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Abstract: The 2010 Maule earthquake was a megathrust event that occurred along the Peru–Chile
Trench. The earthquake source can be modelled as a fault with two asperities with different areas
and strengths. By employing a discrete fault model, where asperities are the basic elements, the
event can be described as a sequence of three dynamic modes involving simultaneous asperity slip.
Interaction between asperities by mutual stress transfer plays a crucial role during fault slip. With
a careful choice of values for the model parameters, the mode durations, the slip distribution, the
seismic moment rate and the final moment calculated from the model are found to be consistent with
the observed values. An important amount of frictional heat is produced by an event of this size
and is calculated by summing up the contributions of each asperity. The seismic event produces a
heat pulse propagating through the Earth’s crust and contributing to the average heat flow in the
region. The calculated heat production is equal to about 2× 1017 J and the peak value of the heat
pulse is equal to 6× 10−3 mW m−2 or about 10−4 of the average surface heat flow density, with a
characteristic diffusion time in the order of 106 a.

Keywords: fault mechanics; asperity model; seismic moment rate; heat production; surface heat flow

1. Introduction

The 2010 Maule earthquake was a magnitude 8.8 thrust earthquake that struck central
Chile [1–3]. Its seismic moment was equal to 1.8× 1022 N m, with a peak moment rate equal
to about 3× 1020 N m s−1. The slip was concentrated in two regions of the fault surface,
which we call asperity 1 and 2 respectively, situated north and south of the epicenter [1].

Asperity models are generally recognized as adequate representations of seismic
sources. They assume that earthquakes result from the failure of a small number of
patches characterized by high static friction, while the rest of the fault gives a minor
contribution [4–6]. An asperity is usually defined as a region in which the slip exceeds, in
a specified way, the slip averaged over the entire fault surface [7] .

According to [1], the slip involved asperity 1 during the first part of the Maule event.
Then the fault slip evolved more symmetrically, with simultaneous slip of the asperities.
Finally, only asperity 2 was involved. The average slip amplitudes of the two asperities
were equal to 15 m for asperity 1 and to 5 m for asperity 2. The event duration was about
160 s, but most of the seismic moment was produced within 110 s from the beginning of
the event.

In the present paper, we model the source of the 2010 Maule earthquake with a discrete
fault model, where asperities are the basic elements, and calculate the contribution of the
event to the heat production along the Peru–Chile Trench.

Discrete fault models, focusing on the large-scale properties of faults, are powerful
tools for investigating processes occurring during fault slip. Such models consider asperities
as individual units of the fault, characterized by average values of friction, stress and
slip [4,8,9]. Details of friction, stress and slip distributions on the fault are neglected, but
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this does not affect results such as the global heat production. Discrete models allow
decomposition of fault slip into dynamical modes that highlight the role of asperities and
their interactions.

A discrete model representing a fault with two asperities was initially presented
by [10] and was further developed by [5,11–13] and others. Complete analytical solutions
were given by [14,15] for the case of identical asperities and by [16,17] for asperities with
different strengths. Ref. [18] considered the effect of stress perturbations from seismic
events at neighbouring faults. The effect of wave radiation was introduced by [19–21].

A two-asperity fault has four dynamic modes: a sticking mode (mode 00), corre-
sponding to stationary asperities, and three slipping modes, corresponding respectively
to the motion of a single asperity (modes 10 and 01) and to simultaneous asperity motion
(mode 11). Each seismic event originated by the fault is a sequence of slipping modes and
can be described by a characteristic moment rate function.

The aim of the present paper is to reproduce the observed moment rate of the 2010
Maule earthquake and to calculate the frictional heat production associated with fault slip.
The event was modelled as a sequence of modes 10-11-01 by [16] in the absence of radiation
and considering two asperities with equal areas but different strengths.

We base the present paper on a more refined model developed by [22], who gave the
solution for a fault with two asperities with different areas and strengths. The frictional heat
generated by the seismic event is calculated and its propagation through the Earth’s crust
is considered in order to evaluate its contribution to the surface heat flow in the region.

The absence of geothermal anomalies along fault zones is well known and has been
termed “the heat flow paradox” [23]. If earthquakes have a low seismic efficiency, as
suggested by most authors [24], the question arises of why a heat flow anomaly is not
observed on large faults, since most of the released energy is dissipated as frictional
heat [25]. The possibilities that dynamic friction becomes very low during fault slip and
that some energy is consumed in breaking and powdering rock to produce fault gouge
have been considered, but a more plausible alternative is that the flow of ground water is
an important mechanism for the removal of locally generated heat [26].

Apart from these considerations, it is interesting to evaluate the contribution of a large
earthquake on the basis of individual contributions of fault asperities that are involved in
the event. We expect that the earthquake produces a heat pulse that is extremely diluted in
time due to the low thermal diffusivity of rocks. Hence a small pulse amplitude is expected
with respect to the average heat flow density measured at the Earth’s surface, in agreement
with observation.

2. Fault Model

We consider a plane fault with two asperities that are disjoint subsets of the fault
surface. Let A1 and A2 be the asperity areas and ` be the distance between the asperity
centroids (Figure 1). The model is described in detail in [22,27].

The fault is placed in a shear zone subject to a uniform strain rate ė due to the motion
of two tectonic plates at relative velocity v. The shear zone is assumed to be a homogeneous
and isotropic Poisson solid with rigidity µ.

The state of the fault at any time t is described by two variables x(t) and y(t) repre-
senting the slip deficits of asperity 1 and 2, respectively. The tangential forces applied to
asperities can be written as:

f1 = −K1x− Kc(x− y)− ι1 ẋ (1)

f2 = −K2y− Kc(y− x)− ι2ẏ, (2)

where
K1 =

2µėA1

v
, K2 =

2µėA2

v
, Kc = µA1 A2s. (3)
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The quantity s is the shear traction (per unit seismic moment) that the slip of one
asperity applies to the other, calculated at the asperity centroid. For a thrust fault,

s =
1

6π`3 . (4)

In the last terms of (1) and (2), ι1 and ι2 are impedances associated with the asperities
and dots indicate differentiation with respect to t.

Figure 1. The fault model: a rectangular fault with two asperities with areas A1 and A2 respectively
and distance ` between asperity centroids.

It is assumed that asperities 1 and 2 have static frictions fs1 and fs2 and dynamic
frictions fd1 and fd2, respectively. It is further assumed that masses µ1 and µ2 are associ-
ated with the asperities. On this basis, the following nondimensional variables and time
are introduced:

X =
K1x
fs1

, Y =
K1y
fs1

, T =

√
K1

µ1
t (5)

and the following nondimensional parameters:

α =
Kc

K1
, β =

fs2 A1

fs1 A2
=

fd2 A1

fd1 A2
, γ =

ι1√
K1µ1

(6)

ε =
fd1
fs1

=
fd2
fs2

, ξ =
A2

A1
. (7)

It is assumed that masses µ1 and µ2 are proportional to the respective asperity areas
A1 and A2 and that asperities have the same impedance per unit area, so that

µ2 = ξµ1, ι2 = ξι1. (8)

The evolution of the fault is a sequence of dynamic modes that depends on initial con-
ditions: these are specified by a nondimensional variable p expressing the initial stress distri-
bution on the fault. Each dynamic mode is the solution of a system of differential equations.

A merit of discrete fault models is that the evolution of the fault can be represented
as an orbit in the state space XY. The set of points corresponding to stationary asperities
is called the sticking region: it is a quadrilateral Q in the plane XY [21]. The orbit of the
system in the sticking mode 00 is the line Y = X + p and the seismic event starts when the
orbit intersects one of the sides of Q.

If m(t) is the seismic moment produced in a seismic event as a function of time, the
nondimensional moment is

M =
K1m
f 2
s1

. (9)
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As a reference, we consider the seismic moment M1 of a 1-mode event 10 in the
absence of radiation, corresponding to a slip amplitude:

U = 2
1− ε

1 + α
. (10)

The moment rate of a generic event is then

Ṁ(T) = M1
∆Ẋ + ∆Ẏ

U
, (11)

where ∆Ẋ and ∆Ẏ are the slip rates of asperities 1 and 2, respectively, and dots indicate
differentiation with respect to T. The final seismic moment is

M0 = M1
U1 + U2

U
, (12)

where U1 and U2 are the final slip amplitudes of asperities 1 and 2, respectively.

3. The Moment Rate

The data concerning the 2010 Maule event are listed in Table 1 and the model parameters
calculated from them are shown in Table 2. The lithosphere is considered a Poisson solid
with an average rigidity µ = 35 GPa [28] and an average density ρ = 3× 103 kg m−3 [29].

Table 1. Data of the 2010 Maule (Chile) earthquake.

A1 = 14.4× 103 km2, Area of asperity 1
A2 = 3.6× 103 km2, Area of asperity 2
ė = 1.2× 10−15 s−1, Tectonic strain rate
g = 10 m s−2, Acceleration of gravity
HLC = 0.4µW m−3, Heat productivity of the lower crust
HUC = 1µW m−3, Heat productivity of the upper crust
hLC = 10 km, Thickness of the lower crust
hUC = 15 km, Thickness of the upper crust
` = 140 km, Distance between asperity centroids
qm = 60 mW m−2, Heat flow density from the mantle
u1 = 15 m, Average slip of asperity 1
u2 = 5 m, Average slip of asperity 2
v = 8 cm a−1, Relative plate velocity
x f = 125 km, Distance between epicenter and trench
z f = 23 km, Depth of the hypocenter
∆t = 160 s, Duration of the event
κs = 0.8, Coefficient of static friction
λ = 0.97, Pore fluid factor
µ = 35 GPa, Rigidity of the lithosphere
ρ = 3× 103 kg m−3, Density of the lithosphere
χ = 10−6 m2 s−1, Thermal diffusivity

Table 2. Values of model parameters.

α = 0.06, Coupling parameter between asperities
β = 0.33, Ratio between frictions of asperity 2 and 1
γ = 0.3, Impedance parameter
ε = 0.7, Ratio between dynamic and static frictions
ξ = 0.25, Ratio between asperity areas
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The asperity areas can be evaluated from the distribution of coseismic fault slip
(Figure 2). Asperity areas are approximately A1 = 14.4× 103 km2 and A2 = 3.6× 103 km2,
with a distance ` = 140 km between asperity centroids. Accordingly, from (6) and (7) we
obtain α = 0.06 and ξ = 0.25.

Figure 2. Map of the fault that originated the 2010 Maule earthquake, with the slip distribution
retrieved by [30]. Asperities 1 and 2 are indicated.

The value of β is inferred from the ratio of the average slip amplitudes of asperity 2
and 1. Slip amplitudes were equal to 15 m for asperity 1 and to 5 m for asperity 2. Therefore
we assume β = 0.33.
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The value of γ is chosen under the requirement that a good fit is obtained with the
observed moment rate. The best value is γ = 0.3, corresponding to a seismic efficiency of
6% [24]. Finally, we take a typical value ε = 0.7 for the ratio between dynamic and static
frictions [5].

According to [1], the total event duration was ∆t = 160 s, with a maximum equal to
3× 1020 N m s−1 between 70 and 90 s after the beginning of the event.

The value of p must guarantee that the event is a 3-mode sequence 10-11-01 and that
its moment rate approximates the observed function. The initial condition satisfying these
requirements is p = −0.56, indicating an initially higher stress on asperity 1. Figure 3
shows the orbit representing the seismic event in the plane XY. The event starts at point P1
and terminates at P4.

Figure 3. Orbit in the state space XY showing a 3-mode seismic event approximating the 2010 Maule
earthquake, with the initial condition p = −0.56. The event starts at point P1 and terminates at
point P4.

The graph in Figure 3 is drawn from the solution of the equations of motion of asperi-
ties. The quadrilateral Q is the sticking region, that includes all the points representing the
fault at rest. The position of point P0 is determined by the initial conditions on the fault,
expressed by the value of p.

The segment P0P1 describes the fault evolution preceding the seismic event: during
the interseismic interval, the slip deficits X and Y of the asperities increase linearly with
time as a consequence of the constant strain rate ė imposed to the fault by the motion of
tectonic plates.

The increase in slip deficits implies an increase in shear stress on both asperities. Due
to the strong stress inhomogeneity on the fault, the condition for failure is reached first on
asperity 1, in spite of the fact that asperity 2 is much weaker (β = 0.33). In the graph, the
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condition for slip of asperity 1 is attained when the orbit intersects the right side of Q at
point P1. Here the seismic event begins.

The segment P1P2 represents the slip of asperity 1 (mode 10) and the effect is a decrease
in the slip deficit X. Since the slip deficit of asperities changes much faster during seismic
events than during interseismic intervals, the slip deficit Y of asperity 2 can be considered
constant during mode 10.

When the orbit reaches the upper side of Q at point P2, the condition for slip of
asperity 2 is also attained and a phase of simultaneous slip takes place (mode 11). This
phase is represented by a curve in the plane XY, because both X and Y decrease during
this slipping mode.

Simultaneous slip terminates at point P3, where asperity 1 stops. Afterwards, only
asperity 2 continues to slip. This corresponds to a mode 01, represented in the graph by the
segment P3P4. In this mode the slip deficit Y decreases, while X remains constant. At last,
asperity 2 also stops at point P4 and the seismic event terminates.

Afterwards, the fault enters another interseismic interval, in which the slip deficits
X and Y begin increasing again, but starting from different initial conditions, that is with
a different value of p. Hence the stress distribution on the fault at the end of the event is
different from the initial one and the next event will be made of a different sequence of
dynamic modes.

Formulae for the calculation of the dimensional moment rate ṁ(t) and the final seismic
moment m0 for a 3-mode event with simultaneous asperity slip were given in [27].

The moment rate ṁ(t) calculated from the model is shown in Figure 4 together with
the observed moment rate, as reported by [1]. The three modes 10, 11 and 01 have durations
of 55, 55 and 50 s, respectively. The final seismic moment m0 is calculated from (12), where
U1 = 0.46 and U2 = 0.18. In dimensional units, it is equal to 2.4× 1022 N m, in good
agreement with the observed value.

Figure 4. The moment rate ṁ as a function of time, calculated for the 2010 Maule event (solid curve)
superimposed to that retrieved from data by [1] (grey filled curve).

A comparison with [17] shows that consideration of different asperity areas and of
wave radiation may sensibly affect fault dynamics. In fact, the present model yields results
that are consistent with observations with a different initial stress distribution. This does
not change the sequence of dynamic modes in the event, but changes the details of the
moment rate function, entailing a different final stress distribution on the fault.
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The moment rate is the result of a continuous stress transfer between asperities during
fault slip. This process is shown in Figure 5, where slip rates and shear stresses on asperities
are plotted as functions of time. Slip rate values are in the order of 10 cm s−1 for both as-
perities and the overlap between the two curves is evidence of simultaneous slip occurring
in the central part of the event (Figure 5a). Shear stresses on the asperities oscillate during
fault slip and their order of magnitude corresponds to the stress drop values obtained
by [31] for Central–Southern Chile (Figure 5b).

Figure 5. (a) Slip rates ∆ẋ (solid curve) and ∆ẏ (dashed curve) and (b) shear stresses σ1 (solid curve)
and σ2 (dashed curve) as functions of time for asperity 1 and 2, respectively, calculated for the 2010
Maule event.

4. Surface Heat Flow

According to [32], the heat flow density at the Earth’s surface in the Chilean region
can be written as:

qs =
qm

S
+

σv
S

+ HUChUC + HLChLC, (13)
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where qm is the heat flow density from the mantle; σ is the average frictional stress on
the thrust fault; HUC and HLC are the radiogenic heat productivities in the upper and
lower crust, respectively; hUC and hLC are the thicknesses of the upper and lower crust,
respectively. The divisor S is [33]:

S = 1 + sin δ

√
vu f

χ
, (14)

where δ is the dip angle of the fault, χ is the thermal diffusivity and

u f =
√

x2
f + z2

f , (15)

where x f is the distance between epicenter and trench and z f is the hypocenter depth. The
dip angle is calculated as

sin δ =
z f

u f
(16)

Upon substitution of data for the 2010 Maule earthquake (Table 1), the results are
δ ' 10◦ and S ' 4.

In order to evaluate the frictional stress σ in (13), we consider that the effective pressure
at depth z f can be written as [34]:

p = ρgz f (1− λ), (17)

where g is the acceleration of gravity and λ is the pore-fluid factor. If ∆σ is the horizontal
tectonic stress, the compressive normal stress on the fault is [35]

σn = p− ∆σ sin δ (18)

where ∆σ < 0 in a thrust regime. The last term in (18) can be neglected due to the small dip
angle and the frictional stress is:

σ = κs p, (19)

where κs is the coefficient of static friction. Considering that λ is equal to 0.97 in Central-
Southern Chile [36] and using the other data from Table 1, we obtain σ ' 17 MPa.

In conclusion, considering radiogenic productivities HUC = 1 µW m−3 and
HLC = 0.4 µW m−3 [32] and thicknesses hUC = 15 km and hLC = 10 km, we obtain a
surface heat flow density qs = 43 mW m−2 in the coastal range, a very similar value to
that measured and corrected for latitude 33◦ S by [37]. The contribution of steady frictional
heating is equal to 10 mW m−2 or about 23% of qs.

5. Heat Pulse

According to [19], the nondimensional heat produced by a two-asperity fault during a
seismic event is

∆Q = −ε(U1 + U2). (20)

The corresponding dimensional quantity is

∆q =
f 2
s1

K1
∆Q. (21)

In the global budget of heat flow generated at a plate boundary, an earthquake can
be considered as a point-like and instantaneous event. If ∆q is the heat produced at time
t = 0 by a seismic source located at x = x0, the temperature field Θ(x, t) in the surrounding
medium can be calculated by solving the time-dependent heat equation

∂Θ
∂t

= χ∇2Θ +
∆q
ρcp

δ(x− x0)δ(t), (22)
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where cp is the specific heat capacity (per unit mass). The solution is [38]

Θ(r, t) =
∆q

8ρcp(πχt)3/2 e−
r2
4χt (23)

where
r = |x− x0|. (24)

The heat flow density is calculated as:

h(r, t) = −κ
∂Θ
∂r

(25)

where κ is thermal conductivity. At distance z from the source, the flow density is then

h(t) =
∆q z

16t(πχt)3/2 e−
z2
4χt . (26)

We introduce a nondimensional time

t′ =
t
τ

, (27)

where τ is the characteristic diffusion time

τ =
z2

4χ
. (28)

Then,

h(t′) =
∆q

8π3/2χτ2 (t′)−5/2e−
1
t′ . (29)

This can be approximately considered to be the contribution of the earthquake to
surface heat flow. In Figure 6, we plot the nondimensional quantity

h′ =
χτ2

∆q
h. (30)

Figure 6. Heat pulse h′ produced by the seismic source as a function of time t′ (nondimensional units).
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Then

h′ =
(t′)−5/2e−

1
t′

8π3/2 . (31)

The heat pulse reaches its maximum at time

t′max =
2
5

(32)

and the maximum value is

h′max =
e−

5
2

8π3/2

(
2
5

)−5/2

(33)

or about 0.018. The dimensional contribution to heat flow density can be evaluated as

hmax =
∆q
χτ2 h′max (34)

We can calculate the heat ∆q produced by the 2010 Maule earthquake using Equation (21).
With

fs1 = σ1 A1, (35)

where we take σ1 = 1 MPa (Figure 5b), we obtain ∆q ' 2× 1017 J. An estimate of the
characteristic diffusion time is made from (28) by taking z = 10 km as representative of
fault depth: it results in τ = 2.5× 1013 s. From (34), the maximum value of the heat pulse
is hmax ' 6× 10−3 mW m−2 or about 10−3 of the average heat flow density due to steady
frictional heating on the fault surface and about 10−4 of the average heat flow density
measured at the Earth’s surface.

6. Conclusions

We considered the 2010 Maule earthquake, a megathrust event that occurred along
the Peru–Chile Trench. The earthquake source was modelled as a fault with two asperities
with different areas and strengths. Employing a discrete fault model, where asperities are
the basic elements, it is possible to describe each event as a sequence of dynamic modes of
the fault and to reproduce the observed moment rate.

On the basis of available data, the moment rate of the Maule earthquake can be
ascribed to a sequence of three dynamic modes involving simultaneous asperity slip. The
mode durations, the slip distribution, the moment rate and the final seismic moment are
consistent with the observed values.

An important amount of heat is produced by an event of this size and it contributes
to the average heat flow of the region. The frictional heat produced by fault slip has been
calculated as the sum of the contributions of the two asperities. The heat diffusion equation
has been solved, showing that heat propagates through the Earth’s crust as a very slow
pulse. The maximum heat flow density associated with the pulse is equal to about 10−4 of
the average surface heat flow density, thus confirming the absence of heat flow anomalies
in connection with fault zones.
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