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Abstract: Heat pipes transfer heat via phase transformation of the working fluid, where the working
fluid will keep the temperature constant and absorb or release a large amount of latent heat during
phase transformation. With the development of heat pipe technology, the isothermal performance
of heat pipes has been gradually emphasized in many application fields. Most studies focused on
the average temperature characteristics of one heat pipe or several heat pipes with the same type,
and lacked a comprehensive analysis on the isothermal performance of different heat pipes. In this
paper, previous studies on the application fields of the isothermal performance of heat pipes, the
isothermal level of heat pipes used in different fields, and the methods to improve the isothermal
performance of heat pipes are summarized. The parameters of the wick have little effect on the
temperature uniformity of the heat pipe, while the arrangement of the wick has more influence on
the uniformity of the heat pipe. The most suitable charge rate is 15% to 30% of the total inner volume,
and the best start-up performance and isothermal performance is at approximately 45◦.

Keywords: heat pipes; isothermal performance; wick; charge ratio; inclination angle

1. Introduction

The working fluid of heat pipes maintains a constant temperature during the phase
change and absorbs or releases a substantial amount of latent heat. Therefore, the thermal
conductivity of heat pipes is much better than that of thermally conductive materials, such
as silver or copper, so heat pipes are also called superconductors. Due to their simple
operation principle, heat pipes can be made into various shapes and sizes, and the working
temperature range of different heat pipes varies greatly. According to the method of
working fluid reflux, heat pipes can be divided into thermosyphons, capillary heat pipes,
rotating heat pipes, etc. Heat pipe technology has been widely used because of its reliability,
simple structure and strong heat transfer ability [1]. Gaugler explained the working cycle
process and principle of heat pipes and applied for a US patent [2]. Cotter first conducted a
systematic theoretical study, expounding in detail the working fluid states of heat pipes
from start-up to stable operation [3]. Heat pipes have been widely used in many fields with
the development of heat pipe technology. Heat pipes have also gradually received attention
in their isothermal performance in the fields of solar energy utilization systems [4–6],
isothermal reactors and furnaces [7], metrology fields [8–10], etc.

Due to the liquid/vapor phase transition, heat pipes also have a very good isothermal
performance. The vapor working fluid is driven by a very small pressure difference.
After condensation, the liquid working fluid is driven back by gravity, capillary force,
or other forces. Therefore, the working fluid-wall thermal resistance mainly affects the
equivalent thermal resistance of the heat pipe, and heat pipes can have very high isothermal
performance. For thermal protection and thermal management applications, heat pipes can
prevent local overheating. For isothermal reactors, metering and other applications need
high level temperature uniform field, heat pipes can provide a uniform temperature field.
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According to the shape of heat pipe, the common types of heat pipes are cylindrical
heat pipe, flat heat pipe, loop heat pipe, pulsating heat pipe, and annular heat pipe. In
isothermal applications, the difference between different types of heat pipes is that the
isothermal region. Table 1 shows the isothermal region of common types of heat pipe in
isothermal applications.

Table 1. Common types of heat pipe in isothermal applications.

Type of Heat Pipe Isothermal Region

Cylindrical heat pipe Cylindrical surface (Curved surface)
Flat heat pipe Evaporator surface (Two dimensional plane)

Loop heat pipe Condenser surface
Pulsating heat pipe Condenser section (Curved surface)
Annular heat pipe Inner pipe (Three-dimensional space)

Although heat pipes have a high heat transfer performance, heat transfer limits will
appear under certain conditions [11,12]. These heat transfer limits will limit the maximum
heat flow in the axial direction and negatively affect stability, safety and isothermal property.
When the heat pipe is running at a low temperature, the influence of the vapor viscous
force is greater than the influence of the inertial force due to the low vapor pressure and
density. The maximum axial heat transfer is then determined by the viscous force, which
is the viscosity limit that appears [13]. Due to heating, the vapor flow rate will continue
to increase. When the flow rate reaches the speed of sound, the circulation speed of the
working fluid cannot be increased, which means that the heat pipe reaches the sonic
limit [14]. In the working stage, the entrainment limit will appear because the vapor
velocity is high and the pressure is low. Some liquid droplets may be brought back to the
condenser section by vapor flow. As a result, part of the working fluid cannot be recycled,
and the vapor pressure is lost [15]. In a capillary heat pipe, the returning liquid working
fluid flows back to the evaporation section under the action of the capillary force of the
wick; when the capillary pressure cannot overcome the pressure loss of the vapor and
liquid, the capillary limit will appear, and the evaporator section will dry up [13].

In order to have high isothermal performance, the heat pipe must be fully started
and a complete working fluid flow cycle must be established. The temperature variation
of high-temperature heat pipes during the start-up process is very different from that of
medium- and low-temperature heat pipes. Due to the low density and vapor pressure,
the influence of compressibility must be considered during the start-up stage. Only when
the working fluid temperature reaches the transition temperature, the high-temperature
heat pipe has high isothermal property. In high-temperature applications, such as solar
receiver systems operating at temperatures of 750 K and above, due to the high boiling
point, latent heat of vaporization, surface tension coefficient and thermal conductivity of
liquid metals, the commonly used fluids are liquid metals, such as sodium, potassium
and lithium. The sound speed limit and viscosity limit should be considered during the
start-up phase of liquid metal heat pipes. Only by establishing a continuous flow can
the effective heat transfer and isothermal performance be improved. When the mean
free path of the working fluid is very small, compared with the characteristic length of
the vapor flow path defined by the Kundsen number, a continuous flow zone can be
established [16]. Cao et al. [17] and Jang [18] gave two types of vapor flow zone transition
temperature equations. During the flow pattern transition, the temperature rises sharply,
and the temperature in the continuous flow zone is much higher than that in the free
molecular flow zone. Therefore, the heat pipe is divided into a hot zone and a cold zone
along the heat pipe, which can be observed at the beginning of the start-up process [1,19].
Considering the compressibility of the vapor, numerical studies have obtained the same
phenomenon [20–24]. Therefore, a simple one-dimensional start-up model named the
“flat-front” start-up model was proposed [17].
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Due to the wide use of heat pipes, many studies have summarized the applications of
heat pipes in different fields [25–27]. A lot of literatures have studied the effects of wick,
heat pipe structure, working medium filling volume and inclination on the isothermal
performance of heat pipe. Figure 1 shows the working process and influencing factors of
the isothermal performance of heat pipes. Adding nanofluids can improve the thermal
conductivity of working fluid and increase the nucleation site, which can reduce the
equivalent thermal resistance of heat pipe and improve thermal performance [28–32].
However, it has little effect on the temperature uniformity of heat pipe, the maximum
temperature gradient was reduced by about 10% [28–32].
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Generally, the literatures only focused on the average temperature characteristics
of one heat pipe or several heat pipes with the same type, and lacked a comprehensive
analysis on the isothermal performance of different heat pipes. Different influencing
factors need to be compared and analyzed for different sizes and types of heat pipes to
obtain a more general influence law on the isothermal performance of heat pipes. In this
study, the isothermal level of heat pipes in different application fields and the effect of the
heat pipe structure, working fluid charge ratio, and inclination angle on the isothermal
performance of heat pipes were summarized. Different types of heat pipes have different
advantages in terms of maximum heat transfer, manufacturing difficulty and cost. For a
unified comparison, the maximum temperature gradient is used, that is, the maximum
temperature difference between the two measuring points divided by the distance. In this
paper, the maximum temperature gradient of isothermal zone of heat pipes is compared.
For different heat pipes, the isothermal zone can be the condenser section, whole heat pipe
and other part of heat pipe.

2. Application Fields of the Isothermal Performance of Heat Pipes
2.1. Thermal Protection Applications

The isothermal performance of heat pipes is related to the fatigue reduction of mechan-
ically formed parts due to the strong temperature gradients. In aeronautical applications,
aerodynamic conditions can cause large temperature gradients, where the temperature
difference can be as high as 2000 K. To enable the leading edge to withstand the mechanical
stress generated by the temperature gradients, high-temperature resistant materials are
used. Due to the high heat transfer performance, heat pipes can also be considered in
this field. The improved heat transfer and thermal efficiency shape of this heat pipe are
particularly suitable for the leading edge. Different types of heat pipes have been studied,
such as rectangular [33] and D-shaped pipes [34]. Another way is to use the capillary heat
pipe as the entire leading edge. Reinforcements are needed in the vapor zone, such as a
cross-shaped structural member wrapped with a porous wick or simple ribs.

Camarda et al. [35] studied liquid metal heat pipes for the thermal protection of
hypersonic aircraft. The heat pipe was made into an elbow form for thermal protection
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of the front edge and nose cover. When the heat flux density was 412 W/cm2, a hot spot
was found. When the wall temperature was 1320 ◦C and the heat exchange was 3.27 kW,
the stagnation zone temperature of the hypersonic vehicle could be reduced from 1926 W
to 982 W. Xiao et al. [34] proposed a three-dimensional heat transfer numerical method
and studied the heat transfer performance and temperature distribution of the heat pipe
in a heat protection structure. Heat pipe cooling could significantly improve the thermal
protection performance. The stagnation temperature dropped from 2414 K to 1947 K at
approximately 467 K, and the rear surface temperature increased from 1453 K to 1548 K at
approximately 95 K. Li et al. [36] studied a gas turbine stator cycle thermosyphon cooling
system using sodium potassium alloy heat pipes. The system worked stably at 1230 ◦C, the
heat pipe reduced the wall temperature of the stationary blade by an average of 340 ◦C,
and the passive cooling method greatly reduced the amount of induced air. Dillig et al. [37]
conducted a numerical study on the thermal management of high-temperature fuel cell
systems using flat sodium heat pipes. After imbedding the heat pipes, the temperature
gradient in the chimney was greatly improved, and the heat could be directly discharged
from the chimney. Due to the rapid heat absorption, the temperature dropped sharply
by approximately 30 K, and the temperature gradient of the active cell area dropped to
approximately 10 K.

Table 2 shows the isothermal performance characteristics of heat pipes in thermal
protection applications. Due to the strong heat transfer capacity of the heat pipe, the heat
can be quickly transferred from the evaporator side to the condenser side, and local over-
heating can be effectively prevented. Therefore, in the field of thermal protection, capillary
heat pipes are usually used and they can effectively reduce the maximum temperature
gradient. In this application, for smaller lengths the temperature gradient decreases on
average by approximately 2.8 K/mm. However, due to the constraints of heat pipes it is
difficult to design very general systems, thus the development of heat pipes in this field is
currently limited.

Table 2. Characteristics of heat pipes for isothermal performance in thermal protection.

Maximum Temperature Gradient
Type of Heat Pipe Reference

With Heat Pipes/K/mm Without Heat Pipes/K/mm

0.9 1.9 Capillary heat pipe Xiao et al. [34]
0.9 - Capillary heat pipe Gui et al. [38]
0.6 4.4 Capillary heat pipe Peng et al. [39]
0.4 4.2 Capillary heat pipe Liu et al. [40]

0.25 2.1 Capillary heat pipe Dillig et al. [37]
0.2 5.0 Capillary heat pipe Camarda et al. [35]

0.15 0.81 Capillary heat pipe Li et al. [36]

2.2. Isothermal Reactors Applications

Homogenizing the temperature in the storage or reaction vessel can improve the
efficiency and quality of the product [41]. For example, in warehouses the temperature
of the lower layer is 10 K higher than that of the top layer. During the heat treatment or
recycling process, the reduction of the temperature gradient also improves the performance
of the heat storage tank [42]. In reactors, a uniform temperature can improve the catalytic
and reaction performance. Generally, the reactor system uses external heat on the reaction
tube, so this process may cause catalytic failure or mechanical failure of the pipeline due to
overheating. A high temperature gradient can significantly slow the reaction. The use of
heat pipes can also reduce the size and quality of the reactor [7].

The annular heat pipe is usually a closed container composed of two coaxial tubes
with different diameters. Generally, the annular section of a heat pipe is divided into
several steam channels and separated by wicks to ensure that the heat pipe has a high
capillary pumping capacity and a good mechanical strength. Choi et al. [7] provided a
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method for flattening the longitudinal and circumferential temperatures of a stainless
steel/naphthalene heat pipe furnace. To ensure the design of copper nanoparticle sintered
porous parts, the technology required very high isothermal conditions. The experimental
results showed that it had a very good isothermal performance and temperature stability
at approximately 200 to 300 ◦C. Despite the nonuniform heating, the temperature gradient
was estimated to be 0.02 K/mm at the bottom part of the furnace.

Putting the heat pipe into the container to export heat can also provide a uniform
temperature area. For the heat storage container, the heat pipe transfers the stored heat
into the outside environment as a heat exchanger. During periods of inactivity, the thermal
diode function can reduce the heat loss of the container. To improve the temperature
uniformity of the storage container in the radial direction, a standard metal fin and flat
heat pipe can also be used. Reay et al. [42] studied the heat transfer performance and
the temperature distribution of a copper/water heat pipe in a phase change material
storage container. The heat pipe could particularly speed up the solidification time of
the phase change material, which benefited from the uniformity of the temperature in the
container. The temperature gradient was reduced to 0.22 K/mm in the vertical direction,
while the temperature gradient of the copper tube of the same size was 0.39 K/mm. A
reforming reactor was studied by Diver et al. [4], and the heat dissipation of the reactants
was improved through an Inconel/sodium heat pipe at 600 ◦C. To enhance the uniformity
of the liquid distribution, several spiral channels were used in the condenser section, and
two layers of stainless-steel mesh were used as wicks in the evaporator. Therefore, the
vertical thermal gradient of the 1.8 m catalyst bed was reduced to 0.03 K/mm.

Table 3 shows the isothermal performance characteristics of heat pipes in isothermal
reactor applications. In this application, a heat pipe is used in the chemical or storage
container, where the goal is to reduce the temperature gradient of the container. These
systems must homogenize the volume temperature, not just the temperature of the surface.
Therefore, flat plate heat pipes and annular heat pipes that can provide uniform temperature
fields in two-dimensional and three-dimensional directions are used. The condenser side of
the heat pipe was usually used to provide a uniform temperature field, and the maximum
temperature gradient can be reduced to 0.1 K/mm by using heat pipes.

Table 3. Characteristics of heat pipes for isothermal performance of isothermal reactors.

Maximum Temperature Gradient/K/mm Type of Heat Pipe Reference

0.30 Flat heat pipe Wang et al. [43]
0.22 Thermosyphon Ahmad et al. [42]
0.03 Capillary heat pipe Diver et al. [4]
0.02 Thermosyphon Wang et al. [20]
0.01 Annular heat pipe Choi et al. [7]

2.3. Thermal Management Applications

In the application of thermal management, such chips and batteries, the heat flux
density is increasing with the advancement of manufacturing technology, and the heat
dissipation capability is becoming increasingly important. The heat pipe can be easily made
in a small plate to cool the equipment [44]. Vadiraj et al. [45] compared the isothermal
properties of aluminum plates and steel plates combined with a pulsating heat pipe.
Infrared visualization and numerical calculation results showed that for metal plates with
a lower thermal conductivity, the temperature gradient was better reduced. The vertical
temperature gradient of the steel plate was greatly reduced from 0.2 K/mm for flat plates
to 0.1 K/mm for steel plates with an embedded pulsating heat pipe. In addition, as the
heating power increased, the temperature homogenization ability increased. The pulsating
heat pipe had little effect on the temperature uniformity of the aluminum plate because
aluminum itself has a high thermal conductivity. Other experiments (including numerical
experiments) have shown that the pulsating heat pipe direction will affect the heat transfer
efficiency, which is due to changes in the internal flow and oscillation. Several other studies
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have compared the use of steam chambers instead of metal plates to obtain larger surfaces.
Reyes et al. [46] proposed that the use of flat plate heat pipes is beneficial to reduce the
weight relative to the metal plate (the same heat dissipation is between 10% and 20%).
Boukhanouf et al. [47] studied a system using a 500 cm2 heat sink to dissipate heat from
a 50 cm2 heat surface. The temperature gradient in the outside plane decreased from
0.31 K/mm to 0.08 K/mm after changing from a solid copper plate to a vapor chamber
evaporator, and the maximum temperature decreased by 10 K. A design based on the
location of the wick was proposed [48], and the vapor zone was divided into different
areas. Due to the vapor overpressure in the vacuum, filling and operation stages, the
temperature distribution could be improved, and the mechanical strength of the system
could be increased.

In solar energy applications, heat pipes are used to absorb the heat of concentrated sun-
light and reduce the high circumferential temperature gradient in the receiving tubes [49].
The equivalent heat transfer coefficient increases with the solar radiation density, which is
also affected by the position and structure of the heat pipe [50].

In other thermal management applications, such as latent heat storage systems [51,52]
and waste heat recovery systems [53], the use of heat pipes can increase the heat transfer
quantity and reduce the temperature gradient. Table 4 shows the isothermal performance of
heat pipes in thermal management applications. In this application, heat pipe can transfer
heat quickly and reduce the local temperature due to the strong heat transfer capacity of the
heat pipe. The function of heat pipes is to homogenize the temperature distribution of the
isothermal equipment itself to improve its efficiency. With the heat pipe, the temperature
gradient can, on average, be reduced to 0.1 K/mm.

Table 4. Characteristics of heat pipes for isothermal performance in thermal management.

Maximum Temperature Gradient
Type of Heat Pipe Reference

With Heat Pipes/K/mm Without Heat Pipes/K/mm

2.2 15.6 Flat heat pipe Fan et al. [54]
0.30 0.80 Capillary heat pipe Hsu [55]
0.15 - Pulsating heat pipe Chen et al. [56]
0.14 - Rotating heat pipe Chen et al. [57]
0.11 0.19 Pulsating heat pipe Vadiraj et al. [45]
0.10 0.90 Flat heat pipe Sun et al. [48]
0.08 0.32 Flat heat pipe Boukhanouf et al. [47]
0.06 0.25 Capillary heat pipe Campo et al. [58]
0.05 - Flat heat pipe Tsai et al. [59]
0.05 - Thermosyphon Zhang et al. [60]
0.02 0.08 Capillary heat pipe Tang et al. [61]
0.02 0.12 Capillary heat pipe Lim et al. [62]
0.01 - Loop heat pipe Bernagozzi et al. [63]
0.01 0.12 Flat heat pipe Wang et al. [64]

2.4. Calibration Applications

The calibration of the temperature sensor requires a stable isothermal reference source.
When the heat pipe works stably, the vapor flow is saturated, so the temperature difference
of the heat pipe is related to the pressure difference. The effects of the vapor pressure [65],
heating temperature [19], cooling water temperature [33] and inclination angle [66] on
the isothermal performance of the heat pipes were studied. An annular heat pipe was
designed [67] to calibrate the thermal sensor, and the reproducibility problem of the experi-
mental test showed that it may be difficult to directly use this heat pipe when the setting
temperature was very near the environmental temperature. To obtain a better temperature
uniformity in the heat pipe wall, a relatively high external power is required, and the tem-
perature gradient decreases to less than 0.01 K/mm. Therefore, the isothermal temperature
source more easily develops at higher temperatures. Yan et al. [68] manufactured a sodium
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annular heat pipe to achieve and stabilize the melting temperature of aluminum. The
internal walls of the heat pipe were processed with axial knurling and spiral grooves in
order to improve the liquid distribution. A more complex cesium annular heat pipe was
then manufactured as a thermostat [69]. Three metering wells with different diameters
were designed in the heat pipe to correspond to temperature measuring equipment with
different sizes. The main goal was to reduce the temperature gradient between the three
wells and the vertical temperature gradient of each well. The experimental results showed
that the maximum temperature difference in different wells was 0.2 K. The boiling of liquid
increased the heat transfer coefficient of the working fluid, so the temperature uniformity
at the highest temperature was improved at the evaporator.

A gas-controlled heat pipe is a type of heat pipe that is not completely enclosed and is
connected to the pressure controller. This heat pipe can reach a relatively stable and uniform
temperature by controlling the pressure of the vapor working fluid [8,10]. Gas-controlled
heat pipes are characterized by a small aspect ratio but a good temperature uniformity
and stability. Research on heat pipes has been widely used in the field of measurements,
and the best temperature stability of gas-controlled sodium heat pipes was investigated
by Yan et al. [70]. The heat pipe was completely placed in the heating furnace, and the
temperature uniformity was 0.3 mK within 14 cm from the bottom of the metering well.

Table 5 shows the isothermal performance of heat pipes in calibration applications.
Because the temperature uniformity of the heat pipe metering system must be very accurate,
the heat flux density in this application is low. To achieve a very good isothermal perfor-
mance, the heat pipe is usually completely placed in the heating furnace, and the heat flow
flows in from the outer wall of the heat pipe and flows out from the metering well. Annular
heat pipes are often used because its inner pipe can provide three-dimensional uniform
temperature area. The isothermal surface area of metering heat pipe is correspondingly
small, and the temperature gradient should be less than 1 mK/mm. Because the gas control
heat pipe can actively control the vapor pressure, it has the best isothermal performance,
the temperature gradient was less than 0.0005 mK/mm.

Table 5. Characteristics of heat pipes for isothermal performance of in metrology.

Maximum Temperature
Gradient/K/mm Type of Heat Pipe Reference

0.02 Thermosyphon Sanchez et al. [67]
0.0005 Thermosyphon Wu et al. [69]
0.0004 Loop heat pipe Joung et al. [71]
0.0003 Annular capillary heat pipe Yan et al. [68]
0.0003 Gas controlled capillary heat pipe Bertiglia et al. [10]
0.0002 Gas controlled thermosyphon Yan et al. [70]
0.0001 Gas controlled thermosyphon Marcarino et al. [8]

3. Influencing Factors of the Isothermal Performance of Heat Pipes
3.1. Wick Structure

The capillary force of the capillary wick is a very important force for returning the
liquid working fluid to the evaporator. Although the thermosyphon can only be operated
by gravity and has no wick structure, the capillary wick can improve the stability and
uniformity of the liquid flow of the heat pipes. The capillary force of the groove core mainly
depends on the width and depth of the groove [72], and the mesh screen or porous material
mainly depends on the porosity of the wick. The wick has a great influence on the safe and
efficient operation of heat pipes. Sandia National Laboratory has performed substantial
work to solve the problem of sodium side corrosion and developed a cleaning method
for stainless steel cores and stainless steel or Haynes-230 alloy containers, which can run
for approximately 105 h without failure [73]. Boo et al. [33] studied two heat pipes with
the same shape and different cores. The mesh core was covered by a grid structure to
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effectively distribute the working fluid to various positions, where the lowest temperature
difference was 151 ◦C.

Due to its large capillary force, metal fiber felt has been widely used and needs
to transmit a higher heat flow. Metal fiber felt has a short service life due to its very
small diameter, usually at the micron level [74]. Some studies have also been conducted
on grooves on heat pipe inner walls to unclog the working fluid in order to improve
the temperature uniformity [75]. To make the distribution of liquid working fluid more
uniform, some special shape and bionic design wicks were also designed [76,77]. When the
flow obstruction of gas working fluid was smaller, the isothermal performance of heat pipe
was higher.

Table 6 shows the effect of the isothermal performance on the heat pipe for different
wicks. Comparing the research of different studies, it was determined that the different
parameters have little effect on the temperature distribution. When the wicks make the
liquid working fluid evenly distributed on the inner wall of the heat pipe, the heat pipe
can obtain good isothermal performance. Changing the wick parameters has little effect on
the temperature uniformity of the heat pipe. While the wick layout will affect the flow of
vapor working fluid and has a greater effect on the temperature distribution.

Table 6. Effect of the isothermal performance on different wicks of heat pipes.

Maximum Temperature
Gradient/K/mm Shape of Heat Pipe Wick Structure Wick Parameter Reference

1.7 Short cuboid Screen mesh 50 mesh Boo et al. [33]
0.6 Annular Screen mesh 400 mesh Zhao et al. [75]
0.4 Long cuboid Screen mesh 100 mesh Panda et al. [78]

0.12 Loop 3D printed mesh 0.3–0.6 (porosity) Hu et al. [79]
0.1 Flat Micro channel 1 mm (depth) Liang et al. [80]

0.05 Cylindrical Screen mesh 60 mesh Lee et al. [1]

3.2. Heat Pipe Structure

To complete the phase transition cycle of the working fluid, an evaporator section
and a condenser section are required. In some cases, insulating sections and wicks are
unnecessary, and there may be other special-purpose structures. The length and shape
of heat pipes with different cross-sections have a significant impact on the heat transfer
performance [81].

At a lower heating temperature, a shorter condenser length will make the axial tem-
perature distribution more uniform. This is because the cooling area decreases as the length
decreases, and the heat flux density and working fluid condensation rate decrease. The
reduction in the deactivation area of the condenser is mainly due to the non-condensable
gas being compressed by the high-pressure working fluid, especially in the condenser.
However, under higher heating temperatures and efficient gas-liquid flow cycles, the
change in the condenser length has no obvious effect on the axial temperature distribution
or the heat transfer performance, and local overheating may even occur. Generally, the
length ratio of the condenser and the evaporator section is not limited. If the input heat
of the evaporator section is balanced with the output heat of the condenser section, then
the heat pipe can operate stably. The heat input depends on the area of the heater and
the evaporator, and the heat output depends on the area of the condenser and convection.
If any section is too long or too short, local overheating will occur, and the isothermal
performance can be improved by properly improving the length of the heat pipe [82].

Because the shape of the heat pipes is not restricted, heat pipes with square cross-
sections [78], rectangular heat pipes [66], combined heat pipes [83] and other types can
have a good heat transfer performance and isothermal performance.

Table 7 and Figure 2 show the research results of the length ratio of each section of heat
pipes for the isothermal performance. Whether it was from comparing different articles
or the same article, such as Guo et al. [19] and Poplaski et al. [84], from Table 6 it can be
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determined that the heat pipe has a better isothermal performance when the condenser
section length and the evaporator section length are closer. When the evaporator section is
too short, the flow distance of working fluid in the condenser section is long, which will
lead to the accumulation of liquid working fluid at the inlet of the condenser section. When
the evaporator section is too long, local overheating is easy to occur at the bottom of the
evaporation section.

Table 7. Effect of the isothermal performance on length ratio of each section of heat pipes.

Length Ratio of
Evaporator

Length Ratio of
Adiabatic Section

Length Ratio of
Condenser Total Length/mm Maximum Temperature

Gradient/K/mm Reference

0.600 0.100 0.300 400 0.50 Shen et al. [72]
0.600 0 0.240 600 0.50 Wang et al. [20]
0.580 0.170 0.250 1000 0.08 Guo et al. [19] (case 1)
0.580 0.200 0.220 1000 0.07 Guo et al. [19] (case 2)
0.580 0.230 0.190 1000 0.09 Guo et al. [19] (case 3)
0.465 0.200 0.335 775 0.20 Meisel et al. [85]
0.425 0.150 0.425 1000 0.05 Lee et al. [1]
0.288 0.250 0.462 800 0.09 Liu et al. [86]
0.211 0 0.789 735 0.45 Wang et al. [87]
0.200 0.100 0.700 500 0.30 Poplaski et al. [84] (case 1)
0.167 0 0.833 600 0.45 Zhang et al. [23]
0.150 0.075 0.775 700 0.40 Poplaski et al. [84] (case 2)
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3.3. Working Fluid Charge Ratio

The heat pipes working depends on the working fluid, so the working fluid charge
ratio will affect the start-up performance, the heat transfer performance and the isothermal
performance. A lower charging ratio of the working fluid will elongate the pressure build-
up process and lead to the start-up failure of heat pipes. The evaporator easily overheats
when the charge ratio is low [88], the start-up is much longer and the overall temperature
difference inside the heat pipe is large when the charge ratio is high [84]. Only under a
proper charge ratio can the heat pipe start and run smoothly.

Boo et al. [66] studied a loop heat pipe in solar receivers for an energy conversion
device. The charging rate of the working fluid was 112%, 117%, 122%, and 129% (which was
based on the wick structure volume), the mass ratio was 34.2 g to 39.6 g, and the charging
rate based on the internal volume of the evaporator was 30.4% to 35.2%. The charging
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ratio of the working fluid obviously affects the thermal performance of the heat pipe,
including the thermal resistance, thermal conductivity, and isothermal performance. When
the working fluid filling rate was 117% based on the volume of the wick core structure (32%
based on the internal volume of the evaporator), the heat pipe had the largest equivalent
thermal conductivity and the best isothermal performance. The dry up phenomenon occur
when charging rate was 112%.

Boo et al. [33] studied the isothermal performance of two rectangular sodium heat
pipes. In type A, the working fluid charge ratios were 100%, 150%, and 200%, while in type
B the basic structure was the same as that in type A, and there was also a cell structure
covered by a mesh screen. The filling rates were 100%, 125%, and 150% based on the
volume of the wick. The effects of the charging mass and the working temperature on
the isothermal performance of the heat pipes were studied. For type A, when the filling
charge rate was 150%, and the minimum temperature difference was 150 ◦C. The minimum
thermal resistance was 0.4 ◦C/W when the filling charge ratio was 125% in type B.

Hack et al. [89] studied ceramic heat pipes for high-temperature and corrosive appli-
cations with different working fluid charge ratios. Due to the compatibility between the
ceramic container and the working fluid, zinc was selected and the charge mass was 50 g
to 125 g. When the working fluid was charged with 100 g of zinc, which was 11% of the
total internal volume, the heat pipe achieved the best isothermal performance, with the
heat flow at different heating temperatures of 1190–1350 W. When the filling capacity was
greater than 110 g, the wall temperature of heat pipe fluctuated frequently.

Many other studies have reported the influence of the working fluid charge ratio on
the heat transfer performance and the isothermal performance. Table 8 shows the research
of the working fluid charge ratio for the isothermal performance. Under different heating
powers, the most suitable charging rate was 15–30% of the total internal volume. It is easy
to dry up when the liquid filling rate is low, resulting in higher local temperature. And
violent boiling is easy to occur in the evaporator section when the liquid filling rate is high,
resulting in large temperature fluctuations. where a higher charging rate could adapt to a
higher heating power.

Table 8. Effect of the isothermal performance on working fluid charge ratio of heat pipes.

Optimum Working Fluid Charge
Ratio Mass of Working Fluid/g Maximum Temperature

Gradient/K/mm Reference

29.1% of the total inner volume 60 0.15 Shen et al. [72]
27.7% of the total inner volume 200 0.12 Ma et al. [90]
24.9% of the total inner volume 70 0.08 Guo et al. [19]
20% of the total inner volume 65.7 0.15 Lee et al. [1]

16.6% of the total inner volume 120 0.30 Ma et al. [83]
15.6% of the total inner volume; 38 0.50 Panda et al. [78]

15% of the total inner volume - 0.45 Zhao et al. [75]

3.4. Inclination Angle

The inclination angle refers to the angle between the reflux direction of the liquid
working fluid and the gravity direction. As the inclination angle increases, the vapor
entering the condenser has some advantages. The vertical distance along the gravity
direction of the heat pipe decreases, and the effective heating area also increases. However,
the liquid returning to the evaporator also has some disadvantages with an increasing
inclination angle. The resistance of the condensate reflux is significantly increased because
of the reduction of the force component of gravity along the axial direction of the heat
pipe [91,92].

Guo et al. [91] studied the effect of the inclination angle on the start-up performance
and the temperature distribution of a sodium potassium alloy heat pipe in detail. The
thermosyphon operated at inclination angles of 0◦, 10◦, 20◦, 30◦, 40◦, 50◦, 60◦, 70◦ and 80◦.
A sudden sharp rise in temperature was used as a sign of the liquid metal heat pipe start-up.



Energies 2022, 15, 1992 11 of 16

The start-up time of each inclination angle under a constant heating temperature of 725 ◦C
was experimentally investigated. The experimental results showed that the inclination
angle had a significant effect on the thermal start-up time. With an increase in the inclination
angle, the start-up time of the heat pipe decreased greatly when the inclination angle was
lower than 50◦, but increased little when the inclination angle exceeded 60◦, which showed
that the height of the vapor flow passage and the effective heating area had obvious
changes at an inclination angle range of 0◦ to 50◦ and that the condensation return-back
resistance had less change when the inclination angle was greater than 60◦. The temperature
difference inside the heat pipe showed the same changing trend, and the thermosyphon
had a minimum temperature difference at inclination angles of 50◦. The decrease in
the temperature difference proved that a large number of high-temperature vapors were
uniformly distributed throughout the entire condenser section, which meant a large increase
in the heat transfer capacity. Therefore, the thermosyphon had the fastest start-up speed
and the minimum temperature difference of the condenser when the inclination angle
was 50◦.

Zhao et al. [75] studied the start-up and heat transfer performance of an annular heat
pipe under different inclination angles and even anti-gravity working conditions, which
means that the evaporator section was placed above the condenser section, the reflux of the
working fluid depended only on capillary force, and gravity became a reflux resistance. The
annular heat pipe could work normally under different anti-gravity working conditions
due to the small length-diameter ratio and the large wick cross section area, which could
generate sufficient capillary force, and the inclination angle had little effect on the thermal
start-up time of the annular heat pipe.

Many other studies have reported the effect of the inclination angle of heat pipes on the
isothermal performance, the heat transfer performance, and the start-up performance [72,83,93].
The inclination angle has an obvious effect on the thermal start-up time and the temperature
distribution of the condenser section, but the evaporator section temperature has no obvious
changes with the inclination angle because the temperature of the evaporator section is
mainly affected by the heating furnace. Table 9 and Figure 3 show studies on the inclination
angle and the optimum inclination angle for the isothermal performance. With the increase
of inclination angle, the vertical distance from evaporator section to condenser section
decreases. The flow of vapor working fluid is less affected by gravity, and the vapor
working fluid is easier to reach the condenser section. But on the other hand, the backflow
of liquid working fluid becomes more difficult. Compared with different studies, the
inclination angle of heat pipes has an obvious influence on working fluid flow, and the
optimum inclination angle is approximately 45◦.

Table 9. Effect of the isothermal performance on inclination angle of heat pipes.

Optimum Isothermal
Performance Inclination Angle

Maximum Temperature
Gradient/K/mm Test Angle Reference

50◦ 0.07 0◦, 10◦, 20◦, 30◦, 40◦, 50◦, 60◦, 70◦ and 80◦ Guo et al. [91]
50◦ 0.07 0◦ and 50◦ Guo et al. [19]
45◦ 0.12 0◦, 30◦, 45◦ and 60◦ Yang et al. [93]
45◦ 0.09 0◦, 15◦, 30◦ and 45◦ Shen et al. [72]
45◦ 0.20 0◦, 45◦, 90◦, 135◦ and 180◦ Zhao et al. [75]
15◦ 0.35 −15◦, 0◦, 15◦, 30◦, 45◦, 60◦, 75◦ and 90◦ Wang et al. [92]
15◦ 0.25 0◦, 15◦, 30◦ and 45◦ Ma et al. [83]
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4. Summary

Heat pipes are widely used because of their high heat transfer performance and high
isothermal performance. Most studies focused on the average temperature characteristics of
one heat pipe or several heat pipes with the same type, and lacked a comprehensive analysis
on the isothermal performance of different heat pipes. The heat pipe structure, working
fluid charge ratio, and inclination angle can affect the heat isothermal performance. In this
work, studies related to the application and influencing factors of isothermal performance
of heat pipes were reviewed. The main conclusions are drawn as follows:

1. The parameters of the wick have little effect on the isothermal performance of the
heat pipe, and the wick layout will affect the flow of vapor working fluid and has
a greater effect on the temperature distribution. When the flow obstruction of gas
working fluid was smaller, the isothermal performance of heat pipe was higher.

2. The length and shape of different sections of the heat pipe have obvious influences
on the heat transfer and isothermal performance, and the change in the condenser
length has no obvious effect on the axial temperature distribution or the heat transfer
performance at higher heating temperatures. When the evaporator section is too short,
the flow distance of working fluid in the con-denser section is long, which will lead to
the accumulation of liquid working fluid at the inlet of the condenser section. When
the evaporator section is too long, local overheating is easy to occur at the bottom of
the evaporation section.

3. The evaporator easily overheats when the charge ratio is low, the start-up is much
long, and the temperature difference inside the heat pipe is large when the charge
ratio is high. Only when the charge ratio is appropriate can the heat pipe start and
operate smoothly. The most suitable charge rate is 15–30% of the total inner volume.

4. The inclination angle can affect the isothermal performance and the start-up perfor-
mance of heat pipes, especially in condenser sections. The vertical distance along
the gravity direction of the heat pipe decreases with an increasing inclination angle,
and the effective heating area increases. However, the return-back resistance in the
condenser section obviously increases due to the decrease in the component force of
gravity. The heat pipes have the best isothermal performance when the inclination
angle is approximately 45◦.
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