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Abstract: Precise data processing from the Global Navigation Satellite Systems (GNSS) reference
station network is mainly based on a combination of double-differenced carrier phase and code
observations. This approach allows most of the measurement errors to be removed or reduced and is
characterized as the most accurate method. However, creating observation differences between two
receivers and two satellites increases the measurement noise of the observations by a factor of 2. As a
result, it increases the impact of the incorrect definition of the noise characteristic on the results of the
estimation of the unknowns in the positioning model. This is especially important in Multi-GNSS
solutions, which integrate measurements from different systems, for which the stochastic parameters
of observation may differ significantly. In this paper, the authors prepared a complex analysis of
the noise type in double-differenced GNSS (GPS, GLONASS and Galileo) observations, both carrier
phase and code ones, with a 1 s sampling interval. The Autocorrelation Function (ACF) method, the
Lomb–Scargle (L-S) periodogram method, and the Allan variance (AVAR) method were used. The
results that were obtained for the weekly set of measurement data showed that, depending on the
system and type of observation, the noise level and its type are significantly different. Among the
code measurements, the lowest noise levels were obtained for the GPS C5Q and Galileo C7Q/C8Q
observations, with the standard deviations not exceeding ±10 cm, while the noisiest observations
were for the GLONASS C1C and C2C signals, which had standard deviations of about ±90 cm and
±45 cm, respectively. For the carrier phase observations, each signal type was characterized by
very similar noise levels of ±1.5–3.5 mm. The ACF analysis showed that 1 Hz double-differenced
GNSS data can only be treated as being not correlated to time for carrier phase observations; for code
observations, an irrelevant autocorrelation may be considered for measurement intervals greater than
20 s. Depending on the GNSS signals, the spectral index k varies in a range from−1.3 to−0.2 for code
data and k = 0.0 in the case of phase data. Using the modified Allan deviation (MDEV) allows for
specific noise types for each signal and GNSS system to be determined. All of the code observations
were characterized by either flicker PM or white PM. In the case of the phase observations, they were
all uniquely characterized by white PM (GPS and Galileo or by white PM and flicker PM (GLONASS).

Keywords: GNSS; observations noise; double-difference; code; carrier phase

1. Introduction

Global Navigation Satellite Systems (GNSS) measurements, similar to all other obser-
vation measurements, are affected by noise. The correct processing of measurement data
requires considering the random nature of the noise in the stochastic model of the observa-
tions. The most common assumption for Global Positioning System (GPS) data processing
is to adopt a constant noise characteristic that does not change over time [1]. Accordingly,
GPS observation noise is commonly assumed to be a stationary random process. In practice,
most GPS data processing models consider observation noise as easy-to-implement white
noise, i.e., a random process with samples that are not correlated in time with a zero mean
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and diagonal variance–covariance (VC) matrix. For this type of noise, the signal power
spectrum is equal in all frequency bands. Identifying the type of noise allows for the
determination of the noise density coefficients that are characteristic of a given noise, which
can be included in the mathematical model of the observation development through the
stochastic model [2,3]. Moreover, the noise is one of the coefficients that, in Kalman filtering
for example, makes it possible to increase the accuracy of the position determination [4,5].

Adopting the white noise assumption for GPS observations is not a strict approach.
Analyses of code and carrier phase measurements have shown significant temporal corre-
lation, mainly due to the atmospheric delay, multipath effect, and the receiver itself [6–8]
as well as cross-correlations between different types of observation [9–11]. The obtained
correlation parameters were dependent on the type of observation and the measurement set.
Non-uniformity in observation noise parameters that is even more significant occurs when
comparing Multi-GNSS measurements. The different characteristics of the measurement
noise for the GPS, GLONASS, Galileo, and BeiDou systems [12] as well as for individual
blocks of satellites within a given system [13] make the development of a stochastic model
for a multi-system solution difficult and complex.

The existing stochastic models for GNSS observations mainly use the dependence of
observation variance in the satellite elevation [14–16], Signal-to-Noise (SNR) [17,18], and
Carrier-to-Noise density Ratio (C/N0) [19–21] parameters as well as others parameters: the
ionosphere scintillation [22], receiver tracking error [23], or multipath effect [24]. However,
these models do not take into account the characteristics of the type of observation noise
and only describe its dependence on selected parameters. In this work, an attempt was
made to perform a multidimensional analysis of the GNSS measurement noise, the aim of
which was to fully describe the stochastic parameters of individual types of observations.
In particular, different types of carrier phase and code observations for the GPS, GLONASS,
and Galileo systems were analyzed. The analysis of the measurement noise characteristics
was performed with the use of three statistical tools: the autocorrelation function (ACF),
the Lomb–Scargle (L-S) periodogram method, and the Allan variance (AVAR) method.
These data analysis tools allow noise-type observations to be studied and do not include an
analysis of the dependence of the noise level on SNR, C/N0, satellite elevation, and receiver
type, which may be part of the further studies that take all of these factors into account.

The ACF is a well-known analytical measure for time-domain signals, which plays
a significant role in the time series models for the identification and evaluation of the
correlation degree. In statistics, the autocorrelation of random processes is the Pearson
correlation coefficient between the time series and its copy shifted by the time lag, which is
expressed as a function of the delay. The ACF is defined for stationary processes, but in
practice, it is often used, even if the data do not meet the stationarity conditions [25]. In
this study of the time series for the GNSS measurements time series, the ACF is used to
determine the parameters of the temporal correlation of observations, which, in the form
of empirical models (e.g., exponential function [26]), is applied to the stochastic model of
the data. Analyses of the residuals of double-differenced carrier phase GPS observations
show the existence of significant temporal correlations for both medium-long and zero-
short baselines [27,28]. The obtained time correlation values differ significantly for a given
measurement set; however, the time correlation is clearly dependent on the measurement
interval data recorded at a higher frequency and that are more time-correlated.

In many types of time series of natural phenomena, noise can be described by a
power-law noise process [29]. This kind of noise has been identified in, e.g., music [30],
economics [31], geophysical data [32], electronic devices [33], astronomy [34], and GNSS
positions [35]. There are several ways to determine this kind of noise, most of which are
based on spectral analyses or maximum likelihood estimation [32,36]. A commonly used
approach for power-law noise identification is to calculate the power spectrum of the data
and then estimate the spectral index using linear regression [29] from the log–log plot
of the spectrum. The slope of the fitted straight line corresponds to the kind of noise in
the analyzed data. To estimate the power spectrum of unevenly sampled data or data
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with gaps, such as in our case, the Lomb–Scargle periodogram method is particularly
useful [37,38].

AVAR was originally invented to analyze the stability of atomic clocks in the 1960s [39].
Standard variance measures the total signal power, and it does not allow for the signal
stability to be characterized, which is in contrast to Allan variance. Currently, it is also used
to analyze various types of phenomena in astrometry or geodynamics [40,41] in addition
to tools such as the autocorrelation function or spectral densities [42]. The most common
geodetic usage is the analysis of the geodetic time series. This has been used to determine
the uncertainties associated with site positions [43]. Moreover, AVAR is resistant to data
gaps up to 50% [44]. The greatest advantage, apart from simplicity and speed, of AVAR
is that it also allows for the noise type and level to be characterized without any a priori
model assumptions [45]. An Allan graph in a log–log scale shows the relationship between
the Allan variance and the sampling time in terms of its error spectrum, where slopes of the
graphs represent noise, e.g., slope −1 is white noise, while a slope of 0 is flicker noise [46].

The paper is organized as follows: In Section 2, we present the materials data analysis
methods used; in particular, the zero-baseline double-differenced GNSS observables are
characterized, and the mathematical foundations of the ACF, the spectral analysis using the
L-S method, and AVAR are outlined. In Section 3, the data set and statistical analysis of the
GPS, GLONASS, and Galileo codes and the carrier phase observations are presented. In
Section 4, the results of the noise analysis that was performed based on different statistical
tools are described in detail. Finally, in Section 5, a discussion is conducted, and concluding
remarks are made.

2. Materials and Methods
2.1. Zero-Baseline Double-Differenced Observable

The noise parameters of the GNSS observations were derived using double-differenced
(DD) measurements from a zero-length baseline (ZB) carried out by two receivers of the
same type. The ZB DD observation combination effectively separates the measurement
noise from the deterministic portion (e.g., atmospheric delays, clock and orbital errors,
multipath effects) and does not de-correlate the time series, which is essential for autocorre-
lation analysis.

The simplified code (P) and carrier phase (L) observation equations are represented by
the following formulas:

P = R + cδt + δT + δI + δMP + δKP + εP

L = R + cδt + δT − δI + δML + δKL + λB + εL
(1)

where R is the geometric distance of the satellite receiver (including the satellite orbital
errors, antenna phase centre offset for the satellite, and receiver as well as carrier phase
wind-up errors), δt denotes the difference in the receivers satellite clock error, δT and δI
denote the troposphere and ionosphere errors, δMP and δML are the multipath effects
for code and carrier phase, respectively, δKP and δKL denote differences in the receiver
satellite hardware biases for the code and carrier phase observations, B is the integer for
carrier phase ambiguity, and εP and εL are random errors for the code and carrier phase
measurements. All of the parameters are expressed in units of length, except for the clock
errors, which are expressed in units of time, and the integer carrier phase ambiguity, which
is denoted in wave cycles. Additionally, c and λ denote the speed of light and carrier
wavelength, respectively.

The ZB DD combinations are computed by differencing each type of observation (for
the same frequency/signal type) from the two receivers connected to the same antenna
to the two satellites during the same measurement epoch. For such a combination, all of
the geometrical parameters are eliminated, except for the double-differenced (denoted by
the symbol ∇∆) carrier phase ambiguity parameter, which can be easily resolved if the
precise coordinates of the antenna are known. The ZB DD observables for the code (∇∆P)
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and carrier phase (∇∆L) (after subtracting the DD carrier phase ambiguity) only contain
the double-differenced measurement noise, which expresses the magnitude of the random
errors in the observed signal. Assuming that the combinations are only computed for intra-
system differences and that the inter-frequency bias (IFB) is eliminated for the GLONASS
system because it uses Frequency Division Multiple Access (FDMA), the expectation (E{∆})
and the dispersion (D{∆}) of the ZB DD combination for a pair of homogeneous receivers
can be expressed as the equations [47]:

E{∇∆L} = 0

D{∇∆L} = 4(1− ρ∆)σ
2
L

(2)

ZB DD dispersion describes the measurement noise with a variance σ2
L, which is

affected by the cross-correlation ρ∆ due to the simultaneous use of the same antenna
(in a zero-length baseline setup) with a common Low-Noise Amplifier (LNA) [48,49].
Observation differencing eliminates common LNA noise in the ZB DD time series, causing
the dispersion value to be significantly reduced. However, when assuming a constant
LNA noise value over time, ρ∆ does not affect the determined noise parameters. The
equations relate to the carrier phase observations, but they have an analogous form with
the parameter σP–, which is used for code observations.

2.2. Autocorrelation Function

The time correlation of the observation time series was determined by the ACF, which
measures the correlation between the x(t) and x(t + τ) of the x(t) stochastic process expressed
by [1]:

σ2(τ) =
1
T

T−τ
∑
t=1

[x(t)− x][x(t + τ)− x] (3)

where σ2(τ) expresses the time series x(t) of the sample covariance with the same series
shifted at time lag τ, x is the mean of x, and T denotes the effective sample size for time
series x. The time correlation coefficient ρt(τ) for lag τ can be determined as:

ρt(τ) =
σ2(τ)

σ2
0

(4)

where σ2
0 is a simple variance of x(t) for τ = 0.

If the considered time series is affected by purely random noise, then the time correla-
tion coefficient takes the values

ρt(τ) =

{
1
0

τ = 0
τ 6= 0

(5)

Otherwise, the time series can be described as an autoregressive (AR) model.

2.3. Spectral Analysis

For the purposes of this paper, the L-S periodogram method was used for spectral
analysis and to estimate the type of noise present in the DD data. This method has
particularly broad applications in astronomy and geodynamics and allows the frequency
spectrum to be calculated for non-uniformly sampled or intermittently sampled data. The
gaps in the analyzed DD time series are mainly due to the signal blocking caused by the
horizon obscuration for low satellites. On the other hand, during the formation of double
differences, the reference satellite DDs are not calculated. This results in there being gaps
in the days of several tens of minutes.

The power spectrum of various natural phenomena can be approximated by the
power-law rule:
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P( f ) ∝ f k (6)

where P is a power spectrum, f is the signal frequency, and k is the spectral index. The
spectral index value corresponds to specific noise in the analyzed signal. White noise is
k = 0, flicker noise (pink noise) is k = −1 ,and random walk is k = −2 [49]. Noises with a
fractional spectral index within the range −3 < k < −1 are called “fractional random walk”
or “fractional Brownian motions” and are typical of nonstationary processes. Stationary
processes with −1 < k < 1 are called “fractional white noise” or “fractional Gaussian” [35].
The value of k can be calculated as the slope of a straight line fitted in the power spectrum
after the transformation of frequency and power to the logarithmic scale. This simple
method of estimating the spectral index k produces satisfactory results, especially for large
time series lengths [29].

2.4. Allan Variance

AVAR and its modifications represent another analysis tool. AVAR is used to compare
time series and their internal noise through the calculation of the deviation for a discrete set
of different averaging times (T). AVAR (and its related variance) and noise identification are
calculated based on the set of N discrete xi data for i = 1, 2, . . . , N − 1, which are converted
into the fractional frequency, yi:

yi =
xi+1 − xi

T
(7)

where T is the averaging time between two adjacent sets of observation data, xi+1 and xi.
AVAR is defined as [50]:

σ2
y (T) =

1
2(M− 1)

M−1

∑
i=1

[yi+1 − yi]
2 (8)

where M is the frequency measurements for the averaged time T = mT0, m is the averaging
factor, and τ0 is the basic measurement interval. M is the number of fractional frequencies
averaged over the sampling interval T. In terms of the GNSS phase data, AVAR may also
be calculated as a combination of Equations 6 and 7, which can be expressed as:

σ2
y (T) =

1
2(N − 2)T2

N−2

∑
i=1

[xi+2 − 2xi+1 + xi]
2 (9)

The results are usually as the square root, σy(T), i.e., the ADEV.
In this paper, a modified version of the ADEV called the modified Allan deviation

(MDEV) was used [51,52]:

Modσ2
y (T) =

1
2m2T2(N − 3m + 1)

N−3m+1

∑
j=1

{
j+m−1

∑
i=j

[xi+2m − 2xi+m + xi]

}2

(10)

where xi is the ith of the N = M+ 1 phase values for the average time T. Compared to other
Allan deviation modifications, MDEV allows white (W) and (F) flicker phase modulation
(PM) noise to be distinguished from each other. The W and F PM noise slopes are both
close to −1 when using Allan deviation, but the modified Allan deviation separates them
to –1.5 and –1.0, respectively [53].

3. Data Description

The ZB DD observation combinations were derived using the GNSS measurements
from reference station WUT1, which is situated on the roof of the Main Building of the
Warsaw University of Technology (approx. location: 52◦13′15” N, 21◦00′37” E, see Figure 1).
The Multi-GNSS measurements from the GPS, GLONASS, and Galileo systems, including
the code and carrier phase observations on the L1, L2 and L5 bands, were carried out for the
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0◦ elevation mask and 1 Hz interval using two identical Trimble R9s receivers connected to
a single Leica Choke-Ring AT504 antenna through a GNSS signal splitter.

Figure 1. GNSS reference stations on the roof of the Main Building of the Warsaw University of
Technology—WUT1 station on the right side.

The observations covered seven subsequent daily sessions for the year 2019, DOY:
055-061. A detailed description of the observed signals is presented in Table 1.

Table 1. Types of the observations used for the analysis for each GNSS system (notation according to
RINEX 3.04 format [54].

System/
Observation Type L1 L2 L5

GPS C1C/L1C C2L/L2L C2W/L2W C5Q/L2Q

GLONASS C1C/L1C C1P/L1P C2C/L2C C2P/L2P

Galileo C1C/L1C C5Q/L5Q C7Q/L7Q C8Q/L8Q

The noise parameters of the individual GNSS observations were determined based
on the ZB DD combination during a daily regime, obtaining seven independent sets of
results. The mean values for the weekly solution were presented as the final values of the
derived variance, autocorrelation, modified Allan deviation, and spectral indexes based on
the linear regression of the Lomb–Scargle periodograms.

Figures 2 and 3 present the noise statistics for one daily solution (2019, DOY:055) for
the code and carrier phase observations for all of the satellites. The results are presented
using a box plot, where the median is indicated as a central mark in the box, and the
75th and 25th percentiles of the errors are marked as the top and bottom edges of the
box, respectively. The whiskers indicate the most extreme values, omitting outliers with a
confidence level of about 99%.
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Figure 2. ZB DD time series noise statistic for code observations (2019 DOY:055).

Figure 3. ZB DD time series noise statistic for carrier phase observations (2019 DOY:055).

The statistics for the mean weekly solution are presented in Table 2. The results show
that there is a large amount of variation in the measurement noise level depending on
the GNSS system and type of observation. For the code measurements, the GLONASS
C1C and C2C signals are characterized by the highest noise, with standard deviations of
±0.89 m and ±0.44 m, respectively. On the other hand, the Galileo C7Q and C8Q and GPS
C5Q observations have the lowest noise level, not exceeding ±0.10 m. For the carrier phase
measurements, the variability is smaller, and the noise level ranges from ±1.5 mm for the
GPS L1C and Galileo L1C observations to ±3 mm for the GPS L2W and GLONASS L2C
observations. For all of the observations, the mean value is very close to zero. However, it
should be remembered that the presented standard deviation values refer to the double-
differenced observations, which are increased in relation to the undifferenced observations
by a factor of 2 and decreased by the common antenna LNA noise for the zero-length
baseline configuration.

The repeatability for the mean obtained from processing of the seven daily sessions
did not exceed ±3 mm for the code observations of ±0.001 mm for the carrier phase
observations, proving that the consistency of the daily solution is very high. A lower weekly
repeatability at the level of ±0.08 mm was only obtained for the GLONASS carrier phase
L2C and L2P observations. For the standard deviations, a similar very high repeatabilities
of ±5 mm and ± 0.03 mm for the code and carrier phase observations were obtained,
with the exception of the GLONASS observations, for which the value of ±8 mm was
determined for C1C and C2C.
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Table 2. Statistics for ZB DD code and carrier phase noise for the weekly solution.

System/Observation Type
Code (m) Phase (mm)

Mean Std. Mean Std.

GPS

1C 0.002 ±0.370 0.00 ±1.50
2L −0.001 ±0.243 0.00 ±1.69
2W −0.002 ±0.229 0.00 ±3.41
5Q −0.001 ±0.095 0.00 ±1.95

GLONASS

1C 0.001 ±0.891 0.00 ±2.41
1P −0.002 ±0.151 0.00 ±2.50
2C 0.002 ±0.444 0.03 ±3.03
2P −0.001 ±0.133 0.01 ±2.92

Galileo

1C 0.000 ±0.182 0.00 ±1.47
5Q 0.003 ±0.121 0.00 ±1.81
7Q 0.000 ±0.064 0.00 ±1.66
8Q 0.000 ±0.020 0.00 ±1.67

4. Results
4.1. Autocorrelation Function

The ACF was determined to be able to find a temporal correlation in the ZB DD
time series. Figures 4–6 present examples from one daily solution (2019 DOY:055) sample
autocorrelation coefficient for all of the analyzed GNSS signals calculated as an average for
all satellites. Each plot shows the ACF for a 0–3600 sec time lag and an enlarged function
curve for the time lag range 0–60 s for the code and 0–30 s for the carrier phase observations.
Additionally, the ρt values for selected τ values are listed.

Figure 4. Sample autocorrelation coefficients for GPS observations (2019 DOY: 055).
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Figure 5. Sample autocorrelation coefficients for GLONASS observations (2019 DOY: 055).

Figure 6. Sample autocorrelation coefficients for Galileo observations (2019 DOY: 055).

For all of the investigated code signals, it is easy to notice a high temporal correlation
for a time lag equal to a few seconds. Especially for the GPS observations, the temporal
correlation coefficient maintains a significant value that exceeds 0.2 for the time lag that is
in the range of 10–20 s (except for C1C observations, for which the correlation time is only
2 s). For the GLONASS and Galileo systems, the obtained values of the time correlation are
at a very similar level of 2–4 s for each code signal.

Only slightly higher correlation time values (up to 6 s) are obtained for the Galileo C5Q
and C8Q observations. For the carrier phase measurements, the correlation time is much
smaller and, in most cases, does not exceed 1 s. Non-zero temporal correlation coefficient
values for a time lag of at least 1 s can only be seen for the GPS L2W signal and GLONASS
L2C and L2P signals. However, for the GPS L2W observations, it immediately drops to
zero for τ = 2 s, while for the GLONASS observations, the decrease in the ρt value is very
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slow and exceeds 2000 s, which may be due to the influence of the residual value of the
frequency-dependent part of the IFB when using the FDMA technique for the GLONASS
signals. In that case, the assumption IFB elimination using a homogenous receiver pair [55]
may not be accurate for the L2 signals, but this requires additional confirmation.

The results for the weekly solution, which was determined as the average of the daily
solutions, are presented in Table 3 in the form of an autocorrelation time lag, for which
the temporal correlation coefficient drops below 0.2. The time lag values are calculated as
an average for all of the satellites for the analyzed signals while rejecting outliers with a
confidence level of about 99%. For the 1 Hz data, the smallest possible autocorrelation time
lag is denoted as ≤1 s.

Table 3. Autocorrelation time lag for the analysis of a GNSS system for ρt < 0.20 .

System/
Observation Type

Time Lag [sec]

Code Phase

GPS

1C ≤1 ≤1
2L 5 ≤1
2W 18 ≤1
5Q 17 ≤1

GLONASS

1C 2 ≤1
1P 4 ≤1
2C 4 ≤1
2P 4 ≤1

Galileo

1C 2 ≤1
5Q 5 ≤1
7Q 2 ≤1
8Q 6 ≤1

Figure 7 shows the corresponding autocorrelation time lag results for a weekly solution
in the form of a box plot. As for the carrier phase observations, a constant value of τ = 1 s
was obtained; in the graph, only the summary for the code observations is presented.

Figure 7. Autocorrelation time lag for code observations (weekly solution).

The obtained results of the autocorrelation time for the code observations for the
adopted threshold ρt < 0.20 show significant differences in the temporal correlation of
the GNSS measurement noise. The GPS C2W and C5Q observations show the highest
temporal correlation, with an average time lag of 17–18 s and spread reaching 40 s. The
lowest temporal correlation values and their highest repeatability were obtained for the
GPS C1C and Galileo C7Q observations. The presented results lead to the conclusion
that a double-differenced GNSS observation time series for a 1 Hz measurement rate can
only be treated as not being correlated to time for carrier phase observations. For code
observations, such an assumption can be made for observations with an interval of more
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than 20 s. Otherwise, for data with a higher measurement interval, correct data processing
requires the observation time correlation to be considered in the stochastic model.

4.2. Spectral Analysis

Spectral analysis was performed for each satellite arc separately during the analyzed
week. As an example of the results, the L-S periodograms for the GPS PRN09 (arc 3),
GLONASS PRN21 (arc 14) and Galileo PRN19 (arc 5) satellites are presented in Figures 8–10.
In our calculations, all of the available signals (Table 4) were analyzed separately for all
of the satellites in the constellations. For all of the analyzed satellite signals, there is a
noticeable change in the noise characteristic (power spectrum slope) around the frequency
of 0.001 Hz, regardless of the GNSS system. For this reason, the spectral index k was
calculated for the part of the spectrum that was in the range 0.001 Hz–0.5 Hz. The spectral
index was determined by the linear regression of the L-S power spectrum after frequency
and power logarithmization. The fitted line corresponding to the noise type is plotted in
orange in Figures 8–10.

Table 4. Spectral index statistics for analyzed GNSS systems.

System/
Observation Type

Number
of Arcs

Code Phase

Median std dev Median std dev

GPS

1C 429 −0.2 0.12 0.0 0.03
2L 242 −1.0 0.12 0.0 0.03
2W 401 −1.0 0.19 −0.2 0.04
5Q 151 −1.3 0.14 0.0 0.04

GLONASS

1C 321 −0.3 0.11 0.0 0.02
1P 317 −0.8 0.13 0.0 0.02
2C 321 −0.8 0.16 0.0 0.03
2P 321 −0.7 0.19 0.0 0.03

Galileo

1C 268 −0.3 0.11 0.0 0.02
5Q 268 −0.9 0.14 0.0 0.02
7Q 268 −0.3 0.18 0.0 0.02
8Q 268 −0.8 0.23 0.0 0.06

Figure 8. Lomb–Scargle periodograms for the GPS PRN09 satellite. Orange lines represent the line
fitted in the part of the spectrum in the range of 0.001–0.5 Hz. The slope of the line represents the
spectral index value.



Energies 2022, 15, 1668 12 of 18

Figure 9. Lomb–Scargle periodograms for the GLONASS PRN21 satellite. Orange lines represent the
line fitted in the part of the spectrum in the of range 0.001–0.5 Hz. The slope of the line represents the
spectral index value.

Figure 10. Lomb–Scargle periodograms for Galileo PRN19 satellite. Orange lines represent the line
fitted in the part of the spectrum in the range of 0.001–0.5 Hz. The slope of the line represents the
spectral index value.

The spectral analysis examples presented in Figure 8 for GPS satellite PRN09 show
that for all of the phase observations (L1C, L2L, L2W, and L5C), there is only white noise
(k = 0) presented over the entire frequency range studied. The code observations C2L, C2W,
and C5Q show a clear change in the nature of the noise—the slope of the L-S spectrum—for
frequencies above 10−2 Hz. For frequencies below 10−2 Hz, the spectral index is k = 0
(white noise), above k = −1, which corresponds to flicker noise. On the other hand, in the
C1C signal, fractional white noise is visible (−1 < k < 0).

As shown in the example for the GLO PRN21 satellite (Figure 9), in the case of the
GLONASS satellites, all of the code observations (C1C, C1P, C2C, C2P) are characterized
by the presence of flicker noise in the entire range of the tested frequencies. In the phase
observations, white noise is present at frequencies above 10−3 Hz, similar to the GPS
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observations. However, for frequency components lower than 10−3 Hz, the noise is closer
to flicker noise.

The code and phase observations of the Galileo system (the example of the GAL
PRN19 satellite in Figure 10) exhibit the same type of noise as the GPS satellites. The code
observations show flicker noise for frequencies above 10−2 Hz, and the phase signals only
show white noise.

Figure 11 and Table 4 show a statistical summary of the spectral index k for the double
differences of the code and phase observations for all of the GNSS signals analyzed. There
is a clear similarity in the nature of the noise in the different types of observations.

Figure 11. Spectral index for double differences of observations.

In the code observations, the noise has characteristics of flicker noise, except for the
C1C observations for all of the GNSS systems and the C7Q signal of the Galileo system. In
contrast, white noise is present in the double difference phase observations for all of the
GNSS systems that were analyzed.

4.3. Allan Variance

Figures 12–14 show the MDEV calculated for each GPS, GLONASS, and Galileo
satellite signal, respectively. The z-axis is the MDEV in seconds, the x-axis is averaging
time (T) in seconds, and the y-axis represents the satellites used in the evaluation. To make
figure interpretation easier for the reader, the z-axis scale is the same for all of the images.
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Figure 12. MDEV of the analyzed observation type for GPS satellites.

Figure 13. MDEV of the analyzed observation type for GLONASS satellites.

Figure 14. MDEV of the analyzed observation type for Galileo satellites.

Figure 12 shows the MDEV of the whole GPS segment divided by the signal type. The
first row has the code signals, and the second row has the phase signals. The magnitudes
for C1C, C2L C2W, and C5Q are very similar and cover ranges between 100 s and 10−7 s.
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In the case of the phase signals, the MDEV ranges for each signal are between the ranges
from 10−2 s to 10−9 s, which is two orders of magnitude more accurate in relation to the
code signals.

Figure 13 shows the MDEV of the GLONASS signals divided by the type. The mag-
nitudes for C1C and C2C are similar and cover ranges between 100 s to 10−7 s, while for
C1P and C2C, the ranges vary between 10−1 s and 10−6 s. In the case of the phase signals,
the MDEV ranges for each signal are between 10−2 s and 10−8 s. The slope of the graphs
also differs from one signal to another and is consistent for each satellite. Such analyses are
presented later in the text.

Unlike GPS and GLONASS, the Galileo code observations do not have the same range
of data values (Figure 14). For the C1C, C5Q, and C7Q signals, the range is from 10−1 s to
10−9 s. In contrast, the C8Q signal is an order of magnitude more accurate and ranges from
10−2 s to 10−9 s, which corresponds to the accuracy of the phase observations of the GPS
and GLONASS signals. In the case of the Galileo phase observations, the stability is similar
for each type of signal and ranges from 10−2 s to 10−10 s, which is the most accurate among
all of phase signals from the analyzed GNSS systems.

Figure 15 shows the averaged MDEV values for each signal type and system. The first
row comprises mean code values, and the second comprises the phase values. Moreover,
properly matched noise was added to the data on the chart in each graph. In the case of the
code signals for the GPS and Galileo signals, the shortest averaging times (τ ≤ 128 s) are
affected by the flicker PM (τ−1), while the l white PM (τ−1.5) is the noticed. The GLONASS
code signals are also affected by the above two noise types, but the flicker PM characterizes
the observations for τ ≤ 16 s, and white PM characterizes the others.

Figure 15. Averaged MDEV for each system along with the types of noise fitted to them.

In the case of the phase observations for the GPS and Galileo systems, all of the
observation types are very consistent with each other, which shows high-quality and perfect
reproduction of the white PM noise (Figure 15, 2nd row). In the case of the GLONASS
system, the conclusions are the same as they are in the case of the code signals—for τ < 64 s
flicker PM, for the other, larger averaging times represents white PM. Additionally, none of
the four types of GLONASS phase observations are consistent with each other—this is not
reflected in any of the graphs.

5. Discussion and Conclusions

This contribution presents research on the noise characteristics of double-differenced
GNSS measurements. Based on weekly observations from a zero-length baseline, a detailed
analysis of the noise type was performed for the code and carrier phase measurements for
the GPS, GLONASS, and Galileo systems. The use of the autocorrelation function, spectral
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analysis using the L-S method, and a modified Allan deviation indicator made it possible
to determine the type of noise and its parameters for individual systems and signals.

For the tested signals, significant differentiation of the noise level is visible: the
GPS C5Q and Galileo C7Q and C8Q signals are characterized by the highest accuracy
among the code observations, with the standard deviation not exceeding ±10 cm; the
lowest accuracy was obtained for the GLONASS C1C and C2C observations, for which
the standard deviations were ±90 cm and ±45 cm, respectively. The noise level for the
carrier phase observations was very similar for all of the signal types and is in the range of
±1.5–3.5 mm.

The ACF analysis showed significant differences in the characteristics of the analyzed
signals. Code signals, particularly GPS C2W and C5Q signals, are characterized by a
significant temporal correlation, unlike carrier phase signals. The presented results lead to
the conclusion that the double-differenced GNSS observation time series for a 1 Hz mea-
surement rate can only be treated not being related to time for carrier phase observations.
For code observations, such an assumption can be made for observations with an interval
of more than 20 s.

Depending on the kind of observations and their type, one should notice that the
signals and the corresponding noise types have different stabilities. In the case of code
observations, all signals of the are consistent with each other and can be characterized
depending on the averaging time as either flicker PM or white PM. In the case of the GPS
and Galileo phase observations, they are all uniquely characterized by white PM. In the
case of the GLONASS satellites—similar to the code observations—white PM or flicker PM
are possible depending on the integration step.

It should be noted that as the presented research does not include analyses of the
dependence of the noise level on the SNR, C/N0, satellite elevation, or receiver type, they
could be the subject of further study.
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