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Abstract: Among the solutions that make it possible to reduce CO2 emissions in the transport sector,
particularly in urban traffic conditions, are hybrid vehicles. The share of driving performed in electric
mode for hybrid vehicles is highly dependent on motion resistance. There are different methods for
determining the motion resistance function during chassis dynamometer testing, leading to different
test results. Therefore, the main objective of this study was to determine the effect of the chassis
dynamometer load function on the energy demand and CO2 emissions of a full-hybrid passenger
car. Emissions tests according to the New European Driving Cycle (NEDC) were carried out on a
chassis dynamometer for three different methods of determining the car’s resistance to motion. The
study showed that adopting the motion resistance function according to different methods, results in
differences in CO2 emissions up to about 35% for the entire cycle. Therefore, the authors suggest that
in the case of tests carried out with chassis dynamometers, it is necessary to also provide information
on the chassis dynamometer loading function adopted for the tests.

Keywords: CO2 emission; resistance forces; chassis dynamometer; hybrid vehicle; energy demand

1. Introduction

The emission of pollutants in vehicle exhaust gases is a basic problem related to vehicle
operation. Growing social awareness is exerting pressure on manufacturers, manifesting
itself in increasingly lower limits for exhaust emissions expressed in successive editions of
homologation standards. Due to the increasing problem of global warming, regulations
regarding the emission of carbon dioxide (CO2) from vehicles will tend to become more
stringent. The European Union is implementing several strategies to reduce vehicle emis-
sions by 2030 and 2050; in particular, these strategies focus on reducing CO2 emissions [1].
This problem has been given high priority in the Transport White Paper [2] and more recent
regulations touch on the recent European Green Deal [3].

Increasing blockades, especially of diesel cars, and the development of green strategies
in the automotive sector have led to a growing interest in hybrid and electric cars [4,5]. The
main reason for this is that these vehicles save on fuel costs and, additionally, because of
their potentially large contribution to environmental protection [6,7].

The automotive sector in Europe is gradually evolving towards electrified power
systems: a typology that includes both electric and plug-in hybrid cars, as well as full
hybrids and mild hybrids. In a report by ACEA (European Automobile Manufacturers
Association) on new registrations in the fourth quarter of 2020, the incidence of electric and
plug-in hybrid cars within Europe was found to have reached a market share of 16.5% [8].
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The energy demand of internal combustion engine vehicles is directly related to
their fuel consumption and, therefore, also to CO2 emissions [9,10]. However, previous
studies [11] indicate that there are discrepancies between certification test results and
actual road test results [12,13]. This issue is, among other factors, due to the use of
different methods for determining the load of chassis dynamometers, which lead to such
discrepancies [14].

In the case of hybrid cars, it is possible to reduce fuel consumption and emissions of
pollutants in exhaust gases, including CO2, depending on the share of driving in electric
mode. This issue was analyzed, among others, in the paper [15] with reference to plug-in
hybrid cars. The authors of the study presented the relationship between the average CO2
emission using the NEDC cycle and the range in pure electric mode, which for the PHEV
analyzed ranged from 200 g/km for zero range in electric mode, to 50 g/km for 75 km
range in electric mode. Driving in electric mode is highly dependent on engine load, which
is related to the motion resistance acting on the wheels of the vehicle. This issue, in relation
to hybrid cars, is very rarely addressed in the literature; therefore, it became the main focus
of this paper.

The values of the motion resistance force functions as a function of travel speed are
entered into the control software of chassis dyno through coefficients determined by various
methods. The dynamometer reproduces the resistances acting on the car in real conditions;
thus, the most optimum method is based on road coast-down tests, which can be used to
determine the values of coefficients of Equation (1) (i.e., X0, X1, and X2):

Ft,p = X0 + X1·v + X2·v2 (1)

where:
Ft,p—The sum of rolling resistance and drag force (N);
v—Speed (km/h);
X0—Constant road load coefficient (N);
X1—First-order road load coefficient, N/(km/h);
X2—Second-order road load coefficient, N/(km/h)2.
However, the feasibility of conducting road coast-down tests on public roads, particu-

larly at higher speeds, is very limited. Such tests require a testing ground, preferably an
airport runway, which severely limits their implementation in practice. Therefore, other
alternative methods to determine the resistance function’s coefficients are used for testing
cars on chassis dynamometers. One potential method to address this issue is to use the
coefficients of the vehicle’s drag function as specified by the manufacturer. However, access
to such data is very limited; in addition, the authors of tests using this method do not
usually provide information regarding the coefficients of the traffic resistance function.

Therefore, the main purpose of this study is to highlight the influence of road load
factor value on the results of CO2 emission and energy consumption tests during the
investigation of cars on a chassis dynamometer. Increased knowledge about the effects of
chassis dynamometer loading on car emissions and energy consumption results may also
allow for improved simulation models in virtual test environments [16].

This paper focuses on tests performed on a full hybrid vehicle using an AVL (Anstalt
für Verbrennungskraftmaschinen List) chassis dynamometer integrated with a climate
chamber. The tests were conducted for three dynamometer load settings, namely, NEDC
alternative, resistance calculated and WLTP alternative (Worldwide Harmonized Light
Vehicle Test Procedure).

2. Description of the Research Methodology

The tests were performed on a passenger car, whose technical data are presented in
Table 1. The car’s engine was powered by commercial unleaded petrol. The bench tests
were carried out in the Automotive Emissions Laboratory of the Rzeszow University of
Technology, which is equipped with an AVL chassis dynamometer integrated into a climatic
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chamber. The measurements of gaseous emissions (CO2, CO, and total hydrocarbons, THC)
were carried out using the AVL AMA i60 system.

Table 1. Technical data of the tested vehicle.

Parameter Data

Year of production 2020
Emission standard Euro 6 d

Engine capacity (cm3) 1497
Compression ratio 13:1

Engine working principle Spark ignition/ 4 stroke
Fuel type Petrol

Maximum net power (kW)/at (rpm) 54/4800
Maximum engine torque (Nm)/at (rpm) 111/3600–4400

Odometer (km × 1000) 3.2
Transmission type Automatic

Fuel system (petrol) Multi-point indirect injection
Aftertreatment system TWC

Electric motor (traction) Synchronous with permanent magnet
Maximum power of the electric motor (kW) 45
Maximum torque of the electric motor (Nm) 169

Traction battery Nickel-Metal Hydride
Kerb weight (kg) 1123

The accuracy specifications of the AMA i60 analysers are presented in Table 2. A
detailed description of the test stand can be found in [17]. The bench tests were carried out
under hot start conditions, with an engine coolant temperature of 85 ± 2 ◦C.

Table 2. Accuracy specifications of AMA i60 analysers.

Parameter\Analyzer FID i60 LCD IRD i60 CO2L IRD i60 L

Measured components THC and CH4 CO2 CO
Reproducibility ≤0.5% of range full scale ≤0.5% of range full scale ≤0.5% of range full scale

Linearity

≤2% of measured value
(10–100% of range full scale)

≤1% of range full
scalewhichever is smaller

≤2% of measured value
(10–100% of range full scale)

≤1% of range full
scalewhichever is smaller

≤2% of measured value
(10–100% of range full scale)

≤1% of range full
scalewhichever is smaller

Figure 1 shows a view of the vehicle on the test stand.
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Figure 1. Test stand: (a) photograph of a hybrid vehicle on the test bench, (b) test stand scheme: 1—
Tested vehicle, 2—Chassis roller, 3—Climate chamber, 4—Driver’s assistance monitor, 5—Chassis 
dynamometer control system, 6—Constant volume sampling system, 7—Exhaust gas analysis sys-
tem, 8—Exhaust gas system, 9—Control room, 10—Cooling fan, 11—Remote mixing unit. 

The tests were carried out for the New European Driving Cycle (NEDC), under am-
bient temperature conditions in the climate chamber (20 ± 1 °C). In this paper, tests were 
conducted for three dynamometer load settings, which are summarized in Table 3. 

Table 3. Coefficients of resistance and equivalent inertia. 

Parameter NEDC Alternative Resistance 
Calculated 

WLTP Alternative 

X0 (N) 6.8 112.39 178.4 
X1 (N/(km/h)) 0 0 0 
X2 (N/(km/h)2) 0.046 0.0322 0.0471 

Equivalent inertia (kg) 1250 1274 1274 
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Figure 1. Test stand: (a) photograph of a hybrid vehicle on the test bench, (b) test stand scheme:
1—Tested vehicle, 2—Chassis roller, 3—Climate chamber, 4—Driver’s assistance monitor, 5—Chassis
dynamometer control system, 6—Constant volume sampling system, 7—Exhaust gas analysis system,
8—Exhaust gas system, 9—Control room, 10—Cooling fan, 11—Remote mixing unit.

The tests were carried out for the New European Driving Cycle (NEDC), under
ambient temperature conditions in the climate chamber (20 ± 1 ◦C). In this paper, tests
were conducted for three dynamometer load settings, which are summarized in Table 3.

Table 3. Coefficients of resistance and equivalent inertia.

Parameter NEDC Alternative Resistance Calculated WLTP Alternative

X0 (N) 6.8 112.39 178.4
X1 (N/(km/h)) 0 0 0
X2 (N/(km/h)2) 0.046 0.0322 0.0471

Equivalent inertia (kg) 1250 1274 1274

For the NEDC procedure, with the vehicle manufacturer’s consent, the so-called
alternative method (NEDC alternative) may also be used, which involves determining
the brake load involved in absorbing the resistance force (Fc), depending on the mass of
the vehicle (1250 kg in the case of the car used in this study), by selecting values of the
coefficients A0 and B0 from the Table of Regulations [18]. In this case, the motion resistance
function is expressed by Formula (2):

Fc = Ft + Fp = A0 + B0·v2 (N) (2)

where:
Ft—Rolling resistance force (N);
Fp—Drag force (N);
A0, B0—Coefficients of the resistance function according to the NEDC Alternative method;
v—Speed of vehicle (km/h).
For the alternative method of the default road load calculation based on vehicle pa-

rameters of the WLTP procedure (WLTP alternative), the coefficient values were calculated
according to [19]. According to this procedure, the road load function coefficients X0, X2
(X1 is the first order road load coefficient and according to [19] shall be set to zero) can be
determined from Formulas (3) and (4) [20]:
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Xo = 0.14·mt (3)

X2 = 2.8·10−6·mt + 0.0170·W·H (4)

where:
mt—Test mass (kg);
W—Width of vehicle (m);
H—Height of vehicle (m).
The value of the test mass (mt) was determined as the sum of the actual vehicle

mass, a mass representative of the vehicle load and a constant mass of 25 kg, according to
Equation (5) [21]:

mt = mro + 25 +ϕ·mvl = mro + 25 + 0.15·(ml −mro −mo − 25). (5)

where:
mro—Mass in running order (kg);
mo—Mass of optional equipment (kg);
mvl—Maximum vehicle load (kg);
ml—Technically permissible maximum laden mass (kg);
ϕ—The percentage of the vehicle load included in the definition of the test mass, equal

to 15% for M1 category vehicles (passenger cars).
In the calculation method (resistance calculated), the values of traffic resistance as a

function of travel speed were determined using Equation (6):

Fc = Ft + Fp = m·g· f0 ·
(

1 + 5·10−5·v2
)
+ 0.047·A·cx·v2 (6)

where:
Ft—Rolling resistance force (N),
Fp—Drag force (N),
m—Weight of the car (kg),
f 0—Rolling resistance coefficient for travel speeds close to zero (f 0 = 0.009),
g—Acceleration due to gravity, (m/s2),
v—Speed (km/h),
A—Frontal area of the car, (m2),
cx—Aerodynamic drag coefficient in the longitudinal direction.
In addition to the Fc force, there is also an inertial drag force during acceleration that

depends on the mass of the car and the value of positive acceleration. The inertia drag force
is usually calculated from Formula (7):

Fb = m·δ·a (N) (7)

where:
δ—Rotating mass factor (δ = 1.03);
a—Acceleration, (m/s2).
The total vehicle drag force, Fo, for a horizontal road is described by Equation (8):

Fo = Ft + Fb + Fp (N) (8)

where:
Ft —Rolling resistance force (N);
Fp—Drag force (N);
Fb—Inertia drag force (N).
Figure 2 illustrates the dependence of force Fc for the analysed methods as a function

of travel speed.
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3. Results and Discussion

The emission factor results for the analysed traffic resistance functions for the NEDC
cycle are shown in Figures 3–5. Figure 3 shows the obtained CO2 emission values for the
urban phase (UDC), extra-urban phase (EUDC) and the entire NEDC cycle. As shown,
there is a proportional relationship between traffic resistance and CO2 emissions. For
the resistances adopted according to the WLTP Alternative method, the emission factor
values were the highest: 127 g/km (UDC), 161 g/km (EUDC) and 149 g/km (NEDC). In
contrast, the lowest CO2 emission ratio values were obtained for the NEDC Alternative
method. In this case, the emission ratio value for the urban part (UDC) was 76 g/km,
for the non-urban part (EUDC) 130 g/km and for the whole cycle, the average ratio was
110 g/km. The relative differences in the CO2 emission factors for these two extreme cases
of traffic resistance were about 45%, 25% and 31% for the UDC, EUDC and NEDC parts,
respectively. For the other analysed cases, the CO2 emission factor values were proportional
to the adopted traffic resistance values.
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load setting methods: (a) NEDC alternative, (b) resistance calculated and (c) WLTP alternative.

Figures 4 and 5 show the dependence of CO2 emissions as a function of time for
the analysed cycles. Figure 4 shows how instantaneous CO2 emissions changed during
the tests conducted using different traffic resistance functions. These figures confirm that
the higher the value of motion resistance, the higher the energy demand value, which is
associated with higher CO2 emissions. Different ranges of CO2 emissions, whose values
were close to zero, are also shown. For these ranges, the internal combustion engine was
not running. In particular, the differences between the effects of the drag functions on CO2
emissions can be seen in Figure 5, which shows the cumulative emission values during
the tests. The cumulative CO2 emission values, from highest to lowest, were obtained for
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the dynamometer load using the WLTP alternative method, followed by the resistance
calculated and NEDC alternative methods.
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Figure 5 also shows the ranges where the cumulative emission values are approxi-
mately constant. This corresponds to the drive operation in electric motor mode. It can be
seen that the highest proportion of these phases occurs for the NEDC Alternative method
and the lowest for the WLTP Alternative. This confirms the influence of traffic resistance
on the drive control of the hybrid car and the contribution of pure electric mode driving.

Based on the exhaust emissions tests, the energy consumption (EC) was calculated
using the carbon balance method. The energy consumption values for petrol fuelling were
determined using Equation (9) [22]:

EC =
0.1154
LHV

(0.866·THC + 0.429·CO + 0.273·CO2)

(
kWh

100km

)
(9)

where:
THC—Total hydrocarbon mass emission (g/km);
CO—Carbon monoxide mass emission (g/km);
CO2—Carbon dioxide mass emission (g/km);
LHV—Lower heating value of petrol (MJ/kg).
The calculated average energy consumption results during testing for the analysed

traffic resistance function methods are shown in Figure 6. Similar to the CO2 emissions, the
energy consumption is proportional to traffic energy intensity. For the tests undertaken,
according to the motion resistance function defined by the NEDC Alternative method,
the energy consumption values were 29.2, 50.1 and 42.4 kWh/100 km for the urban part,
non-urban part and whole cycle, respectively. The highest values were obtained for the
tests carried out with resistance determined by the WLTP Alternative method. In this
case, the values of the average run-time energy consumption were 48.9 kWh/100 km for
the urban part, 62.2 kWh/100km for the non-urban part and 57.3 kWh/100 km for the
whole cycle.

The energy consumption is proportional to the fuel consumption of the car engine,
the results of which are shown in Table 4. As with CO2, the largest differences in fuel
consumption values for the analyzed methods occur for the urban phase of the UDC, which
is also related to the largest differences in drag function values for lower speeds. For the
entire NEDC cycle, the differences in fuel consumption values for the WLTP alternative
and NEDC alternative methods were approximately 35%.
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Table 4. Relationship between resistance forces method and engine fuel consumption.

Cycle Phase

Fuel Consumption (dm3/100 km)

NEDC Alternative Resistance Calculated WLTP Alternative

UDC 3.304 5.018 5.522
EUDC 5.657 5.775 7.031
NEDC 4.795 5.499 6.476

Figures 7 and 8 show, respectively, the dependence of CO2 emissions on the average
driving speed (Vav) and the average values of the product of speed and positive accelera-
tion, (aV)av, for the analysed tests. The driving speed and acceleration are among the basic
parameters related to the car’s resistance to motion. These figures illustrate the advantage
of using a hybrid drive system, given that CO2 emissions are significantly lower at lower
driving speeds (UDC phase) than the equivalent values obtained for the internal combus-
tion engine [23], which is due to the drive-in electric mode. At higher driving speeds, the
contribution of the electric drive relative to the combustion drive is low, resulting in higher
CO2 emissions similar to those of conventional combustion drives. This is particularly
evident in Figure 7, which shows a comparison of the average CO2 emission rates versus
average travel speed for all the analysed methods. As shown, the CO2 emission values
are related to the adopted drag function; these values are lowest for the NEDC alternative
method at the speed range corresponding to urban traffic (0–50 km/h). For the product of
speed and acceleration (Figure 8), the CO2 emission values are observed to be higher in
the initial (aV)av range (up to about 1 m2/s3) than for (aV)av values between about 2 and
4 m2/s3. At low speeds but high acceleration values, there is a large drag force value related
to the inertial drag; this is associated with increased energy demand, resulting in higher
CO2 emissions. Similar correlations between driving speed, CO2 emissions and energy
consumption have been obtained in previous studies [24]. For plug-in electric cars, it is
possible to even achieve zero CO2 emissions from the vehicle in urban traffic [25]. In this
case, however, it is important to consider the CO2 emissions produced during electricity
generation at the power plant.
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Many works present also the results of tests on combustion-engine [26] and hybrid
cars [27,28], which show the differences between the values of CO2 emission for NEDC
and WLTP cycles. These differences result not only from different driving cycles, but
also, as confirmed by the results obtained by the authors of this paper, may be associated
with different traffic resistance adopted for testing according to the NEDC and WLTC
(World-wide harmonized light duty test cycle) driving cycles.

4. Conclusions

Based on the findings of this study, the following key conclusions can be drawn:

• The main influence on CO2 emissions and energy consumption is the applied motion
resistance function.
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• The adoption of different resistance functions resulted in differences in the values of
average CO2 emissions, which can be as large as 35% for the entire NEDC cycle, for
the full-hybrid car under testing.

• The highest CO2 emissions and energy consumption values were recorded for tests using
the traffic resistance function determined according to the WLTP Alternative method.

• The lowest CO2 emissions and energy consumption values were obtained for the
NEDC Alternative method.

• The CO2 emission values are related to the adopted drag function and are low-
est for the NEDC Alternative method in the speed range corresponding to urban
traffic conditions.

In the case of emission tests carried out on a chassis dynamometer, information about
the load on the chassis dynamometer is essential for the presentation of the test results.
We underscore the importance of this point and recommend that future emissions testing
results provide these details.

Research has shown that due to CO2 emissions and energy (fuel) consumption, it is
important to include factors related to drag in chassis dynamometer testing. This aspect
is not only important when testing conventional combustion or hybrid cars, but also
electric vehicles.

The results described in this paper can also serve as a database for a similar approach
to optimize energy management in hybrid vehicles as that presented by Lü et al. [29]. In
addition, the results of this study can be useful for optimizing simulations of CO2 emissions
and energy consumption that are based on models of traffic characteristics [30,31].

Future work will be guided by studies conducted for other driving cycles as well as
for plug-in hybrid and electric vehicles. The authors intend to conduct studies related to
the energy consumption of cars (including electric cars) at reduced ambient temperatures
using a climatic chamber.
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Abbreviations

AVL Anstalt für Verbrennungskraftmaschinen List
CLD Chemiluminescence Detector
CO Carbon monoxide
CO2 Carbon dioxide
CH4 Methane
EC Energy consumption
EUDC Extra Urban Driving Cycle
FID Flame Ionization Detector
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IRD Infrared Detector
LHV Lower heating value
NEDC New European Driving Cycle
NOx Nitrogen oxides
PEMS Portable Emissions Measurement Systems
RDE Real driving emissions
THC Total hydrocarbons
TWC Three-way catalytic converter
UDC Urban Driving Cycle
WLTP Worldwide Harmonized Light Vehicle Test Procedure
WLTC World-wide harmonized Light duty Test Cycle
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30. Jaworski, A.; Mądziel, M.; Lejda, K. Creating an emission model based on portable emission measurement system for the purpose

of a roundabout. Environ. Sci. Pollut. Res. 2019, 26, 21641. [CrossRef] [PubMed]
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