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Abstract: In this paper, an experimental study was carried out on the rotating instability in an axial
compressor subjected to inlet steady paired swirl distortion. In order to deepen the understanding
of the rotating stall mechanism under inlet steady paired swirl distortion, the dynamic-wall static
pressure near the rotor tip was monitored to characterize the flow in the rotor tip region at different
circumferential stations. In the experiment, the dynamic characteristics of the rotor tip flow field at a
stable operating point and during the process from the stable point to complete stall were measured.
The results indicated that for the compressor with a 2 mm rotor tip clearance, the inlet paired swirl
distortion induced rotating instability (RI) near the stall point, causing the compressor to enter stall
in advance. Compared with the RI intensity of the clean inlet, the distortion with a swirling blade
stagger angle (αst) of ±20◦ increased the RI intensity up to 69.8%, while for αst equal to ±40◦, the RI
intensity increased at most by 135.8%. As the rotor tip clearance increased to 3 mm, the co-rotating
swirl in the paired swirl distortion inhibited the appearance of RI, while the counter-rotating part
aggravated the development of RI. At the beginning, the process of the compressor rotating stall
involved the alternation of short-scale disturbance and long-scale disturbance. The co-rotating swirl
weakened the perturbation propagated from the counter-rotating swirl sector. Once the inhibition
was no longer present, the short-scale disturbance rapidly developed into a long-scale disturbance
and then entered the rotating stall.

Keywords: steady paired swirl distortion; tip clearance flow; rotating instability; stall inception;
dynamic pressure measurement

1. Introduction

With the development of aero engines, the performance demand of compressors is
becoming higher, which also brings more severe challenges to the stability of compressors.
When a compressor leaves its stable working point, flow instability due to stall or surge will
occur [1], which will damage the performance and structure of the compressor. In order to
avoid such risks, it is particularly important to detect stall warning signals early. Studies
have found that there is a close connection between the tip clearance flow and an unstable
flow pattern of compressors. This has also inspired scholars to conduct experimental
and numerical studies on the formation and development of the tip clearance flow and
its relationship with stall [1–6]. The classical stall inception includes Spike and Modal
wave [7–9]. Vo [10] proposed two necessary conditions for the formation of stall inception of
the spike-type: the interface between the tip clearance flow and the incoming flow is parallel
to the blade leading edge plane and a backflow is triggered. Further research discovered
an instability phenomenon in the stable operating point, which is called rotating instability
(RI) [11,12]. This phenomenon precedes the classical stall inception signal and may become
an earlier stall warning. The RI in a low-speed axial compressor appears as a bandwidth in
the spectrum, and the frequency fluctuation range is very wide [13], while in a transonic
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compressor, it is about 50% BPF [14]. With the advancement and development of high-
precision measurement technology and calculation models, more characteristics of RI have
been gradually discovered. Johannes Schreiber [15] observed RI and spike-type inception
on a 3.5 stage high-speed compressor by means of high-frequency measurements, which
verified the reliability of the high-frequency measurement technology. Mailach et al. [12]
reported that the periodic interaction between the tip leakage vortex and neighboring
blades was the main reason for the formation of RI. März et al. [16], Hah et al. [17,18] and
Wu et al. [19,20] conducted experiments or numerical simulations on different types of
compressors and obtained similar results. Inoue et al. [21] speculated that the movement of
a radial vortex in the circumferential direction would lead to rotational instability according
to the low static pressure zone upstream of the rotor. Vo used numerical research to show
that RI can be triggered only when one of the two standards of spike stall precursor is
met [22]. Holzinger [23] conducted experimental studies on transonic compressors and
showed that RI is closely related to the self-excited vibration and flutter of the blade.
März [16] found through experiments and numerical simulations that RI only exists in the
blade tip area during the stable operation of the compressor and it is especially obvious in
the presence of a large stagger angle and a large tip clearance. Li et al. [24] carried out a full
annulus unsteady simulation for a low-speed axial compressor with and without clearance
and found that when there was clearance, the transverse vortex in each passage and the
shedding vortex at the rear of the blade suction side every two passages were related to RI.

With the advancement of research and the expansion of coverage, Yue S et al. [25] stud-
ied the RI in a contra-rotating axial flow compressor. From the above research, it appears
that researchers have been devoted to exploring the physical mechanism of RI. Almost all
studies on rotational instability have been carried out under clean inlet conditions. In actual
work, the engine will inevitably encounter a variety of inlet distortions. The layout of the
intake port (such as the S-curved intake port), the inhalation of the boundary layer, etc.,
will cause swirl distortion. The SAE S-16 Turbine Engine Inlet Flow Distortion Committee
issued a report (AIR 5686) in 2010 which provided a quantitative description factor of
swirl distortion and classified the swirl distortion in detail [26]. Different types of swirl
distortion produce different effects [27–30], which is mainly attributed to the influence on
the attack angle.

As the type of directional distortion that can directly affect the angular distribution
of the compressor inlet airflow, swirl distortion can redistribute the flow field at the rotor
blade tip, which will also affect the formation and development of RI. Therefore, it is
necessary to explore the RI of the compressor with inlet swirl distortion in order to better
understand its formation and development mechanism. Based on the typical steady-state
paired swirl distortion, this paper studied the RI phenomenon in a single-stage compressor
with swirl distortion.

2. Experimental Equipment and Scheme
2.1. Brief Introduction of the Compressor Test Bench

The experiments in this article were carried out on the low-speed single-stage axial
compressor test bench of Nanjing University of Aeronautics and Astronautics. Figure 1 is a
simple schematic diagram of the section structure of the test bed, including the installation
position of the swirl distortion generator. The test bench had a horizontal layout, with
axial air intake and radial exhaust through the volute. The flow coefficient was controlled
by a throttle valve at the outlet of the pipeline. The valve accuracy was ±0.1◦, and the
uncertainty of the flow coefficient was 0.41%. The pressure ratio of the compressor was
obtained by the total pressure rakes and static pressure tubes on the cross section of the
compressor inlet and outlet. The total inlet temperature and the speed and torque of
the compressor measured by the thermometer and the torque meter sensor were used to
calculate the speed and efficiency of the compressor. Eight radial displacement mechanisms
were evenly distributed at the entrance of the rotor to drive the four-hole probes to measure
the airflow angle of the section. The accuracy of the motor and the torque meter sensor
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were ±1 r/min and ±2 N·m. The accuracy of the pressure measurement module was
±0.05% of the maximum range. In this experiment, except for the module measuring the
static pressure of the compressor inlet, which had a maximum range of 0.14 PSI (that could
better reflect the change of the stall point), the maximum range of the remaining pressure
modules was 1 PSI.
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Figure 1. Schematic diagram of the cross-sectional structure of the experimental platform.

The rough location of the dynamic-wall static-pressure measuring point is marked in
Figure 1, and the detailed distribution is shown in Figure 2. On the casing corresponding
to the leading edge of the rotor blade (Position 3, as shown in Figure 2b), eight dynamic
pressure sensors were evenly distributed in the circumferential direction. The sensor used
was a differential-pressure miniature pressure sensor from Kulite Company. The axial
distribution of the dynamic sensors is shown in Figure 2b. Taking the leading edge of the
rotor blades as a reference, the dynamic sensors were installed at −28.8 mm, −14.4 mm,
0 mm, 14.4 mm, 28.8 mm, 43.2 mm, and 57.6 mm respectively. The main parameters are
listed in Table 1. The values before and after ‘/’ in the table represent the values of rotor
and stator separately. Two values of rotor nominal tip clearance were considered in this
experiment: 2 mm and 3 mm.
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Table 1. Parameters of the compressor.

Related Parameter Value

Rotational speed/r·min−1 1500
Rotor hub/tip ratio 0.6

Blade numbers 19/22
Aspect ratio at pitch diameter 1.459/1.709

Tip clearance (1)/mm 2/2
Tip clearance (2)/mm 3/2

2.2. Swirl Distortion Generator

The swirl distortion generator was installed upstream of the compressor, at a distance
about 1.5 times the diameter of the intake pipe away from the compressor inlet. It was used
to provide the swirl field at the compressor inlet. Figure 3a shows the geometric structure
of the swirl distortion generator. In it, the motor drives the worm so that the rotating pipe
can steplessly rotate within a range of 55◦ in the circumferential direction, and the accuracy
is 0.1◦. The circumferential layout of the swirl blades as shown in Figure 3b was adopted in
the experiment. The blades were divided into two groups, A and B, each with five blades.
The interval between the blades in each group was 22.5◦, and the interval between the
two groups was 90◦. The stagger angles of the two sets of blades were opposite, which
provided the paired swirl distortion at the compressor inlet. The design parameters of the
swirl blades are listed in Table 2.
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Table 2. Design parameters of the swirl blades.

Design Parameters Value

Chord length, mm 100
Blade height, mm 200
Camber angle, ◦ 20

Profile Naca65 series

2.3. Experimental Methods

In this paper, experiments were carried out on the compressor with rotor tip clearances
of 2 mm and 3 mm. Using the above measuring equipment, the overall characteristics
of the compressor under clean and two-intensity paired swirl distortion inlet conditions
were measured to reflect the influence of paired swirl distortion. The swirl distortion



Energies 2021, 14, 8057 5 of 15

generator was used to provide swirl distortion inlet condition for the compressor. The
stagger angles of the swirl blades were adjusted by the positioning blocks to form swirl
distortion with different intensities. The flow coefficient, total pressure ratio, and efficiency
were the average results of multiple experiments. The definitions of specific parameter
are presented in the next section. In order to investigate the RI of the compressor at
different inlet conditions, high-frequency dynamic-wall static-pressure sensors were used
to measure the static pressure on the casing at each steady-state operating point and during
the process from steady state to complete stall. The model and layout of the sensors were
described in the previous section. The definitions of the parameters in post-processing are
explained in the next section.

3. Results and Discussion
3.1. Description of the Swirl Flow

Two intensities of steady paired swirl distortion were considered in the experiment,
and the stagger angles of the swirl blades were αst = ±20◦and ±40◦. The swirl angle
(αt) refers to the angle between tangential velocity and axial velocity of the flow, which
is defined by Equation (1), where vt and vz represent tangential velocity and axial ve-
locity, respectively. Figure 4 is a cloud diagram of the swirl angle before the rotor inlet,
corresponding to two swirl intensities respectively. Two vortices with different rotating
directions can be clearly seen; of these, the vortex with the same direction as the rotor is
called the co-rotating swirl, while the other is called the counter-rotating swirl [26]. As
the flow propagates to the rotor through the swirl distortion generator, the two vortex
cores are deflected relative to the center of the blade set (point A and B in Figure 4) due
to the influence of vortex convection, natural distortion, and the rotor. The co-rotating
swirl deflects towards the direction of the rotor rotation, while the counter-rotating swirl
deflects in the opposite direction. As the swirl intensity increases, the deflection becomes
more obvious.

αt = arctan(vt/vz) (1)
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3.2. Compressor Performance

Figure 5 shows the increase in total and static pressure of compressors with two
different rotor tip clearances: 2 mm and 3 mm. The flow coefficient (ϕ) and the total-to-
static pressure rise coefficient (ΨTS) are obtained by Equations (2) and (3), where Um is the
rim speed at the rotor pitch diameter, Ps_out is the average static pressure at the compressor
outlet, Pt_in is the average total pressure at the inlet.
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The influences of two-intensity of steady paired swirl distortions were compared.
The two diagrams illustrate that the paired swirl distortions had negative effects on the
pressure rise. For the compressor with δr = 2 mm, the swirl distortion advanced the stall.
As the swirl intensity increased, the stall coefficient became larger. However, when δr
increased to 3 mm, the low-intensity swirl distortion increased the stability.

The range of RI is indicated in the figure; it can be observed that RI only occurred in a
narrow range. For the compressor with a 2 mm rotor tip clearance, RI was not detected
in the experiment with the clean inlet, while the swirl distortions induced RI. For the
compressor with δr = 3 mm, the RI appeared near the stall point under in the presence of
the clean inlet. In this case, the inlet paired swirl distortion delayed the appearance of the
RI, thereby the stall was put off.

ϕ = Vz/Um (2)

ΨTS = (Ps_out − Pt_in)/(0.5ρUm
2) (3)

3.3. Effects on Stall Inception

In the experiment, eight dynamic sensors were evenly distributed in the circumfer-
ential direction of the casing to capture the rotor wall static pressure. The clean inlet and
the two-intensity paired swirl distortion inlet were included. Figures 6 and 7 show the
curves of dimensionless dynamic static pressure at various circumferential positions for
different inlet conditions. The rotor tip clearance was 2 mm. Figures 8 and 9 show the
results for the 3 mm rotor tip clearance. All values were obtained after 90% BPF filtering.
For the compressor with a 2 mm rotor tip clearance and the clean inlet, obvious short-scale
disturbance appeared. After about four rotor revolutions, the compressor entered the
rotating stall.
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The swirl distortion with αst = ± 20◦ caused the pressure signals at the monitoring
site 7 and 8 to become more chaotic. Therefore, short-scale disturbance was induced
at the monitoring site 1 and 2 but failed to spread. At the 139th rotor revolution (in
the experiment, the entire process of the compressor from stable working point to deep
stall was recorded; the figures report the revolutions counted from the beginning of the
collection), two independent disturbances were detected at the monitoring site 3, which
then weakened into one single disturbance at station 4. Along with the development of
the disturbances, an obvious long-scale disturbance appeared at the 141th rotor revolution
and gradually weakened during the propagation to station 6. It then strengthened until
developing into the rotating stall. About 9 rotor revolutions elapsed from the generation of
an apparent short-scale disturbance to the rotating stall.

When αst = ±40◦, the long-scale disturbance formed at station 7 spread to station 3
and induced a small disturbance at station 4, which was then suppressed (Figure 7b). After
another revolution, a short-scale disturbance appeared at station 6. During the next few
rotor revolutions, the disturbance weakened and strengthened several times and then
developed into the rotating stall. It took about 12 rotor revolutions from the onset of the
significant short-scale disturbance to reach the compressor stall.

The two pictures (a) and (b) in Figures 8 and 9 better display the development of
the disturbance. As the tip clearance increased to 3 mm, the disturbances of the rotor tip
near the stall point became chaotic. However, generally speaking, the stall process in this
case was as follows: the short-scale disturbance in local position gradually developed into
a large-scale disturbance and finally into the rotating stall. From the occurrence of the
disturbance to the rotating stall, 14 rotor revolutions occurred. For the compressor subjected
to inlet swirl distortion with αst = ±20◦, it was found that the disturbance propagation
was interrupted (point A and B in Figure 9a) or weakened at stations 4 and 5. Before
the compressor entered the stall, the short-scale disturbance and long-scale disturbance
developed alternately and finally formed a stable stall cell.

The above research indicated that for the compressor with the clean inlet, the short-
scale disturbance always appeared first and gradually developed into a large-scale dis-
turbance, then forming a stable stall cell. The paired swirl distortion provided different
attack angles to the rotor tip at different circumferential positions. The co-rotating swirl
at station 4 and 5 produced a positive influence, reducing the attack angle, while the
counter-rotating swirl at stations 7 and 8 produced an opposite effect (Figure 4). Therefore,
when the disturbance generated at station 7 propagated to station 4, it was weakened
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by the co-rotating swirl there, so that the long-scale disturbance turned into a short-scale
disturbance and the short scale disturbance was further weakened or suppressed. Similarly,
the short-scale disturbance at station 6 was enhanced into a long-scale disturbance via the
counter-rotating swirl sector. Once the co-rotating swirl could no longer provide effective
attenuation, the compressor rapidly entered the stall.

3.4. Rotating Instability with Paired Swirl Distortion Inlet

The pressure signals sampled by 8 sensors were processed by FFT transformation.
Figure 10 shows the frequency spectrum of the compressor with a 2 mm rotor tip clearance
at three different operating points, including clean and two-intensity steady paired swirl
distortions. The operating points A and B are as indicated in Figure 5. These pictures
indicate that as the flow coefficient decreased to the near stall point, the signals of RI
were not captured at the rotor tip of the compressor with the clean inlet; only the BPF
and some weak clutter signals were detected. In the case of the paired swirl distortion
inlet, some relatively clear signals of RI were detected at the operating point B. The closer
to the stall point, the more obvious was the RI in the compressor. The RI signals were
preferentially captured by the sensor at station 6 and gradually developed along the
direction of the compressor rotor rotation. Near the stall point, the RI could be detected by
three consecutive sensors (sensor 6, 7, and 8), and the signals were already very weak in
station 1.
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Figure 10. Spectrums of dynamic pressure signals sampled by eight sensors at different circumferential positions in three
operating conditions, clean and swirl distortion inlet, δr = 2 mm.

The spectra of RI signals near the stall point are listed in Figure 11; the rotor tip
clearance of the corresponding compressor was 2 mm. The rotation frequencies of the RI
are shown as a band from 0.5 BPF to 0.9 BPF. The amplitude of the RI at station 7 was
the largest, and the bandwidth was also the widest. The RI decreased in amplitude and
bandwidth as it propagated towards station 1. That is to say, the RI was only concentrated
in the counter-rotating swirl sector. Once it was far away from the counter-swirl sector, the
RI was weakened until it disappeared.
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Figure 11. Spectrums of RI signals near the stall point, clean and swirl distortion inlet, δr = 2 mm.
(a) Sensor 1; (b) Sensor 6; (c) Sensor 7; (d) Sensor 8.

Since the frequency of the RI signal found in the experiment was mainly in the
bandwidth of 0.5–0.9 BPF, the RI intensity (RII) was defined as the amplitude integral
corresponding to the frequency band of 0.5–0.9 BPF, which was used characterize the RI
intensity at the rotor blade tip. It was calculated using the equation:

RII =
0.9BPF∫

0.5BPF

Am( f )df (4)

In the formula, Am(f ) is the amplitude of the signals. Figure 12 presents the influence
of the paired swirl distortion with different intensities on RRI at three different working
points (δr = 2 mm). Compared with the case of the clean inlet, at station 6, the paired swirl
distortion with the two intensities increased the RRI at the operating point B by 69.8% and
135.8%, and the RRI near the stall point was increased by 30.8% and 34.2%. The value at
station 7 also changes significantly. At the operating point B, the RRI increased by 33.4%
and 95.4%, while at the near stall point, the RRI increased by 19.8% and 21.3%. At the
remaining circumferential positions, changes in import conditions did not have an impact
on RRI.

Tip leakage flow is one of the important causes of RI. Figures 13 and 14 show the
dynamic static pressure of the rotor tip measured at station 7. These two figures compare
the flow field of the rotor tip region at the operating point A and near the stall point in
the case of paired swirl distortion at two intensities. Compared with the operating point
A, multiple shedding vortices were observed on the suction surface of the rotor, which
fluctuated with the rotation of the compressor. This is reflected in the frequency band on
the spectrum diagram, as shown in Figure 11.
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For the paired swirl distortion with αst = ±40◦, the shedding vortices on the suc-
tion surface of the rotor blade were more obvious, and the low-pressure area was larger,
gradually extending towards the pressure suction surface of the next blade, as shown in
Figure 14. The above two comparison diagrams show that the shedding vortex at the rotor
tip area near the stall point was the main reason for the RI of the compressor.

The frequency spectrum of the 3 mm rotor tip clearance compressor with different
inlet conditions is shown in Figure 15; the flow coefficient was 0.495. In the compressor
with a clean inlet, the RI mainly occurred at stations 6, 7, and 8 and concentrated at
stations 7 and 8. Different from the results above, the co-rotating swirl and counter-rotating
swirl in this case had obvious opposite effects: the co-rotating swirl at stations 5 and
6 weakened the RI, while the counter-rotating swirl at stations 7 and 8 enhanced the RI.
The RII values corresponding to Figure 15 are listed in detail in Table 3, and the increase
of RRI caused by paired swirl distortion relative to the clean inlet is shown. From this
table, it can be seen more intuitively that the swirl distortion affected the RI at different
circumferential positions.
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Table 3. Values of RII at different circumferential positions, δr = 3 MM, ϕ = 0.495.

Inlet Condition Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5 Sensor 6 Sensor 7 Sensor 8

Clean 6.48 4.13 3.96 7.90 12.51 14.69 9.45 11.68
αst = ±20◦ 10.35 7.19 5.84 7.11 8.23 10.24 17.25 16.54

Absolute increase 3.86 3.06 1.88 −0.79 −4.28 −4.45 7.79 4.86
Relative increase 59.6% 74.1% 47.5% −10.0% −34.2% −30.3% 82.4% 41.6%

Figure 16 compares the static pressure diagram at the rotor tip with clean inlet and
paired swirl distortion inlet. The static pressure was measured at station 6 with the flow
coefficient of 0.495. The results indicated that there were shedding vortices on the suction
surface of several blades, and the leading-edge overflow was captured on very few blades.
Here, the co-rotating swirl in the distortion improved the flow field. As shown in the
figure, the co-rotating swirl reduced the generation of the shedding vortices at station 6
and inhibited the formation of the leading-edge overflow, thereby improving the flow field
here and weakening the generation of RI.
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Through the above analysis, it can be concluded that the stall of the compressor with
steady paired swirl distortion was closely related to the RI. The RI only occurred in a
very narrow operating range. The counter-rotating swirl in the distortion could induce
or enhance the RI, while the co-rotating swirl suppressed the RI and improved the flow
field of the rotor blade tip. The existence of shedding vortices on the suction surface of the
rotor blades was an important factor that led to RI. The generation or suppression of the
shedding vortices directly affected the occurrence and disappearance of RI signals. Because
of the oscillation of the shedding vortices, the RI was not a single-peak frequency but a
frequency band.

4. Conclusions

In this paper, the effects of two-intensity steady paired swirl distortions on the char-
acteristics of a single-stage compressor with rotor tip clearances of 2 mm and 3 mm, the
initial development of stall, and RI were investigated. Based on the dynamic measurement
of the wall static pressure at the rotor tip, the flow field at the rotor tip under the conditions
of clean inlet and steady paired swirl distortion was compared and analyzed. The char-
acteristics of RI at different circumferential positions under paired swirl distortion were
explored for the first time, and the variation of RI was quantitatively analyzed The main
results are as follows:

1. Due to the existence of the paired swirl distortion, the initial development of the
compressor stall involved the alternation of short-scale disturbance and long-scale dis-
turbance. The long-scale disturbance in the counter-rotating swirl sector propagated
along the direction of the rotor rotation and was suppressed in the non-swirl and
co-rotating swirl sectors, turning into short-scale disturbance or even disappearing,
until the counter-rotating swirl sector was reached in the next revolution, and the
disturbance strengthened again. Once the co-rotating swirl no longer restrained the
development of the disturbance, the compressor rapidly entered the stall.

2. In the case of the paired swirl distortion inlet, the obvious RI mainly existed in the
counter-rotating swirl sector.

3. For the compressor with a 2 mm rotor clearance, both paired swirl distortions with
αst = ±20◦ and αst = ±40◦ induced RI. Compared with the RRI in the case of a clean
inlet, when αst = ±20◦, RRI increased by 69.8%, and when αst = ±40◦, RRI increased
by 135.8%.

4. As the rotor clearance increased to 3 mm, the paired swirl distortion with αst = ±20◦

had different effects on RI at different circumferential positions. The counter-rotating
swirl part strengthened the RI, and the RRI increased significantly, with a maximum
value of 7.79, while the co-rotating part suppressed the RI, and the RRI decreased,
reaching the value of 4.45.
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5. The enhancement and weakening effect of the paired swirl distortion on RI were
attributed to the generation and suppression of shedding vortices at the rotor blade
tip. In the compressor with a 3 mm rotor clearance, the co-rotating swirl inhibited the
formation of shedding vortices and ameliorated the flow field of the rotor tip, thus
delaying the stall. However, in the compressor with a 2 mm rotor tip clearance, the
counter-rotating swirl deteriorated the flow field at the rotor tip, and the generation
of shedding vortices induced RI, which promoted the advancement of the stall.
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Nomenclature
The nomenclature of the parameters involved in this article is as follows, in order of appearance.

RI Rotating instability
BPF Blade passing frequency/Hz
αst Stagger angle of the swirl blades/◦

ϕ Flow coefficient
ΨTS Total to static pressure rise coefficient
δr Rotor tip clearance/mm
Ps Static pressure/Pa
P Mean static pressure/Pa
ρ Density/kg·m−3

U Circumferential speed of rotor/m·s−1
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