (18)

where Wj
h represents the jth column of the weight matrix Wh of the hth Head and max(Wj

h)

denotes the maximum element value of Wj
h.

Figure 5 shows a pseudo-color figure of the weight matrix W1 of the first Head of the
first encoder in the encoder stack. It can be seen that the non-zero elements are concentrated
in certain columns in W1, which is to say that in the component of the historical wind speed
series, the only elements that contribute to the output of Head are [x3, . . . , x8].
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Figure 5. The attention distribution of Head1.

4.2. Proposed Model

According to the wind speed forecasting task steps in Section 2, several narrowband
components decomposed from the historical wind speed series are input into the M-
Transformer model to separately obtain the forecasting value. The wind speed forecasting
result is the sum of the forecasting value of each narrowband component. A flow chart for
the proposed method is shown in Figure 6, abbreviated as VMD-TF for convenience.

Figure 6. The flowchart of the proposed method.



Energies 2022, 15, 4067 10 of 18

According to Figure 6, before decomposing the wind speed series based on the VMD,
parameters K (i.e., the number of narrowband components) need to be determined. In our
approach, these are determined by judging whether the center frequencies of the adjacent
components overlap; the specific process is shown in Figure 7. The quadratic penalty factor
influences the decomposition results. When the quadratic penalty factor is 2000, VMD has
certain adaptability and can avoid mode mixing.

Figure 7. Flowchart for determining K.

5. Experiment and Analysis
5.1. Wind Speed Data

The data were obtained from a wind farm in Hebei. The sampling interval used in
collecting the the data was 1 h. Hebei is located in a temperate monsoon climate, and the
characteristics of the data consequently vary from season to season. Figure 8 shows the
statistics related to the wind speed data in different seasons.

As can be seen in Figure 8, the maximum and average wind speed in summer is
higher than in other seasons, indicating abundant wind energy resources. In addition,
the wind speed in summer varies greatly and has strong randomness, with the highest
standard deviation.

Figure 9 shows the decomposition result of the wind speed series from April 14th
to May 18th, that is, in summer, in which C1–C7 are narrowband components. It can be
clearly seen that the trend of each component is more regular than the original wind speed
series. C8 is the residual component. Although it contains noise, it may contain part of the
information of the original wind speed series as well. Therefore, permutation entropy was
utilized to assess the signal’s randomness and determine whether the residual component
could be considered a component of the original wind speed series.
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Figure 9. Wind speed series decomposition results.

5.2. Accuracy Assessment

In this paper, the mean absolute error (MAE) and the root mean square error (RMSE)
were selected as the evaluation indicators

MAE =
1
N

N

∑
i=1
|xa

i − x f
i | (19)
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RMSE =

√√√√ 1
N

N

∑
i=1

(xa
i − x f

i )
2 (20)

where N is the length of the forecasting wind speed series, xa
i denotes the true value, and

x f
i represents the forecasting value.

5.3. Results and Analysis
5.3.1. Forecasting Result

In each quarter, we randomly selected a week of wind speed data as the test set and
used the four weeks of data before the test set as the training set; the specific division is
shown in Table 1.

The parameters used for the M-Transformer were as follows: the encoder stack con-
sisted of four encoders, the decoder stack contained four decoders, the dropout rate was
equal to 0.1, the learning rate was set to 0.002, the batch size was set to 72 and 1 for the
training and testing process, respectively, the optimizer was adma, and the loss function
was the mean square error (MSE). Both the training and testing process were implemented
in the Python 3.7 platform.

Table 1. Division of the training and testing sets.

Season Training Set Testing Set

Spring 25 January–17 February 18 February–23 February
Summer 14 April–11 May 12 May–18 May
Autumn 21 July–17 August 18 August–24 August
Winter 8 September–5 October 6 October–12 October

Figure 10 is a scatter diagram of the forecasting results for each season. The abscissa
and ordinate are the forecasting and the true wind speed, respectively. The closer the data
points are to the 45° line, the better the forecasting results. In Figure 10, the data points are
closely distributed on the 45° line and on both sides, indicating that the proposed model
achieves good performance.
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Figure 10. The forecasting results of the proposed model.
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5.3.2. Comparative Experiments

In this paper, three single models and three combined models were selected as compar-
ison models to further verify the superiority of VMD-TF. The single models were ARIMA,
BP, and LSSVM, and the combined models were EAW [31], WEE [32], and RWA [33]. The
forecasting results of each model were evaluated by MAE and RMSE respectively, and the
specifics are shown in Figure 11.

Equation (21) was utilized as the evaluation indicator to compare the improvement of
VMD-TF to the other models:

Iindex =
Ep − Ec

Ec
× 100% (21)

Here, Iindex denotes the performance improvement index and Ep and Ec are the error
of the VMD-TF and the comparison model, respectively. Table 2 shows the specific results.

Table 2. The performance improvements achieved by the proposed model.

ARIMA BP LSSVM EAW WEE RWA

IMAE

Spring −66% −61% −58% −52% −48% −31%
Summer −65% −61% −58% −48% −39% −30%
Autumn −57% −54% −52% −47% −43% −28%
Winter −65% −63% −60% −45% −36% −6%

IRMSE

Spring −65% −62% −59% −50% −46% −31%
Summer −57% −54% −52% −42% −28% −17%
Autumn −63% −61% −53% −49% −37% −29%
Winter −65% −61% −56% −51% −42% −31%

The results of the comparative experiment show the following.

(1) VMD-TF outperforms the other six models. The performance of VMD-TF greatly
increased compared with the single models. Using spring as an example, the MAE
of VMD-TF fell by 62%, 61%, and 58% compared with ARIMA, BP, and LSSVM,
respectively. The reason for this is that the potential of a single model to extract
complicated characteristics is limited. However, VMD-TF shows better performance
than the three combined models as well. Using autumn as an example, the RMSE
of VMD-TF decreased by 49%, 37%, and 21% compared with EAW, WEE, and RWA,
respectively, meaning that VMD-TF showed better feature extraction ability than the
other combined models.

(2) VMD-TF has the best performance in spring, followed by autumn and winter, and has
relatively poor forecasting results in the summer. The properties of the wind speed
data in each season have a high relation with the aforementioned results. According
to Figure 8, the standard deviation of the summer data are all higher than those in
other seasons, indicating that the wind speed in summer fluctuates greatly and is
difficult to forecast.

(3) The preceding results illustrate that VMD-TF achieves significant performance. The
self-attention mechanism can adjust the attention distribution in a timely fashion
according to the input data and realize adaptive estimation of the variable support
segment, which is essential for improving wind speed forecasting accuracy.
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Figure 11. The MAE and RMSE values of different models.
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5.3.3. Effectiveness of VMD

We employed EMD and EEMD as comparison methods to demonstrate that VMD
could effectively reduce the influence of wind speed non-stationarity. The model com-
bining M-Transformer with EMD is referred to as EMD-TF, while the model combining
M-Transformer with EEMD is referred to as EEMD-TF. We used M-Transformer to forecast
the wind speed directly without decomposition, in which case it is referred to as TF. In
analyzing the capability of these models, the summer testing set was used. Figure 12
exhibits the comparisons between the forecasting values and the true values, while Table 3
shows the forecasting errors for each model.
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Figure 12. Comparison of the forecast and true wind speed for summer testing data.

According to Figure 12, even when the wind speed changes greatly VMD-TF is able to
track and forecast well, while TF, EMD-TF, and EEMD-TF cannot respond as well to such
mutations. According to Table 3, the forecasting result with VMD-TF is the best, while TF
is the worst. Thus, we are able to conclude that signal decomposition methods can greatly
enhance wind speed forecasting accuracy, and that of the methods investigated here, VMD
shows the best performance.

Table 3. The forecasting errors of each model with the summer testing data.

Model MAE RMSE

TF 0.67 0.89
EMD-TF 0.56 0.78
EEMD-TF 0.47 0.65
VMD-TF 0.33 0.44

5.3.4. Effectiveness of M-Transformer

In order to illustrate that the M-Transformer model has good forecasting ability, we
selected ARIMA, BP, the deep belief network (DBN), and LSTM as comparisons. These
models, each composed of VMD and a single model, are referred to as VMD-ARIMA,
VMD-BP, VMD-DBN, and VMD-LSTM, respectively. To assess the performance of these
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combined models, the winter testing set was used. Figure 13 compares the forecasting
values and true values, while Table 4 shows the forecasting errors for each combined model.
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Figure 13. Comparison of forecast and real wind speed with winter testing data.

In Figure 13, all forecasting wind speed curves appear to be relatively close to the
true wind speed curve. According to Table 4, however, the MAE and RMSE of VMD-TF
are the smallest. Taking MAE as an example, the accuracy of VMD-TF decreased by 33%,
17%, 15%, and 9%, respectively, compared with the other four models, which shows that
M-Transformer has superior performance.

Table 4. The forecasting errors of each combined model with the winter testing data.

Model MAE RMSE

VMD-ARIMA 0.43 0.59
VMD-BP 0.35 0.47
VMD-DBN 0.34 0.44
VMD-LSTM 0.32 0.42
VMD-TF 0.29 0.40

6. Conclusions

In this paper, we have proposed a variable support segment-based short-term wind
speed forecasting model. Several conclusions can be drawn based on our experiments
and analysis.

(1) VMD has a better decomposition effect than EMD and EEMD, and can effectively
reduce the effects of wind speed non-stationarity.

(2) The M-Transformer model fully utilizes the characteristics of the self-attention mecha-
nism, which can deeply mine potential information from wind speed series, estimate
the variable support segment, and outperform other models in time series forecasting.

(3) VMD-TF combines the advantages of VMD and the self-attention mechanism, achiev-
ing significantly improved performance.

Although VMD-TF shows significant performance achievements, it neglects the impact
of meteorological factors, which limits its ability to deal with sudden changes in wind
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speed. In future work, we intend to develop a model that is able to take into account both
historical wind speed data and prevailing meteorological factors that influence wind speed.
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