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Abstract: Wettability alteration is one of the most important mechanisms of surfactant flooding. In
this work, the combined Amott/USBM (United States Bureau of Mines) method was applied to
study the average wettability alteration of initially neutral cores after viscoelastic-surfactant (VES)
filtration. The effects of static aging, dynamic aging, VES concentration, filtration flow rate, and pore
radius on the alteration of a core’s average wettability were studied. The wettability-alteration trends
measured by Amott and USBM were consistent, demonstrating that the overall hydrophilicity of
the core was enhanced after VES filtration. The wettability alterations of the core brought about by
dynamic aging were more significant than by static aging. The viscoelastic properties of the VES
played an important role in altering the wettability. In addition, the ability of the VES to affect the
core’s wettability was significantly enhanced when the VES concentration was increased, which was
beneficial in increasing VES adsorption on the pore-wall surface, thus altering the overall wettability
of the core. Increasing filtration flow rates can destroy those high-viscosity VES aggregates via the
higher shear rate. A higher retention of VES makes the core more hydrophilic. The difference in the
wettability of cores with different pore radius after VES filtration was not significant. The alteration
of average wettability caused by VES in porous media provides a new vision for studying the EOR
mechanism of VES.

Keywords: wettability; porous media; viscoelastic surfactant; Amott; USBM

1. Introduction

The wettability of rock is considered to be one of the most important parameters affect-
ing the efficiency of surfactant flooding [1]. Enhanced oil recovery (EOR) can be achieved
by filtrating a low-concentration surfactant solution to alter the reservoir wettability to be
more hydrophilic [2], which can affect residual oil saturation and distribution in pores [3].
Wettability alteration of rock is affected by rock minerals, reservoir fluid properties, and
saturation history [4].

The wettability of rock can be determined qualitatively and quantitatively [3,5–8].
Methods for qualitatively measuring wettability include the visual, imbibition, relative-
permeability, capillary-pressure, and flotation methods; and logging (resistivity). Methods
for quantitatively measuring wettability include the wetting-angle, Amott, Amott-Harvey,
and USBM methods. The contact-angle test has a relatively high uncertainty on a quartz
plate, and the results of multiple measurements on the same plate may vary greatly [9]. The
contact angle measured in pores varies greatly from values measured on a flat surface [10],
therefore, it is not suitable for studying the average wettability of a whole porous-media-
like core. Although the imbibition test is a qualitative method for determining wettability,
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it is often used for quantitative testing of wettability. In a water-wet oil/water/rock system,
during the spontaneous-imbibition process, water is the displacement fluid and oil is the
displaced fluid [11]. Capillary pressure is the most important factor that affects imbibition
rate [11]. Bobek used the imbibition method to measure core wettability, and results showed
that core-treatment techniques could cause significant alterations in core wettability [12].

The Amott and USBM methods, as well as their improved methods, are based on
the imbibition test, which is mainly used to determine the average wettability of core
samples [5]. The Amott method must measure the amount of both spontaneous and forced
imbibition, and Julius proposed a quantitative formula of the Amott method for calculation
of the wettability index [13]. The results obtained by the Amott-Harvey method show that
static-aging wettability alteration of a finite volume of crude oil is not as significant as for
the dynamic-aging method. For a short period of aging (72 h or less), static aging and
dynamic aging have a similar wettability alteration, while dynamic aging has a greater
alteration in wettability over long-term aging (over 12 days) [14]. Aspenes combined the
NMR and the Amott method to test the longitudinal and radial wettability distributions
of long cores, and evaluated wettability stability by measuring the wettability of the core
before, and after, immersion [15]. In addition, a small-scale wettability distribution within
the core could be obtained based on information from the in situ saturation distribution
in the Amott test [16]. A limitation of the Amott method is that it is insensitive when
wettability is near-neutral [5]. Compared with the Amott method, the USBM method is
more sensitive to near-neutral wettability [3].

Recently, more attention has been paid on wettability alteration and its effect on oil
recovery using surfactants. Wu studied the effect of wettability on the flow of nano-water
in pores and established a mathematical model to characterize the flow of nano-water in
tight reservoirs [17]. Karimi showed that the application of nanofluid can significantly alter
the rock wettability from strongly oleophilic to strongly hydrophilic using the contact-angle
method [18]. Among three types of surfactants (cationic, anionic, and nonionic), cationic
surfactant CTAB had the best effect on the wettability alteration of oil-wet sandstone
surfaces [15]. The aggregates formed by TX-100 and CTAB increased their adsorption on
the oil-wet sandstone surface [19]. Das proposed a model which included “coating” and
“sweeping” effects to explain the wettability-alteration mechanism between a fluid–rock
interface [20]. The flooding experiments indicated that water-flooding-recovery efficiency
could be the highest under the condition of neutral wetting [21]. It was also shown that
heavy oil recovery by surfactant flooding under hydrophilic conditions was higher than
that under oil-wet conditions [1].

Viscoelastic surfactants (VES) have been widely applied in drilling, acidification, frac-
turing, and other fields [22]. Some VES for EOR have been recently developed [23,24].
Previous laboratory studies showed that VES flooding has, simultaneously, washing-oil
and mobility-control abilities. It can yield additional oil recovery of 20–25% after water
flooding [24–26]. It was also demonstrated that a VES solution can alter the wettability
of rock [27]. VES has different adsorption characteristics in different rock mineral com-
ponents [28], but the effect on rock wettability is not clear. The filtration experiments of
VES solutions in sandstone and carbonate rock show that oil-displacement efficiency varies
significantly depending on wettability [25].

Alteration of average reservoir wettabilities during surfactant flooding should be
emphasized in research. The effect of VES on the overall average wettability of porous
media will provide a new perspective for EOR (Enhanced Oil Recovery). In this work, the
core-saturation-aging method was used to simulate the adsorption of a VES in pore-wall
surfaces, and its wettability-alteration ability. The combined Amott/USBM method was
used to quantitatively characterize the average wettability of the whole porous media,
before and after VES filtration in cores, and study the effect of different factors on the trend
of wettability alteration.
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2. Theory

From the oil-displacement point of view, it is important to understand the alterations in
the average wettability of reservoir rock after surfactant injection. Donaldson proposed the
USBM method to measure average wettability [29]. Sharma and Wunderlich proposed an
improved, combined Amott/USBM method [30], which could simultaneously measure the
Amott and USBM indexes in one experiment. Torsaeter used the combined Amott/USBM
method to measure core wettability, and the results showed that this combined method
was better than either the single Amott or USBM method [31]. The measurements using
the combined Amott/USBM method include six steps [30], which are as follows:

Step 1. Core sample 100% saturated (aged) with brine (or aqueous phase);
Step 2. Centrifugal oil displacing brine (or aqueous phase);
Step 3. Spontaneous imbibition of brine (or aqueous phase) in water imbibition meter;
Step 4. Centrifugal brine (or aqueous phase) displacing oil;
Step 5. Spontaneous imbibition of oil in oil imbibition meter;
Step 6. Centrifugal oil displacing brine (or aqueous phase).

When measuring initial wettability, simulated reservoir brine is used to age the core.
When measuring the effect of the VES, the aqueous phase is the VES solution. All the
measurement steps mentioned above are shown in Figure 1.
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Figure 1. Combined Amott/USBM measurement process.

In Figure 1, the corresponding area (dotted line area A1 and A2) of oil and brine
(or aqueous-phase) displacing curves were applied to calculate the USBM value, while the
spontaneous-imbibition volume, and the total volumes of brine (or aqueous-phase) and
oil displacing, were used to calculate the Amott index. The advantage of this method is
that it takes the alteration of saturation into account when zero capillary pressure occurs.
Additionally, the system can be determined to be unevenly wetted. The relevant calculation
formulas are as follows [3,30,31]:

Iw =
Qw1

Qw1 + Qw2
(1)

where Iw is the water displacement ratio; Qw1 is the volume of oil displaced by spontaneous
imbibition of water; Qw2 is the volume of oil displaced in the centrifuge.

Io =
Qo1

Qo1 + Qo2
(2)

where Io the is the oil-displacement ratio; Qo1 the is volume of water displaced by sponta-
neous imbibition of oil; Qo2 is the volume of water displaced in the centrifuge.

I = Iw − Io (3)
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W = log(A1/A2) (4)

where I is the Amott-Harvey wettability index; W is USBM wettability index; A1 is the area
under the oil drive curve in the USBM method; A2 is the area under brine drive curve in
the USBM method. In subsequent calculations, IB is Amott-Harvey wettability index from
brine saturation; WB is USBM wettability index from brine saturation; IV is Amott-Harvey
wettability index from VES filtration; WV is USBM wettability index from VES filtration.

The criteria of applying the combined Amott/USBM method to evaluate wettability
are shown in Table 1. The higher the absolute value of I or W, the greater the wetting
preference. As shown in Table 1, the range of the Amott index value can be subdivided
into seven wetting levels, while the USBM index can only divide the wettability into three
different types: oil-wet, neutral-wet, and water-wet.

Table 1. Wettability criteria of the combined Amott/USBM method [3,5].

Core
Wettability

Strong
Lipophilic Lipophilic

Neutral Wet

Hydrophilic
Strong

HydrophilicWeak
Lipophilic Neutral Weak

Hydrophilic

Amott (−1.0, 0.7) (−0.7, −0.3) (−0.3, −0.1) (−0.1, 0.1) (0.1, 0.3) (0.3, 0.7) (0.7, 1.0)
USBM Negative value 0 or close to 0 Positive value

3. Experimental Section
3.1. Original Oil–Water Distribution

The oil was from Karamay oilfield, and its density and viscosity were 0.82 g/cm3

and 6.1 mPa·s, respectively, at a reservoir temperature of 73 ◦C. Simulated reservoir water
(salinity 25,000 mg/L) was prepared with pure water and NaCl (Na+ 9839 mg/L and
Cl− 15,161 mg/L). An anionic VES sample was provided by Shanghai Research Institute
of Petrochemical Technology. The VES was composed of amido betaine and sodium
mesoporous acid (with a molar ratio of 3:7), the molecular structures of which are shown
in Figure 2:
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The properties of the VES solution are introduced in [24,28].
In this work, a series of homogeneous artificial slug cores were used, which were

mainly made from quartz. The artificial cores had a diameter of 3.8 cm and a length of
7.0 cm, with a porosity range of 15.99–22.16%, and air permeability of 95–2350 mD.

3.2. Experimental Procedure and Equipment
3.2.1. Effect of Injection Flow Rate

VES filtration and aging processes were performed in the core flooding system as
shown in Figure 3.

3.2.2. Imbibition Meters

Water and oil imbibition meters were used in imbibition experiments, as shown in
Figure 4.
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Figure 3. Schematic of core filtration experimental setup: (1) core holder; (2) computer; (3) oven;
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(10) six-way valve; (11) pressure sensor; (12) cylinder.
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Figure 4. Meters used for measurements of: (a) water imbibition; (b) oil imbibition.

3.2.3. Equipment for Forced Displacing

In the combined Amott/USBM test, forced displacing experiments were performed in
the centrifuge. The centrifuge used in this work was manufactured by Hukang Centrifuge
Company in Hunan, China (Figure 5), and had the maximum rotational speed of 5500 rpm.
In this work all tests were finished under the constant rotational speed of 4000 rpm.
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3.3. Combined Amott/USBM Test
3.3.1. Neutral Wetting Core Preparation

The preparation process of neutral wetting cores is as follows: (1) placing the cores
in a 73 ◦C oven and aging for 24 h, followed by saturation of core samples with dimethyl
silicone oil by the core filtration system; (2) aging the cores at 73 ◦C for 72 h with dimethyl
silicone oil; (3) flushing the aged cores with toluene for 12 h to remove dimethyl silicone
oil; (4) flushing the core with methanol for 4 h to remove toluene; (5) aging the core again
for 72 h at 73 ◦C to fully evaporate methanol in the core.

3.3.2. Initial Wettability-Index Measurement before VES Filtration

The initial wettability index of each core before VES filtration was tested using oil and
brine (25,000 mg/L), according to the Amott/USBM experimental procedure mentioned
in Section 2. In this work, the initial wettability indexes of all the cores are presented in
Table 2.

Table 2. Effect of static aging on wettability.

Core
No.

Length
(cm)

Diameter
(cm)

Permeability
(mD)

Porosity
(%)

Aging Time
(h)

Initial Wettability VES Filtration

IB WB IV WV

100-20 7.06 2.54 100 16.37 6 0.032 −0.046 0.156 0.136
100-15 6.99 2.54 103 17.34 12 0.017 −0.022 0.216 0.218
100-8 7.02 2.55 102 16.34 24 0.044 0.026 0.255 0.256
100-6 7.04 2.55 99 16.19 48 0.050 0.051 0.268 0.305
100-5 6.98 2.55 98 17.10 72 0.039 −0.012 0.278 0.289
100-3 7.04 2.55 101 18.39 168 0.035 −0.047 0.286 0.299

3.3.3. Core Aging Procedures after VES Filtration

In this section, VES solution was the aqueous phase in the combined Amott/USBM
test. Before measuring the wettability index, two types of core aging procedures were
applied after the VES filtration process, which are as follows:

• Static aging

After measuring the wettability of the core samples with brine, a VES solution with a
concentration of 5000 mg/L was injected into the core samples (Figure 2) at an equivalent
flow rate of 0.1 cm3/min, as in initial wettability measurements. After 3 PV (porous
volume) of VES solution filtration, the adsorption in the core approached a balance [28],
followed by static aging of the core slug in the core holder at 73 ◦C. The effect of different
static-aging times (12 h, 24 h, 48 h, 72 h, and 168 h) on the wettability of core plugs was
investigated. After static aging, the slug core was taken out from the core holder to measure
the wettability alteration. Besides the static-aging time, the effects of VES concentration,
filtration flow rate, and pore radius were also investigated at the static-aging time of 72 h.

• Dynamic aging

In order to investigate the difference between static aging and dynamic aging, dynamic-
aging experiments were also performed. After measuring the initial wettability of the core
samples, a VES solution with a concentration of 5000 mg/L was continuously injected into
the core samples at a flow rate of 0.1 cm3/min, for different total dynamic-aging times
(12 h, 24 h, 48 h, 72 h, and 168 h). After that, the core was taken out from the core holder to
measure the wettability alteration.

3.3.4. Wettability-Index Measurements after VES Filtration

The wettability index of each core after VES filtration was tested by the combined
Amott/USBM method as mentioned in Section 2.
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4. Results and Discussion
4.1. Effect of Aging Mode and Aging Time
4.1.1. Static Aging

Table 2 shows the parameters of core samples, and their wettability index values
before and after the VES filtration process. The static-aging time was from 6 h to 168 h.
The cores were initially neutral-wet, and the initial average wettability indexes of the cores
were IB = 0.036 and WB = −0.013. The difference in the initial maximum and minimum
indexes of the cores was low. After VES filtration and aging, the average wettability index
values increased to: IV = 0.243 and WV = 0.251. The Amott index and the USBM index were
significantly increased after VES filtration and aging. According to the criterion in Table 1,
the wettability of all cores was altered from neutral to weakly hydrophilic. Static-aging
time had an effect on wettability alteration. The longer the aging time after VES filtration,
the higher the hydrophilic wettability index. This was because with increasing time, more
VES had adsorbed on the surface of pore wall, which resulted in a more hydrophilic pore
surface. A more hydrophilic pore surface means a lower aqueous phase–solid interfacial
tension and a higher oil–solid surface interfacial tension [24], and so the mobility of the
aqueous phase is weaker, while oil mobility is enhanced. Figure 6 shows the increment
of the wettability index (Amott and USBM) at different static-aging times. Both curves
show trend to increase. The increment of the wettability index (IV-IB and WV-WB) changed
significantly within static-aging time of 72 h, and the increment over 72 h became slower.
This may be because the adsorption of the VES on the core surface was saturated, and
the adsorption efficiency became weaker [14] with the increase in static-aging time. The
results show that the increase in the wetness index tends to be stable after the static-aging
time increases to a certain extent (>72 h), which is consistent with the VES adsorption test
results [28].
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Figure 6. Wettability-index increment vs. static-aging time.

4.1.2. Dynamic Aging

For comparison, core No. 65–69 were dynamically aged by continuously filtrating VES
solution. Table 3 shows the parameters of the core samples and their wettability indexes
before and after VES filtration, with different dynamic-aging times. The initial average
wettability indexes of the cores were IB = −0.003 and WB = −0.020. The Amott and USBM
indexes increased significantly after VES dynamic aging, and the core wettability was
altered from neutral to weakly hydrophilic, or hydrophilic. After VES dynamic aging, the
average wettability index values increased to: IV = 0.367 and WV = 0.319. The longer the
VES dynamic aging time was, the stronger the hydrophilicity of the core, and the Amott
index reached up to 0.701 (hydrophilic level). Compared with Table 2, the maximum
wettability index was much higher than that obtained by static aging.
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Table 3. Effect of dynamic aging on wettability.

Core
No.

Length
(cm)

Diameter
(cm)

Permeability
(mD)

Porosity
(%)

Dynamic
Aging Time (h)

Initial Wettability VES Filtration

IB WB IV WV

100-66 7.05 2.55 98 16.16 12 0.015 −0.036 0.125 0.172
100-67 7.03 2.52 96 16.99 24 −0.050 −0.051 0.166 0.204
100-65 7.02 2.54 101 16.58 48 0.016 −0.010 0.258 0.221
100-68 7.01 2.54 102 15.99 72 0.058 0.061 0.587 0.442
100-69 6.99 2.55 95 16.12 168 −0.056 −0.065 0.701 0.556

Figure 7 shows the wettability-index increments with an increasing dynamic-aging
time. The wettability index alteration became more significant with a prolonged dynamic-
aging time. The flushing volume of the VES during dynamic aging was much greater
than 3 PVs that were injected for static-aging experiments. The wettability alteration in
dynamic aging was more significant than that of static aging, which is believed to be
caused by a higher contact degree between the VES and pore-wall surfaces in dynamic
aging [12], and higher adsorption of the VES. In a dynamic-aging process, a VES solution
is continuously injected into the core throughout the aging process, which means a more
efficient contact between VES and pore surface [14]. This is also reflected in VES flooding;
the rock wettability may alter significantly for the swept area, which was continuously
flushed by VES solution. The water wetness is significantly enhanced, which may be
particularly noticeable in the near-wellbore zone [27]. The possible mechanism for a higher
adsorption of VES is shown in Figure 8. At a certain concentration, the VES-network
micelles form in the solution. When the solution flows through the porous media under
the shear of the pore throat, the network micelle structure of VES is destroyed into small
pieces [32]. Some micelles adsorb onto the pore wall, increasing the interfacial charge, and
resulting in the enhancement of the hydrophilicity of the pore-wall surface.

Energies 2021, 14, x FOR PEER REVIEW 9 of 14 
 

 

micelles adsorb onto the pore wall, increasing the interfacial charge, and resulting in the 
enhancement of the hydrophilicity of the pore-wall surface. 

 
Figure 7. Wettability-index increments vs. dynamic-aging time. 

  

Figure 8. Wettability alteration through the pore throat in porous media: (a) before VES injection; (b) after VES flow. 

4.2. Effect of VES Concentration 
Table 4 shows the parameters of core samples and the measurement results. The av-

erage wettability of the core before VES filtration was neutral–weakly oleophilic changing 
to hydrophilic after VES filtration. The core wettability index showed an increasing trend 
when the VES concentration was lower than 3000 mg/L, but still in the neutral–weakly 
hydrophilic range. When the injected VES concentration was higher than 3000 mg/L, the 
wettability index was increased to the weakly hydrophilic range. The increment in wetta-
bility indexes as a function of VES concentration is plotted in Figure 9. Both Amott and 
USBM curves show the same trend, that the increment of the core wettability index in-
creases with increasing concentration, which is more obvious when the concentration is 
above 3000 mg/L. This may relate to the properties of VES solutions. In our previous work, 
we found that the viscosity of a VES increases with concentration. When the concentration 
is lower than 3000 mg/L, the VES has low viscosity [24], and VES solutions behave like the 
conventional EOR surfactant solution. When the concentration is above 3000 mg/L, the 
viscosity of the VES solution is significantly enhanced, which can reduce the mobility of 
VES in porous media and result in VES molecules more fully interacting with the pore 
surface, thus increasing their adsorption. In addition, the increase of VES concentration 
improves the adsorption of VES molecules onto the pore surface. As a result, the increased 
adsorption of VES results in the increase of interfacial negative charge, and the enhance-
ment of hydrophilicity of the pore wall. 

  

0 20 40 60 80 100 120 140 160 180

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

 

 Amott
 USBM

Dynamic aging time (hours)

A
m

ot
t i

nd
ex

 in
cr

em
en

t

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

U
SBM

 index increm
ent

Figure 7. Wettability-index increments vs. dynamic-aging time.

Energies 2021, 14, x FOR PEER REVIEW 9 of 14 
 

 

micelles adsorb onto the pore wall, increasing the interfacial charge, and resulting in the 
enhancement of the hydrophilicity of the pore-wall surface. 

 
Figure 7. Wettability-index increments vs. dynamic-aging time. 

  

Figure 8. Wettability alteration through the pore throat in porous media: (a) before VES injection; (b) after VES flow. 

4.2. Effect of VES Concentration 
Table 4 shows the parameters of core samples and the measurement results. The av-

erage wettability of the core before VES filtration was neutral–weakly oleophilic changing 
to hydrophilic after VES filtration. The core wettability index showed an increasing trend 
when the VES concentration was lower than 3000 mg/L, but still in the neutral–weakly 
hydrophilic range. When the injected VES concentration was higher than 3000 mg/L, the 
wettability index was increased to the weakly hydrophilic range. The increment in wetta-
bility indexes as a function of VES concentration is plotted in Figure 9. Both Amott and 
USBM curves show the same trend, that the increment of the core wettability index in-
creases with increasing concentration, which is more obvious when the concentration is 
above 3000 mg/L. This may relate to the properties of VES solutions. In our previous work, 
we found that the viscosity of a VES increases with concentration. When the concentration 
is lower than 3000 mg/L, the VES has low viscosity [24], and VES solutions behave like the 
conventional EOR surfactant solution. When the concentration is above 3000 mg/L, the 
viscosity of the VES solution is significantly enhanced, which can reduce the mobility of 
VES in porous media and result in VES molecules more fully interacting with the pore 
surface, thus increasing their adsorption. In addition, the increase of VES concentration 
improves the adsorption of VES molecules onto the pore surface. As a result, the increased 
adsorption of VES results in the increase of interfacial negative charge, and the enhance-
ment of hydrophilicity of the pore wall. 

  

0 20 40 60 80 100 120 140 160 180

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

 

 Amott
 USBM

Dynamic aging time (hours)

A
m

ot
t i

nd
ex

 in
cr

em
en

t

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

U
SBM

 index increm
ent

Figure 8. Wettability alteration through the pore throat in porous media: (a) before VES injection; (b) after VES flow.
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4.2. Effect of VES Concentration

Table 4 shows the parameters of core samples and the measurement results. The
average wettability of the core before VES filtration was neutral–weakly oleophilic changing
to hydrophilic after VES filtration. The core wettability index showed an increasing trend
when the VES concentration was lower than 3000 mg/L, but still in the neutral–weakly
hydrophilic range. When the injected VES concentration was higher than 3000 mg/L,
the wettability index was increased to the weakly hydrophilic range. The increment in
wettability indexes as a function of VES concentration is plotted in Figure 9. Both Amott
and USBM curves show the same trend, that the increment of the core wettability index
increases with increasing concentration, which is more obvious when the concentration is
above 3000 mg/L. This may relate to the properties of VES solutions. In our previous work,
we found that the viscosity of a VES increases with concentration. When the concentration
is lower than 3000 mg/L, the VES has low viscosity [24], and VES solutions behave like
the conventional EOR surfactant solution. When the concentration is above 3000 mg/L,
the viscosity of the VES solution is significantly enhanced, which can reduce the mobility
of VES in porous media and result in VES molecules more fully interacting with the pore
surface, thus increasing their adsorption. In addition, the increase of VES concentration
improves the adsorption of VES molecules onto the pore surface. As a result, the increased
adsorption of VES results in the increase of interfacial negative charge, and the enhancement
of hydrophilicity of the pore wall.

Table 4. Effect of VES concentration on wettability.

Core.
No.

Length
(cm)

Diameter
(cm)

Permeability
(mD)

Porosity
(%)

Concentration
(mg/L)

Initial Wettability VES Filtration

IB WB IV WV

100-31 7.03 2.55 96 16.15 100 −0.028 −0.015 0.043 0.036
100-32 6.99 2.55 95 16.01 1000 −0.032 −0.028 0.056 0.052
100-33 7.01 2.55 102 16.56 3000 −0.056 −0.061 0.036 0.026
100-34 7.04 2.55 101 16.19 5000 −0.015 −0.015 0.101 0.063
100-35 6.99 2.54 99 16.26 10,000 −0.068 −0.052 0.149 0.136
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Figure 9. Wettability-index increment vs. VES concentration.

4.3. Effect of VES Flow Rate

For evaluating the effect of flow rate, a constant concentration of 5000 mg/L was used.
The VES solution was filtered in the cores at different flow rates and the Amott/USBM
wettability indexes were measured after static aging for 72 h. The parameters of the core
samples and their wettability indexes are shown in Table 5. After the filtration of 5000 mg/L
VES, the wettability of all the cores was altered from weakly–neutrally lipophilic to weakly
hydrophilic. The increment in wettability indexes vs. filtration flow rate is plotted in
Figure 10. As filtration flow rate increased, the core wettability-index increment increased
slightly. This is because increasing the filtration flow rate resulted in a decrease in IPV
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and an increase in retention [28], which resulted in more interaction between VES and
pore-wall surface. Generally, the effect of the flow rate (from 0.05 to 0.5 cm3/min) was not
as significant as aging time and concentration.

Table 5. Effect of flow rate on wettability.

Core
No.

Length
(cm)

Diameter
(cm)

Permeability
(mD)

Porosity
(%)

Flow Rate
(cm3/min)

Initial Wettability VES Filtration

IB WB IV WV

100-36 7.05 2.55 100 16.23 0.05 −0.101 −0.085 0.105 0.135
100-37 6.99 2.55 101 16.16 0.10 −0.095 −0.015 0.101 0.153
100-38 7.02 2.55 98 16.51 0.30 −0.098 −0.061 0.156 0.162
100-39 7.04 2.54 102 17.11 0.50 −0.065 −0.026 0.189 0.193
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4.4. Effect of Pore Radius

For evaluating the effect of pore radius, the average pore radius of the cores were
calculated according to the measurement of gas permeability and porosity by the Kozeny-
Carman equation [33]. VES solutions with a concentration of 5000 mg/L were used. The
results are shown in Table 6. The wettability index of all cores after VES filtration were
altered from initially neutral to weakly hydrophilic. Figure 11 shows the plots of the
wettability-index increments as a function of filtration pore radius. Both the Amott and
the USBM indexes showed a trend of slightly increasing with increasing pore radius. The
experimental results confirm that the surface effect caused by the difference in pore radius
can affect the wettability [10]. As the core permeability (pore radius) increased, the IPV
value of the VES decreased, and the retention increased in the core [28], which resulted in
more contact between the VES and the pore wall surface. As a consequence, wettability
was altered to be more water-wet. Nevertheless, the permeability (pore radius) change did
not induce a significant alteration of average wettability.

Table 6. Effect of pore radius on wettability.

Core
No.

Length
(cm)

Diameter
(cm)

Permeability
(mD)

Porosity
(%)

Pore Radius
(µm)

Initial Wettability VES Filtration

IB WB IV WV

50-1 7.01 2.54 46 9.56 1.96 −0.016 −0.018 0.096 0.053
100-34 7.04 2.55 101 16.19 2.23 −0.015 −0.015 0.101 0.063
300-5 7.11 2.55 316 18.15 3.73 0.006 −0.010 0.106 0.066

1000-1 7.04 2.55 1156 20.53 6.71 −0.005 −0.008 0.116 0.081
2000-1 7.06 2.55 2350 22.16 9.21 0.019 −0.013 0.135 0.086
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5. Conclusions

The average core wettability alteration before and after VES filtration was investigated
using initially neutral cores. The results showed that all neutral cores were altered to be
more water-wet after VES filtration, and the variation trend in Amott and USBM indexes
was similar. Dynamic aging induced a more significant wettability alteration than static
aging. As the concentration of VES increased, the viscosity of the VES solution increased
rapidly, and this, in turn, increased the adsorption of VES in the core, which promoted the
overall wettability of the core to become more hydrophilic. When increasing the filtration
flow rate, some high viscosity VES aggregates are destroyed by shear, which results in a
decrease in IPV and more retention in the core [28]. As a consequence, more interaction
between the VES and pore-wall surface occurs, which alters the wettability of core to
become more hydrophilic. In higher permeability cores, the IPV reduction allows the VES
to remain in more pores, which slightly alters the overall wettability of the core to become
more hydrophilic.
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