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Abstract: A low-carbon economy is the most important requirement to realize high-quality inte-
grated development of the Yangtze River Delta. Utilizing the following models: a super-efficiency
slacks-based measure model, a spatio-temporal correlation model, a bivariate LISA model, a spatial
econometric model, and a geographically weighted random forest model, this study measured urban
industrial eco-efficiency (IEE) and then analyzed its influencing effects on carbon emission in the
Yangtze River Delta from 2000 to 2017. The influencing factors included spatio-temporal correlation
intensity, spatio-temporal association type, direct and indirect impacts, and local importance impacts.
Findings showed that: (1) The temporal correlation intensity between IEE and scale efficiency (SE)
and carbon emissions exhibited an inverted V-shaped variation trend, while the temporal correla-
tion intensity between pure technical efficiency (PTE) and carbon emissions exhibited a W-shaped
fluctuation trend. The negative spatial correlation between IEE and carbon emissions was mainly
distributed in the developed cities of the delta, while the positive correlation was mainly distributed
in central Anhui Province and Yancheng and Taizhou cities. The spatial correlation between PTE and
carbon emissions exhibited a spatial pattern of being higher in the central part of the delta and lower
in the northern and southern parts. The negative spatial correlation between SE and carbon emissions
was mainly clustered in Zhejiang Province and scattered in Jiangsu and Anhui provinces, with the
cities with positive correlations being concentrated around two locations: the junction of Anhui and
Jiangsu provinces, and within central Jiangsu Province. (2) The direct and indirect effects of IEE on
carbon emissions were significantly negative, indicating that IEE contributed to reducing carbon
emissions. The direct impact of PTE on carbon emissions was also significantly negative, while its
indirect effect was insignificant. Both the direct and indirect effects of SE on carbon emissions were
significantly negative. (3) It was found that the positive effect of IEE was more likely to alleviate the
increase in carbon emissions in northern Anhui City. Further, PTE was more conducive to reducing
the increase in carbon emissions in northwestern Anhui City, southern Zhejiang City, and in other
cities including Changzhou and Wuxi. Finally, it was found that SE played a relatively important
role in reducing the increase in carbon emissions only in four cities: Changzhou, Suqian, Lu’an,
and Wenzhou.

Keywords: industrial eco-efficiency; carbon emissions; spatio-temporal correlation; spatial
econometric model; Yangtze River Delta

1. Introduction

The rapid economic development of China, which has been characterized by indus
trialization-based urbanization, consumes large amounts of fossil energy, making China
the main global CO2 emitter [1–3]; thus, the country suffers severe pressure from the
international community to reduce carbon emissions. Since China’s rapid industrialization
is still developing, its high proportion of secondary industries, characterized by high
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pollution, high emissions, and high energy consumption, contributes the majority of carbon
emissions [4,5]. Meanwhile, China’s traditional industrial structure has been identified as
the main reason for the overall increase in carbon emissions [6]. In the context of Chinese
efforts to construct an ecological civilization and China’s green commitment to building a
cleaner and more beautiful world, green, circular, and low-carbon development measures
have become inherently important strategies to promote high-quality and sustainable
development. These are considered effective, practical measures to achieve peak carbon
emission goals by 2030 and carbon neutrality by 2060. As such, the continuous adjustment,
optimization, and transformation of industrial structure should be oriented towards green,
ecological, and environment-friendly approaches to reduce industrial pollutant emissions
and improve industrial eco-efficiency (IEE) [7,8]. This provides an adequate rationale for
considering the impacts of IEE.

As the region with the fastest growing and most developed urbanization and industry
in China, heavy industry and related economic structures predominate in some areas of
the Yangtze River Delta, resulting in a continuous increase in energy consumption and
large scale carbon emissions. With the aim of improving green and high-quality integrated
development of the Yangtze River Delta, the gradual decoupling of carbon emissions
from economic growth has become an important issue. Hence, this study analyzed the
spatio-temporal correlation characteristics between carbon emissions and IEE, as well as
the effects of IEE on carbon emissions, for cities located in the Yangtze River Delta.

The paper is structured as follows: In Section 2, the literature related to the subject of
our research is introduced. Section 3 introduces the methods and data sources, including
the multidimensional evaluation index of IEE and the spatial econometric methods used in
analyzing the effect of IEE on carbon emissions. Section 4 presents the results, including
panel gray correlation characteristics, spatio-temporal association patterns, spatial effects,
and local importance analysis of the effect of IEE. Finally, Section 5 provides the conclusions
and recommendations of the study.

2. Literature Review

General eco-efficiency is defined as the effectiveness of producing maximum economic
outputs together with minimizing natural resource and environmental degradation [9,10].
Due to the flexibility and generality of the concept, eco-efficiency has become a popular
quantitative indicator of sustainable development and has been widely applied to various
areas of environmental and ecological impact assessment, such as products [11,12], sec-
tors [13,14], and industries [15–17]. Following the core idea of eco-efficiency [18–20], IEE
has the dual goals of industrial economic growth and industrial carbon emissions reduction,
effectively uniting the material exchange and energy conversion of industrial ecosystems.
Further, IEE also couples the subsystems of industrial economy, energy consumption,
and environment impact, and accommodates industrial development and resource and
environmental protection [21–23]. For these reasons, IEE has become an effective indicator
to measure the green and ecological levels of industrial development and has been used as
a representative index to evaluate the coordination between industrial development and
protection of the environment. Therefore, improving IEE may be a more feasible approach
for reduction in carbon emissions compared with other carbon reduction tactics.

The measurement methods associated with eco-efficiency have gradually developed
from a single ratio model into complex simulation models, including the ecological foot-
print model, life cycle accounting, stochastic frontier analysis, the environmentally sus-
tainable value model, and the environmentally extended input-output model [13,24–26].
Notably, due to its advantages of requiring neither a specific functional form nor explicit
weights to aggregate the indicators [10,27], the nonparametric data envelopment analysis
(DEA) technique has become the most commonly used method to handle the multiple
inputs and outputs of efficiency measurement, both flexibly and effectively [28]. To better
adapt to the complexity and multi-dimensionality of regional ecosystems, the original
DEA model has been further improved to produce the super-efficiency slacks-based mea-
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sure (Super-SBM) model, which deals with the undesirable outputs and indistinguishable
efficiency ranks of decision-making units (DMUs) [29,30]. By incorporating undesirable
outputs, the Super-SBM model is more applicable to evaluating IEE that considers not
only the environmental performance of industrial production, but also embodies industrial
productivity under environmental constraints [19,24,31,32].

Existing studies have theoretically and empirically analyzed the impacts of multiple
socio-economic factors including economic growth [33,34], foreign direct investment [35,36],
and trade [37,38], as well as policy factors, including policies on local environmental ex-
penditures [39], environmental regulation [40,41], and carbon tax [42], etc. Other targets of
analysis have included population factors such as size [43,44] and density [45,46], as well
as urbanization [47,48], and technical factors, such as research and development invest-
ment [5,49], and green technology innovation [50–52] applied to carbon performance in
China. Meanwhile, in terms of the effects of industry, several factors have been identified,
such as the rise in the proportion of secondary industries, significantly promoting carbon
intensity [53], industrial agglomeration contributing to reducing industrial carbon intensity
through economy of scale, and technology spillover [54], and the upgrading and optimiza-
tion of industrial structure to promote energy conservation and carbon reduction [55–57]. It
has also been shown that industrial green transformation and adjustment has significantly
reduced carbon intensity [58]. This wide basis of research provides multi-mechanistic and
multi-dimensional indicator selection criteria with which to analyze the influencing factors
of carbon intensity. Based on the STIRPAT (stochastic impacts by regression on popula-
tion, affluence, and technology) model and the availability of data, six control variables
were selected to detect the direction and degree of their impact on carbon emissions, as
described below.

There is a bidirectional relationship between economic growth and carbon emissions.
Carbon emissions are considered to be the consequence of production processes and
economic activity [3], in that increase (or decrease) of economic growth will lead to increase
(or decrease) in carbon emissions. However, the magnitude of the effect of economic growth
on carbon emissions may be differentiated at different levels of the economy. In addition,
the negative externalities generated by carbon emissions will lower economic growth
performance [59]. Therefore, per capita gross domestic product (PGDP) was selected as an
indicator to characterize economic development level.

Considering another aspect of the economy, the local fiscal expenditure on envi-
ronmental protection, education, science, and technology can play a role in improving
environmental quality, enhancing residents’ awareness of environmental protection, and
promoting the progress of energy-saving technology, thereby reducing carbon emissions.
However, it can be anticipated that differences in social and economic conditions in differ-
ent regions will impair the carbon emissions reduction effect of fiscal expenditure across
the regions [39]. Therefore, the proportion of local fiscal expenditure in GDP was selected
as an indicator to reflect the impact of fiscal expenditure on carbon emissions (denoted
as FIN).

In terms of foreign economic factors, the impact of foreign investment on regional
environmental conditions can be generally divided into two categories. The first is based
on the “pollution heaven” hypothesis, which holds that developed countries transfer
heavy polluting industries and high carbon industries to developing countries under a
low environmental regulation threshold [3]. The second is the proposed “pollution halo”
hypothesis, which holds that when foreign-funded enterprises in developed countries move
to host countries, they also bring with them greener and cleaner production technologies
that improve local production and environmental protection levels, thus helping to reduce
carbon emissions [3]. Therefore, the amount of completed foreign direct investment in
each city (FDI) was used as an indicator to represent the status of foreign direct investment,
while the average annual price of the renminbi (RMB) exchange rate over a period of years
was converted to RMB as a unit, and the GDP index was adjusted to offset the effect of
price changes.
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It is known that as urbanization accelerates, many economic activities tend to aggre-
gate, while the construction of large-scale infrastructure emerges and energy consump-
tion increases, which improves urban carbon intensity. Meanwhile, urbanization brings
economies of scale and for guiding green energy consumption and building ecological
towns, urbanization effectively contributes to carbon emissions reduction [60,61]. There-
fore, urbanization (URB) was selected as an important indicator and was derived using the
proportion of urban population to permanent population.

In terms of the effect of environmental regulation on carbon emissions, there are two
opposite views. On the one hand, the government promotes the effect of “forced emission
reduction” through a series of command-and-control environmental regulations, which
shuts down enterprises with high pollution and high energy consumption or forces them
to reduce production scale or to use low-carbon technology. Forced emission reduction
is also enacted through a series of market-motivated environmental regulations, which
encourage enterprises to use environmental protection technologies and raises energy
costs of enterprises by imposing emission taxes, environmental protection taxes, pollution
treatment subsidies, etc., thus reducing energy consumption intensity and carbon emissions
to a certain extent [62,63]. On the other hand, according to the “green paradox” theory,
proposed by Sinn [64], measures aiming to reduce carbon emissions that tax fossil fuel
consumption to develop renewable energy have been found to reduce global demand
for fossil fuels and undermine the wealth maximization of resource owners. When it is
anticipated that such measures could hurt the future price of their resources, resource
owners accelerate the extraction of their resources, which results in higher rates of fossil
fuel extraction in the short term and increases carbon emissions in the short term. Therefore,
this study used the ratio of total environmental governance investment to regional GDP to
characterize environmental regulation (denoted as ENV).

In terms of technology, technological progress has positive and negative effects on
carbon emissions through the development of production and emission reduction tech-
nologies. Production technology progress improves the productivity of factors and energy
efficiency, while emission reduction technology progress promotes the reduction in emis-
sion intensity [65,66]. However, due to the energy rebound effect and the effects of an
extensive economic growth mode, technological progress has been found to stimulate
economic activity and increase energy consumption, in turn offsetting energy savings
achieved by improved efficiency [67–69]. Therefore, the number of patent applications
granted was selected to characterize technological progress (denoted as PAT).

As the first law of geography states that everything is related to everything else, and
near things are more related than distant things [70], it can be said that spatial relationships
are highly consequential in socio-economic and resource environment analyses [71,72].
It has been confirmed that spatial dependence effects exist in terms of considering re-
gional eco-efficiency [73] and carbon emissions performance [74]. Accordingly, spatial
autocorrelation phenomena can be judged by using exploratory spatial data analysis, while
specific causal relationships can be explained using the spatial econometric model [75,76].
Given the obvious core-periphery characteristics of its socio-economic development, the
socio-economic phenomena of the Yangtze River Delta urban agglomeration show not only
temporal correlation but also spatial correlation to some extent. Hence, it is reasonable to
use the bivariate LISA [77,78] to reveal the spatial heterogeneous relationships between
local carbon emissions and nearby IEE, as well as to use the spatial econometric model to
estimate the effects of IEE on carbon emissions.

In summary, it can be stated that many related aspects in the measurement of carbon
emissions, the factors influencing carbon emissions, and the connotation and measurement
of IEE have been studied. However, deficiencies in our understanding of the topics
remain. First, although related studies have analyzed multiple effects of industry on
carbon emissions, almost no attention has been paid to the impacts of IEE, which not only
integrates green processes and environmental protections but also embodies the synthesis
effect of industrial scale and technological progress. As such, it is unknown whether the
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improvement in IEE and its decomposition terms promote or impede carbon emissions.
Second, few studies have explored the spatio-temporal association effects between IEE
and carbon emissions among different cities, such as the spatial spillover effect of IEE on
carbon emissions from adjacent cities, or the spatio-temporal heterogeneity effect of IEE on
carbon emissions among different cities. These questions deserve close attention, since the
answers are not only important for helping China to reduce carbon emissions, but also for
providing a reference for industrializing regions.

3. Materials and Methods
3.1. Super-SBM Model

The Super-SBM model has the advantages of avoiding radial and oriented deviation,
incorporating undesirable outputs into the efficiency evaluation model, and discriminat-
ing between the efficient DMUs equal to 1 [79–82]. Hence, the Super-SBM model, with
undesirable outputs, better represents the nature of regional IEE evaluation.

Now we consider the industrial production process with n DUMs which uses m input
factors to produce s1 desirable outputs and s2 undesirable outputs. The three vectors
are respectively expressed as: x ∈ Rm, yd ∈ Rs1 , yu ∈ Rs2 among which x, yd, and
yud represents the inputs, desirable outputs, and undesirable outputs. The matrices of
Yd > 0, Yud > 0 are defined as X = [x1, · · · , xn] ∈ Rm×n, Yd = [yd

1, · · · , yd
n] ∈ Rs1×n, and

Yud = [yu
1 , · · · , yu

n] ∈ Rs2×n. Assume that the DMUk
(

xk, yd
k
, yud

k

)
is slacks-based-measure-

efficient. Then, the Super-SBM with undesirable outputs can be defined as:

βSE = min
1 + 1
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> 0

λ, s−, s+ ≥ 0
i = 1, 2, · · ·m; j = 1, 2, · · · n(j 6= k); r = 1, 2, · · · s1; t = 1, 2, · · · s2

(1)

where βSE is the objective function whose value can be more than 1, λj is a weighting
factor, the subscript k means a DMU whose efficiency is being estimated, and the vectors
s−, sd, and sud denote the slacks of inputs, desirable outputs, and undesirable outputs,
respectively.

The above Super-SBM model is based on the assumption of constant returns-to-scale,
thus by adding the restrictions ∑n

j=1, 6=k wj = 1, it can convert a variable return to scale.
Further, the overall IEE factor can be decomposed into pure technical efficiency (PTE) and
scale efficiency (SE) [83]. The factor PTE refers to the efficiency of resource allocation,
utilization, pollution control, management, and production technology. The factor SE refers
to the efficiency of the scale of resources, in terms of measuring whether the DMUs are
the optimal production scale [84]. Using MaxDEA Ultra software, the IEE, PTE, and SE of
41 cities in the Yangtze River Delta urban agglomeration from 2000 to 2017 were obtained.

3.2. Panel Gray Correlation Model

The gray correlation model is a mature and effective tool to deal with uncertainty
systems that have only “partial information known” and which are influenced by mul-
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tiple factors [85,86]. However, being restricted by either the single object dimension or
time dimension, the traditional model cannot overcome the defects of inconsistent gray
relational order caused by the change of object ranking in the panel data. To better con-
sider the differences of object and time dimensions of the panel data, Dang et al. [87] put
forward the panel gray correlation model, which introduces incremental differences to
investigate the development characteristics of different indicators in each period from
the time dimension. The new model also utilizes deviation differences to measure the
distribution characteristics of different indicators in each object from the object dimension
and extracts the relative differences of development degrees and the direction of different
indicators in both object and time dimensions in order to judge the extent of positive and
negative correlation. Due to the complexity of the derivation process needed to calculate
the incidence coefficient, the specific formula expression is omitted from this paper and
can be referred to in Dang et al. [87].

3.3. Bivariate LISA Model

The bivariate LISA statistic is defined as [72,78]:

BLISA = N
N

∑
i=1

N

∑
j 6=i

wijzce
i ziee

j /
N

∑
i=1

N

∑
j 6=i

wij (2)

where N is the total number of cities; wij is spatial weight matrix based on queen contiguity;
zce

j is the z-score standardization of carbon emissions in city i; and ziee
j is the z-score

standardization of industrial eco-efficiency in city j. The heterogeneous clusters from the
local bivariate LISA can be divided into four types, namely, HiHj, LiLj, LiHj, and HiLj. If
the city is identified as Highcarbon emission-HighIee, it means that its carbon emissions are
significantly higher than the average value of all cities, and the industrial eco-efficiency
of adjacent cities is significantly higher than the average value of all cities. This means
that the city has a higher level of carbon emissions and is surrounded by cities with higher
industrial eco-efficiency.

3.4. Spatial Econometric Model

The general form of the spatial econometric model is known as the spatial Durbin
model (SDM), which is hereafter used in the text, and can be defined as follows [72,75]:

yit = λ
n

∑
j=1

wijyjt + βXjt +
n

∑
j=1

wijXijtγ+ci + at + εit, εit ∼ i.i.d(0, δ2) (3)

where yit is the carbon emission for city i at year t; n is the total number of cities; wijyjt is
the spatial lag of carbon emission; Xit is the independent variables; β is the corresponding
coefficients for Xit; λ is the spatial spillover of adjacent regional carbon emission; is the
corresponding spatial lag coefficient of the adjacent regional independent variables; is an
independently and identically distributed error term for i and t with zero mean and a
variance of σ2; and ci and αt denote the spatial and temporal effects, respectively. Before
the model is estimated, the hypotheses H0: γ = 0 and H0: γ + λβ = 0 should be performed
to test whether SDM can be simplified to the spatial lag model (SLM) and the spatial error
model (SEM), respectively. These tests can adopt the form of a Wald or LR test.

For estimating the outcome of the SDM, note that the estimated coefficient of the
explanatory variables has no significance; however, the direct and indirect effects of the
explanatory variables should be fully understood as follows: The direct effect refers to
the influence of the change of independent variables in adjacent regions on the local area,
while the indirect effect refers to the influence of the change of independent variables in a
certain region on its neighboring areas [74].
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3.5. Data Sources

Different from the conventional econometric model, which uses remote sensing light
to estimate carbon emissions, Chen et al. [88] adopted variant coefficient models and the
normalized difference index to estimate the carbon emissions of 334 prefecture-level cities
in China from 1992 to 2017. Their method was based on more accurate and easier-to-
understand techniques of inter-calibration of the DMSP/OLS (Defense Meteorological
Program Operational Line-Scan System) and NPP/VIIRS (National Polar-orbiting Partner-
ship Visible Infrared Imaging Radiometer Suite) datasets, and was found to be effective for
describing long-term, full-coverage CO2 data at the scale of prefecture-level cities.

In this study, based on a related IEE evaluation system and data availability, four
indicators were selected to characterize industrial land, labor, electricity, and water con-
sumption. Industrial added value was selected as the expected output indicator, while
industrial waste-water discharge, exhaust emissions, and smoke and dust emissions were
the undesirable output indicators. The evaluation system components for input-output
and variable description are listed in Table 1.

Table 1. The evaluation indicators of industrial eco-efficiency (IEE).

Primary Indices Secondary Indices Unit Max Min Mean Stdev

Input indicators

Industrial land area Ten thousand tons 736.8 1.5 50.61 91.82
Industrial employee Ten thousand people 629 11.4 112.83 91.29
Industrial electricity kW·h 1202.04 1.63 128.83 168.12

Industrial water
consumption Ten thousand tons 320,400 978 25,567.98 47,975.59

Expected output
indicator Industrial added value Ten thousand yuan 7606.45 15.1 826.89 1030.34

Undesirable
output indicator

Industrial waste water
discharge Ten thousand tons 85,735 548.9 12,930.35 15,649.08

Industrial exhaust
emissions Ten thousand tons 17,041 14 1880.61 2483.51

Industrial smoke and
dust emissions Ten thousand tons 3159 3.4 525.26 573.73

All datasets used in determining the indicators of IEE and related independent vari-
ables were obtained from the Jiangu Statistical Yearbook (2001–2018), Anhui Statistical
Yearbook (2001–2018), Zhejiang Statistical Yearbook (2001–2018), China Statistical Yearbook
for Regional Economy (2001–2014), the Statistical Bulletins of National Economic and
Social Development for each city, and the statistical websites of certain provinces and cities
compiled by the government during 2001–2018. According to the administrative division
in 2020, the data of Chaohu City before 2011 were incorporated into Hefei, Ma’anshan,
and Wuhu cities. The final determined number of cities for this study was 41. In order to
account for inflation, relevant economic data such as the industrial added value, GDP, and
financial expenditure were converted based on the year 2000.

4. Results
4.1. Panel Gray Correlation between IEE, PTE, SE, and Carbon Emissions

Before calculating the correlation coefficients between IEE, PTE, SE, and carbon emis-
sions, the logarithmic operator was used to preprocess indicators of each city, then both
the spatial and temporal correlation coefficients were obtained, and are visualized in
Figures 1 and 2, respectively. As can be seen from Figure 1, the temporal correlation in-
tensity between IEE and carbon emissions exhibited an inverted V-shaped fluctuation
trend, and the correlation coefficient increased continuously from 0.008 in 2000 to 0.190 in
2008, then continuously dropped, reaching 0.026 in 2017, with an annual average value of
0.043. This implies that IEE exerted first an enhanced, and then weakened, positive impact
on carbon emissions, but that the impact was relatively low. The temporal correlation
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intensity between PTE and carbon emissions was generally below zero with an annual
average value of −0.051 and exhibited a W-shaped fluctuation trend. This illustrates that
the improvement of PTE could effectively promote the reduction in carbon emissions.
The temporal correlation coefficient between SE and carbon emissions was generally sim-
ilar to the trend between IEE and carbon emissions and exhibited an inverted V-shaped
fluctuation trend with an annual average value of 0.088, implying that the improvement
in IEE was dependent on SE; meanwhile, SE was positively correlated with increase in
carbon emissions.
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The spatial correlation coefficient was divided into four intervals: below 0, and three
equal intervals from 0 to the maximum value of 0.503, 0.630, and 0.496, respectively. It
can be seen from Figure 2 that the average spatial correlation intensity between IEE and
carbon emissions was 0.104. The negative correlation cities accounted for 31.71% and were
mainly clustered in southern Zhejiang Province and southern Jiangsu Province. These
are developed cities that followed green industrial production and paid more attention
to ecological environmental protection, which contributed to reducing carbon emissions.
While the positive correlation cities accounted for 68.29%, with the high correlation intensity
cities mainly being distributed in central Anhui Province, and Yancheng and Taizhou cities.
In order to speed up industrial development, these cities developed large numbers of
labor intensive and polluting low-end industries, which brought environmental damage
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and increased carbon emissions. The average spatial correlation intensity between PTE
and carbon emissions was 0.132, and the spatial pattern was higher in the central part
of the delta and lower in the northern and southern parts. The negative correlation
cities accounted for 24.39%, while the positive correlation cities accounted for 68.29%,
implying that most of the urban industrial enterprises were lagging behind in the research,
development, and use of green production and pollution control technologies, resulting in
an increase in carbon emissions. The average spatial correlation intensity between SE and
carbon emissions was −0.024. The negative correlation cities accounted for 48.78% and
were mainly clustered in Zhejiang Province and scattered in Jiangsu and Anhui provinces.
The positive correlation cities accounted for 51.22% and were mainly concentrated at the
junction of Anhui and Jiangsu provinces and within central Jiangsu Province, implying
that the improvement of SE effectively promoted carbon emissions reduction.

4.2. Spatio-Temporal Association Pattern between IEE and Carbon Emissions

Although the panel gray correlation revealed the spatio-temporal correlation between
IEE and carbon emissions, it ignored the underlying spatio-temporal association type
between IEE and carbon emissions. Hence, the bivariate LISA spatio-temporal clustering
was used to identify the association type, in order to investigate their local features more
clearly, both significant and non-significant association types in 2000, 2008, and 2017 were
visualized, as shown in Figure 3.
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In 2000, the Lcarbon emissionLIEE type was mainly clustered in the northern cities of
Anhui, and scattered in Nanjing, Suzhou, Suqian, Nantong and Jiaxing city, which had
less industry-intensive economies with long-term economic development being charac-
terized by low energy consumption and low emissions. In 2008, the spatial scope of
Lcarbon emissionLIEE-type cities further expanded with Wuxi, Lianyungang, Wenzhou, Jin-
hua, Hefei, and Tongling city joining the Lcarbon emissionLIEE type. In 2017, the spatial pattern
of Lcarbon emissionLIEE-type cities was almost identical to that of 2008, with some minor ad-
justments. For instance, Lianyungang, Suzhou, Nantong, and Huaibei city retreated from
the Lcarbon emissionLIEE type, and Wuhu city became an Lcarbon emissionLIEE type.

In 2000, there were six cities belonging to the Hcarbon emissionHIEE type, including
Shanghai, Xuzhou, Huai’an, Zhoushan, Yangzhou, and Lishui city, with the high carbon
emissions surrounded by high IEE cities, which was due to rapid urbanization and eco-
nomic growth that promoted carbon emissions. In 2009, except for removal of Yangzhou
from the Hcarbon emissionHIEE type, other cites remained as Hcarbon emissionHIEE type, and
Zhenjiang and Taizhou became the Hcarbon emissionHIEE type. In 2017, the spatial pattern of
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the Hcarbon emissionHIEE type was generally similar to that of 2008, but Lishui exited from the
Hcarbon emissionHIEE type, and Yangzhou once again became the Hcarbon emissionHIEE type.

The number of cities belonging to the Hcarbon emissionLIEE type was relatively small,
and mainly centered around the Hcarbon emissionHIEE type, with Changzhou, Yancheng, and
Huainan remaining as the Hcarbon emissionLIEE type in 2000, 2008, and 2017.

In 2000, the Lcarbon emissionHIEE type cities were mainly distributed in Zhejiang and
Southern Anhui, which benefited from the improvement in low-carbon transportation and
infrastructure construction, the implementation of low-carbon life, and the promotion and
development of forest carbon sequestration, thus, effectively improving the low-carbon
production living ecological space. In 2008, the Lcarbon emissionHIEE type cities tended to
contract to the northern Zhejiang and southern Anhui areas. In 2017, the spatial pattern
of Lcarbon emissionHIEE type cities was generally similar to that of 2008, with Lianyungang,
Nantong, Huaibei, and Lishui city evolving into the Lcarbon emissionHIEE type.

4.3. The Spatial Effect of IEE, PTE, and SE on Carbon Emissions

Using Stata15.0 software, first, the pooled ordinary least squares (OLS) regression
was estimated to diagnose the spatial autocorrelation of OLS residuals. The Moran’s I test
of OLS residue was 5.377, significant at the 1% statistic level, illustrating a strong spatial
effect in the OLS residue. Second, the Lagrange Multiplier (LM) and Robust LM tests were
used to evaluate whether the SLM model or the SEM model was more applicable than the
non-spatial effect model. The test results are shown in Table 2. The LM (lag), LM (error),
and the Robust LM (error) tests were significant at the 1% level, and the Robust LM (lag)
was significant at the 10% level. In comparison, the value of the LM (error) and Robust LM
(error) tests were higher than those of LM (lag) and Robust LM (lag) tests, implying that
the SEM model was more suitable for capturing the spatial effects of the model. Since both
the SLM and SEM models are non-nested spatial models, Wald and likelihood ratio (LR)
tests were then needed to test whether the SDM model could be simplified to the SLM or
SEM model. The statistical results determined that the SDM model could be used instead
of either the SLM or SEM models. Moreover, the Hausman test showed that the fixed effect
should be considered. Hence, the SDM model including the fixed effect was selected to
explain the impact of IEE and its decompression terms on carbon emissions.

Table 2. Test results of spatial model.

Test Statistics Test Statistics

LM (lag) test 71.181 *** LR test spatial lag 93.89 ***
Robust LM (lag) test 2.978 * LR test spatial error 133.23 ***

LM (error) test 549.296 *** Wald test spatial lag 68.92 ***
Robust LM (error) test 481.094 *** Wald test spatial error 92.87 ***

Hausman test −115.18

Note: *** Significant at the 0.01 level; ** Significant at the 0.05 level; * Significant at the 0.1 level.

The estimated results of the impacts of IEE, PTE, and SE on carbon emissions were
obtained (Table 3). The results showed that the spatial autocorrelation coefficients of
carbon emissions were significantly positive at the 1% significance level, implying that the
increase in carbon emissions in neighboring cities exerted a positive spatial spillover effect
on local carbon emissions, further revealing the importance of joint control for regional
carbon emissions.
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Table 3. Regression results of spatial Durbin models.

SDM-IEE SDM-PTE SDM-SE

IEE −0.035 (−2.64) ***
PTE −0.036 (−1.83) *
SE −0.033 (−1.89) *

PGDP 0.159 (6.90) *** 0.154 (6.70) *** 0.148 (6.62) ***
FIN 0.079 (7.69) *** 0.081 (7.86) *** 0.081 (7.83) ***
FDI −0.003 (−0.60) −0.004 (−0.80) −0.004 (−0.72)
URB 0.064 (1.59) 0.067 (1.67) * 0.065 (1.62)
PAT 0.025 (3.57) *** 0.025 (3.59) *** 0.027 (3.95) ***
ENV −0.008 (−1.35) −0.008 (−1.40) −0.008 (−1.44)

W×IEE −0.021 (−0.87)
W×PTE 0.001 (0.03)
W×SE −0.042 (−1.29)

W×PGDP −0.112 (−3.48) *** −0.112 (−3.46) *** −0.111 (−3.53) ***
W×FIN 0.012 (0.83) 0.013 (0.90) 0.011 (0.78)
W×FDI −0.004 (−0.45) −0.006 (−0.68) −0.005 (−0.61)
W×URB −0.236 (−5.34) *** −0.235 (−5.35) *** −0.243(−5.48) ***
W×PAT −0.015 (−1.71) * −0.017 (−1.85) * −0.013 (−1.38)
W×ENV 0.023 (1.76) * 0.022 (1.69) * 0.022 (1.70) *

rho 0.671 (24.48) *** 0.677 (25.26) *** 0.667 (23.99) ***
R2 0.958 0.957 0.958

Sigma2 0.004 0.004 0.004
Log likelihood 936.483 933.938 934.999

Note: *** Significant at the 0.01 level; ** Significant at the 0.05 level; * Significant at the 0.1 level.

For the SDM model, the estimated coefficients of explanatory variables could not
directly reflect their marginal effect; moreover, it was difficult to accurately measure the
direct influence of independent variables on the dependent variable. Therefore, a partial
differential equation was used to calculate the direct effects, indirect effects, and total effects
of each independent variable, as shown in Table 4.

Table 4. Direct, indirect, and total effects of spatial Durbin models.

Direct Effect Indirect Effect Total Effect

SDM-IEE SDM-PTE SDM-SE SDM-IEE SDM-PTE SDM-SE SDM-IEE SDM-PTE SDM-SE

IEE −0.046
(−2.90) ***

−0.126
(−1.95) *

−0.171
(−2.32) **

PTE −0.041
(−1.78) *

−0.069
(−0.61)

−0.110
(−0.88)

SE −0.048
(−2.27) **

−0.178
(−2.07) **

−0.226
(−2.27) **

PGDP 0.157
(7.00) ***

0.151
(6.72) ***

0.145
(6.69) ***

−0.009
(−0.12)

−0.016
(−0.22)

−0.029
(−0.41)

0.148
(1.92) *

0.135
(1.68) *

0.116
(1.55)

FIN 0.097
(9.78) ***

0.099
(10.04) ***

0.098
(9.93) ***

0.182
(6.19) ***

0.193
(6.61) ***

0.18
(6.14) ***

0.278
(8.67) ***

0.292
(9.14) ***

0.278
(8.70) ***

FDI −0.005
(−0.90)

−0.006
(−1.22)

−0.006
(−1.11)

−0.018
(−0.78)

−0.026
(−1.11)

−0.023
(−1.00)

−0.023
(−0.88)

−0.032
(−1.24)

−0.028
(−1.12)

URB 0.017
(0.47)

0.02
(0.55)

0.018
(0.48)

−0.539
(−7.67) ***

−0.541
(−7.57) ***

−0.55
(−7.9) ***

−0.522
(−7.23) ***

−0.521
(−7.05) ***

−0.533
(−7.46) ***

PAT 0.025
(3.61) ***

0.025
(3.50) ***

0.029
(4.19) ***

0.001
(0.03)

−0.004
(−0.18)

0.013
(0.67)

0.025
(1.21)

0.021
(0.91)

0.042
(1.95) *

ENV −0.003
(−0.41)

−0.004
(−0.47)

−0.004
(−0.52)

0.052
(1.30)

0.049
(1.21)

0.048
(1.22)

0.049
(1.06)

0.046
(0.98)

0.044
(0.97)

Note: *** Significant at the 0.01 level; ** Significant at the 0.05 level; * Significant at the 0.1 level.

According to Table 4, the direct effect of IEE on carbon emissions was significantly
negative at the 1% level, implying that the improvement of IEE contributed to reducing
local carbon emissions. The indirect effect of IEE on carbon emissions of neighboring
cities was significantly negative at the 10% level, indicating that the improvement in
local IEE emerged as the determinant for the reduction in local carbon emissions, and



Energies 2021, 14, 8169 12 of 19

brought a reduction in carbon emissions in surrounding cities. The overall effect of IEE
was significantly negative at the 5% level, indicating that improvement in IEE could reduce
carbon emissions. This is because the Yangtze River Delta region has striven to accelerate
the upgrade of the industrial economic growth mode and has made significant efforts to
phase out industrial enterprises with higher energy consumption and which create serious
environmental pollution. Moreover, the region has also actively implemented ecological
environmental governance policies and measures to improve the ecological environment.
Considering this, in the context of regional collaborative governance, this study shows
that the impact of IEE on carbon emissions exhibited a marked local effect and a regional
spillover effect.

The direct impact of PTE on carbon emissions was significantly negative at the 1% level,
implying that the improvement of PTE contributed to reducing local carbon emissions. In
terms of the indirect effects and total effect, PTE did not play a significant role in reducing
the carbon emissions of adjacent cities, implying that the effect of PTE was confined to
the local city. This was probably because the improvement in PTE was influenced by
management, institutions, and technology absorption capacity. Accordingly, if the function,
scale, and development concept of industrial structure in the surrounding cities were greatly
different from the local cities, the requirements for low-carbon technology application and
innovation would not be met. Moreover, there existed a certain gap between the current
PTE and the optimal technological frontier, which jointly restricted the positive spillover
effect of PTE.

Both the direct effect and indirect effect of SE on carbon emissions were significantly
negative at the 5% level, indicating that the improvement in SE would not only alleviate
local carbon emissions, but also reduce carbon emissions in the surrounding cities through
the spatial spillover effect. The overall effect of SE was significantly negative, implying the
optimal SE and the positive environmental externality of industrial agglomeration formed
by the optimal configuration of industrial production factors were conducive to mitigating
carbon emissions.

With respect to the impact of control variables on carbon emissions, the significance
and sign of each of the control variables was generally similar under the regression models
of SDM-IEE, SDM-PTE, and SDM-SE. Specifically, the direct effect of PGDP was signif-
icantly positive, but its indirect effect was negative and insignificant, illustrating that
economic development likely increased local carbon emissions but had little impact on
adjacent cities. This is probably because the high carbon-producing features of the economy
and energy structure were very prominent in the delta region. Although the economic
growth of the Yangtze River Delta region had entered the middle and late stages of rapid
industrialization development, secondary industry still dominated the economic structure
over the long term, resulting in rapid growth demand for coal, oil, natural gas, and other
fossil energy.

In terms of financial considerations, the increase in FIN not only exerted a significantly
positive impact on local carbon emissions, but also significantly increased carbon emissions
in adjacent cities. On the one hand, this was because, local governments assumed the
responsibility for financial expenditure for economic development, education, medical
care, social security, and environmental protection with limited tax resources. Under the
premise of limited financial resources, governments competed to attract more opportu-
nities to increase fiscal revenues. However, environmental protection investment was
usually large-scale and slow to take effect, and furthermore, was not used as a perfor-
mance evaluation indicator in this study. Hence, local governments were more inclined
to lowering the threshold of environmental protection and shifting to expenditure for
capital construction. On the other hand, environmental pollution had a positive externality,
in that, in the case of local governments lacking cooperation, each government would
take on free-riding to reduce its own environmental protection investment and reduce its
responsibility for protecting the environment, thereby aggravating the local and adjacent
cities’ carbon emissions.
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The direct and indirect impact of FDI on carbon emissions was negative, but not
significant, indicating that the “pollution refuge effect” was not validated in the Yangtze
River Delta region. Instead, the inflow of FDI through the pollution halo effect and
the scale effect brought an advanced production technology and management mode,
which exerted a restraining effect on carbon emissions. However, the promotion effect
of foreign investment on economic growth stimulated all cities to lower local thresholds
of environmental regulation to attract foreign investment, thereby introducing pollution-
intensive industries, which aggravated energy consumption and carbon emissions. Hence,
the negative environmental effect offset the positive environmental effect of FDI, resulting
in an insignificant impact of FDI.

The direct impact of URB on carbon emissions was positive, but not significant. This
was owing to energy consumption being the most important driving force of urbanization.
With the improvements of urbanization, increasingly more energy and resources were
consumed, which inevitably increased carbon emissions. Yet, with the construction of
resource-saving and environment-friendly urban societies, the urbanization of the delta
region gradually evolved into a new type, characterized by green production, green living
and consumption patterns, and green economic transformation. This counteracted the
positive carbon effects of urbanization, resulting in an insignificant impact. Meanwhile, the
indirect effect of URB on carbon emissions was significantly negative. This was because
the urban economy development required large amounts of funding and infrastructure
construction. However, due to urban competition, the more resources a city gathered,
the less resources its surrounding cities possessed. This effect, therefore, inhibited the
development of urbanization in neighboring regions and thus contributed to reducing
carbon emissions.

The direct impact of PAT on carbon emissions was significantly positive, while the
indirect impact of PAT on carbon emissions was insignificant. These effects were because
the related technological progress was not biased towards energy conservation or emissions
reduction, but rather toward product innovation and productivity improvement. This
promoted the expansion of enterprise-scale progress and led to an increase in carbon
emissions intensity. In addition, the introduction and application of low-carbon technology
increased short-term enterprise production costs, which was not conducive to enterprises
participating in market competition.

The direct effect of ENV on carbon emissions was negative, but not significant, while
the indirect impact of ENV on carbon emissions was positive and insignificant. These
effects were because there remained prominent contradictions between regional economic
development, environmental governance, and energy consumption in the short term.
Although effective environmental regulation could force enterprises to invest in measures
to reduce carbon emissions, such as pollution control, production process improvement,
and environmental technology innovation, the inhibition emission effect was ultimately
offset by the green paradox effect. That paradox effect was created from the expansion of
reproduction to compensate for the increased cost arising from short-term environmental
regulations [64], which was thereby not conducive to long-term low-carbon development.

4.4. Analysis of the Local Importance of IEE, PTE, and SE on Carbon Emissions

The SDM model revealed the overall impacts of IEE, PTE, and SE, but without consid-
ering their local effects. Therefore, to further explore the importance of IEE, PTE, and SE
at the local scale, the geographically weighted random forest regression (GRF) [89] was
applied to determine the local importance effects of IEE, PTE, and SE to the increase in
carbon emissions. The values were expressed in the form of percentage increase in mean
square error (%IncMSE); the higher the value of %IncMSE, the greater the importance of
a given variable. It can be seen from Figure 4 that the importance of IEE, PTE, and SE
varied dramatically in space. The positive effect of IEE had obvious spatial heterogeneity
on the increase in carbon emissions, in that its importance increased from the east to
west. Compared with other cities in Jiangsu and Zhejiang provinces, the improvement
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of IEE was more likely to alleviate the increase in carbon emissions in cities clustered in
northern Anhui Province. Generally, the importance of PTE exhibited a similar spatial
pattern compared with IEE, in that cities with a higher importance effect were mainly
clustered in northwestern Anhui Province, in south Zhejiang Province, and were scattered
in a few cities, such as Changzhou and Wuxi. While SE was not a relatively important
factor affecting the increase in carbon emissions, its importance distribution was more
dispersed in space, with relatively high importance in Changzhou, Suqian, Lu’an, and
Wenzhou cities.
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5. Conclusions and Recommendations

The spatial-temporal evolution and formation mechanisms of IEE and carbon emis-
sions have been extensively discussed, and the impact of industrial production on carbon
emissions has been investigated from single dimensions of industrial production indica-
tors. However, the relationship between IEE and carbon emissions has not received the
attention it deserves, and the exact link between IEE and carbon emissions has not been
systematically examined. Hence, we used the Super-SBM model to measure IEE and its
decomposition terms for 41 cities in the Yangtze River Delta from 2000 to 2017. Based on
these measurements, the impacts of IEE and its decomposition terms on carbon emissions
were further analyzed from spatio-temporal correlation and heterogeneous perspectives.
The main conclusions are as follows:

(1) The temporal correlation intensity between IEE and SE and carbon emissions exhib-
ited an inverted V-shaped variation trend, while the temporal correlation intensity
between PTE and carbon emissions exhibited a W-shaped fluctuation trend. In space,
the negative correlation between IEE and carbon emissions was mainly distributed in
the developed cities of the Yangtze River Delta, while the positive correlation cities
were mainly distributed in central Anhui Province, and Yancheng and Taizhou cities.
The spatial correlation intensity between PTE and carbon emissions exhibited a spatial
pattern of being higher in the central part of the delta and lower in the northern and
southern parts. The negative spatial correlation between SE and carbon emissions was
mainly clustered in Zhejiang Province and scattered in Jiangsu and Anhui provinces,
with the positive correlation cities being concentrated along the junction of Anhui
and Jiangsu provinces and within central Jiangsu Province.

(2) The direct and indirect effects of IEE on carbon emissions were significantly negative,
implying that the improvement in IEE contributed to reducing carbon emissions. The
direct impact of PTE on carbon emissions was significantly negative, while its indirect
effect was insignificant. Both the direct and indirect effects of SE on carbon emissions
were significantly negative.
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(3) The importance impacts of IEE, PTE, and SE on carbon emissions increase exhibited
significant spatial heterogeneity. The positive effect of IEE was more likely to alleviate
the increase in carbon emissions in northern Anhui City. In terms of technology, PTE
was more conducive to reducing the increase in carbon emissions in northwestern
Anhui City, southern Zhejiang City, and other cities including Changzhou and Wuxi.
Finally, it was found that SE played a relatively important role in reducing the increase
in carbon emissions in only four cities, Changzhou, Suqian, Lu’an, and Wenzhou.

This study on the impact of IEE on carbon emissions provides importance guidance
for planning the construction of ecological civilizations and high-quality integrated de-
velopment in the Yangtze River Delta. In order to further apply the potential of IEE in
promoting carbon emission reduction, relevant policy suggestions have been proposed
as follows.

First, ecological industry should be the fundamental direction of industrial develop-
ment in the future. Cities in the Yangtze River Delta should continue to speed up green
industrial transformation and upgrading, making full use of the current technological lev-
els to give full scope to advantageous industries, but also strengthening the ability of green
technological innovation and renewal, to improve IEE and realize the unification of the
industrial economy and ecological construction. Moreover, it is necessary to continuously
improve technical management levels and production scale efficiency, as well as to speed up
the progress of technical efficiency. Such efforts would aid in coordinating the development
of industrial management levels, technology applications, and scale expansion.

Second, cities in the Yangtze River Delta should promote the co-governance of carbon
emissions due to the spatial spillover effect of carbon emissions identified in this study.
Efforts should be made to establish a “five-synergy” operating mechanism featuring
“coordinated case-handling, prevention, construction, improvement, and restoration,” thus
creating a social ecological environment pattern of multiple co-governance and sharing.
Such efforts would prevent and control carbon emissions at the source to reduce emissions
increases. Moreover, in order to exert the positive spillover effects of IEE, PTE, and SE
on carbon emissions reduction, cities should strengthen the collaborative research and
development of green production technology and emissions reduction technology. To this
end, cities should also strengthen the exchange of advanced organization and management
modes between industrial enterprises.

Third, to achieve the decoupling of carbon emissions from economic growth, low-
carbon circular economies should be vigorously developed to prevent economic growth
being sacrificed. To this end, the government should promote resource-conserving and
environmentally friendly urbanization, as well as raise public awareness of low-carbon
living and green consumption, while at the same time formulating a long-term regulation
mechanism to reduce carbon emissions considering local conditions. Moreover, local gov-
ernments and enterprises should increase their investment in green science and technology
innovation, as well as increase the introduction of low-carbon equipment and enhance
regional cooperation. In addition, when introducing foreign investment, local governments
should raise the environmental access threshold and refuse to bring in low-efficiency,
high-consumption, or high-polluting foreign enterprises. Moreover, foreign direct invest-
ment should be guided into energy conservation and environmental protection and fully
facilitate the pollution halo effect.

We acknowledge that there are some limitations to this study. First, academics have
not reached a consensus on the evaluation system of IEE, and due to the influence of the
availability of data, the measurement of IEE does not fully consider social policies and
other closely related factors. Second, although it has been confirmed that improvement
in IEE contributes to reducing carbon emissions, its underlying influencing mechanisms
require further consideration, that is, whether IEE can indirectly affect carbon emissions
through other intermediate variables, which can be assessed with the help of a mediation
model. Third, we need to further explore the heterogeneous influence of IEE on the carbon
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emissions of cities of different sizes and the differential influence of IEE on carbon emissions
in different periods.
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