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Abstract: Aluminium metal is not typically added to the submerged arc welding (SAW) process
because it is easily oxidised to form unwanted slag in the weld pool. The successful application of
aluminium as a de-oxidiser is illustrated in this study by preventing oxidation of Cr and Co to their
oxides, thereby preventing element loss to the slag. Unconstrained pure metals of Al, Cr, Co and Cu
were applied to investigate the gas formation behaviour of these elements in the SAW arc cavity. Of
interest is the effect of copper in the arc cavity in terms of its possible substitution for aluminium.
The results confirmed that the Al-Cr-Co-Cu alloyed weld metal total oxygen content was lowered to
176 ppm O, in comparison to 499 ppm O in the weld metal formed from welding with the original
flux, which excluded metal powder additions. This lower ppm O value of 176 ppm O confirms
that the added aluminium powder effectively lowered the original flux-induced partial oxygen
pressure in the arc cavity, and at the molten flux–weld pool interface. Carbon steel was alloyed
to 5.3% Co, 5.5% Cr, 5.3% Cu and 4.5% Al at 78% Co yield, 82% Cr yield, 78% Cu yield and 66%
Al yield. Thermochemical equilibrium calculations confirm the partial oxygen pressure-lowering
effect of aluminium when considering the gas–slag–alloy equilibrium. BSE (backscattered electron)
images of the three-dimensional (3D) post-weld slag sample show dome structures which contain
features of vapour formation and re-condensation. SEM-EDX (scanning electron microscope-energy
dispersive X-ray) maps show that the dome surface matrix phase consists of Al-Mg-Ca-Si-Na-K-Ti-Fe-
Mn oxy-fluoride. The spherical 3D structures of 10–40 µm in diameter consist of Fe-Mn-Si fluorides
with some Cr, Cu and Co contained in some of the spheres. Cr and Co were observed in distinctive
porous structures of approximately 10 µm in size, consisting partly of Cr oxy-fluoride and partly
of Co oxy-fluoride. Nano-sized oxy-fluoride strands and spheres in the dome structures confirm
vaporisation and re-condensation of oxy-fluorides. Cu and Na formed a distinct condensation pattern
on the surface of the Si-Cu-Na-Mn-Fe-Co oxy-fluoride sphere. The results confirm the importance of
including gas phase reactions in the interpretation of SAW process metallurgy.

Keywords: pyrometallurgy; powder; cobalt; chromium; copper; partial oxygen pressure; aluminium
de-oxidiser; welding

1. Introduction

Submerged arc welding (SAW) is used to join thick steel plates at high deposition
rates [1]. The SAW process is also used to deposit overlay layers in cladding and in hard
facing operations made to protect the underlying weaker substrate materials [2]. The
fundamental aspects of the SAW process remain the same, despite these different SAW
process applications.

Previous studies by Coetsee and De Bruin [3–12] illustrated the application of uncon-
strained pure metal powders in different combinations with aluminium as a de-oxidiser.
Addition of Al metal to the SAW process is typically avoided because aluminium is easily
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oxidised and can form unwanted slag in the weld pool. This novel application of alu-
minium metal powder in SAW demonstrates the modification of flux oxygen behaviour
to control the weld metal total ppm O. The weld metal total ppm O should be controlled
within specific limits to ensure high impact toughness, typically at 200–500 ppm O in
carbon steel [13]. The purpose of applying aluminium to lower the oxygen potential at the
molten flux–weld pool interface and in the arc cavity is to improve the element yield from
the metal powder to the weld metal by preventing oxidation of the metal powders. This
is particularly the case for high oxygen affinity metals such as Cr and Ti, which are not
easily transferred across the arc because these elements are easily oxidised in the arc [14].
Chromium is easily added to the weld pool from the weld wire, for example, in cladding
applications [14,15]. However, the limitation of this is that only a small number of weld
wire formulations are available, and these weld wires cannot closely match all desired alloy
compositions. It has been demonstrated that modification of the SAW process by applying
pre-alloyed metal powders with one solid arching weld wire can better match the weld
metal chemistry to the base plate material chemistry [16].

The link between oxygen potential in the SAW process and weld metal total ppm O is
set by the flux chemistry, because the oxides in the flux form the main source of oxygen
in the SAW process [17,18]. This effect is illustrated by the empirical relationship of flux
basicity vs. weld metal total ppm, as developed by Tulinai et al. [19]. The flux basicity (BI)
is calculated according to the mass ratios in Equation (1). At flux BI values in excess of 1.5,
the weld metal total ppm O is constant, at 250 ppm O [19].

BI =
%CaF2 + %CaO + %MgO + %BaO + %SrO + %Na2O + %K2O + %Li2O + 0.5(%MnO + %FeO)

%SiO2 + 0.5(%Al2O3 + %TiO2 + %ZrO2)
(1)

The value of 250 ppm O may seem trivial, since it is such a small quantity. However,
experimental works have shown that the initial oxygen quantity in the weld pool is much
higher, at 2000–3000 ppm O [20,21]. The implication is that the high initial quantity of
2000–3000 ppm O in the weld pool must to be lowered to 200–500 ppm to ensure acceptable
weld metal materials properties, such as high enough impact toughness values. It is
accepted that slag–metal equilibrium is not attained in the SAW process [22].

However, the gas phase is mostly ignored in SAW process metallurgy, because it is not
easily analysed. Flux chemistry sets the gas phase speciation in the arc cavity. Recent studies
have applied sophisticated real-time analyses techniques of high-speed imaging and gas
phase spectroscopy to research the complex details of arc cavity phenomena in SAW [23].
The gas phase analyses confirmed that the specific flux formulation sets the dominant
elements in the arc cavity [1,23]. For example, Ca, Mg, Na, Fe and K were analysed in
the arc cavity gas phase, with the elements Cl, F, H, Mn and O also analysed [1,23]. The
flux chemistry also influences the arc physical phenomena, as discussed in detail by the
authors [1,23,24]. For example, increasing CaF2 additions to the flux decreases the arc length
by decreasing plasma conductivity via changes in the proportions of fluorine to oxygen
in the gas phase [24]. The flux CaF2 content influences the slag electrical conductivity, as
excessive CaF2 additions may cause current loss to the slag shell [1]. Therefore, the flux
chemical formulation not only drives the process metallurgy of SAW, but also determines
the arc plasma phenomena, which are important in arc energy generation and metal transfer
to the weld pool [1,23,24].

It was illustrated that gas–slag–metal equilibrium calculations are required instead of
only slag–metal equilibrium calculations, in order to accurately calculate the weld metal
total ppm O quantity for a flux formulation [25,26]. This approach was also followed in the
modelling of the effect of Al as a de-oxidiser in SAW to better explain the effect of added Al
in gas phase reactions [4,11,12].

Cobalt has a relatively low affinity for oxygen and is therefore typically added to the
weld pool from the alloyed weld wire. Cobalt is used as the matrix phase, with carbides
of chromium for hard-facing, in the well-known cobalt–chromium-based alloy, Stellite [2].
Cobalt is used to improve the creep resistance in newly developed steel grades applied in
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ultra-supercritical (USC) power generation plant applications, with up to 3% Co contained
in 9% Cr high-temperature steel [27,28]. Pre-alloyed metal powders can also be used for
alloying in hard-facing applications with the SAW process [16]. Iron-based pre-alloyed
powder of 40% Co has been applied in SAW hard-facing applications, but no cobalt yield
number was reported [16].

Copper additions are made to carbon steel and stainless steel to enhance both the
mechanical and corrosion properties of steel [29]. An example is the addition of copper to
4% in chrome-manganese stainless steels to improve corrosion resistance whilst maintaining
good weldability of this steel grade [29]. The addition of copper to the weld metal via the
weld wire creates materials handling difficulties. Higher copper content weld wire work
hardens, and is not easily formed into wire product; such wire is also not easily passed
through the roller guide system of the SAW equipment [30]. The addition of copper to the
weld metal in SAW from metal powder offers a solution to the practical material problem
of feeding work hardening copper-containing wire. Copper, together with aluminium,
functions as a stabiliser in the SAW process, because it forms a low liquidus temperature
alloy melt, which facilitates the melting of high-melting point metals such as Ti and Cr into
the weld pool [7–9].

New steel formulations are developed with large quantities of aluminium required as a
necessary building block element in the steel’s formulation, specifically in the development
of low-density/high-entropy steels and low-density stainless steels [31,32]. Therefore,
aluminium as an alloying element in combination with other alloying elements will become
increasingly important in the future application of these steel grades. Development of
the SAW process to accommodate large aluminium additions will ensure that the high-
productivity welding of thick sections with SAW is also applied to low-density/high-
entropy steels and low-density stainless steels.

Previous studies on aluminium-assisted weld metal alloying in SAW included Co
with other elements in various combinations such as Co-Cr-Al and Co-Al [4,10]. The
Cu-Cr-Co-Al metal powder combination has not been studied in this SAW application
format. Therefore, the objective of this study is to clarify the gas formation behaviour of
Co and Cu when applied as unconstrained metal powders with Al and Cr in SAW. Three-
dimensional (3D) post-weld slag sample phase chemistry analyses by SEM-EDX (scanning
electron microscope-energy dispersive X-ray) were used to investigate the speciation and
element distribution of Cu in the slag. Thermodynamic modelling is used in the form of
gas–slag–metal powder reaction equilibrium calculations to investigate the gas formation
behaviour of Co and Cu due to the chemical interaction between welding flux and Al, Cr,
Co and Cu metal powders in SAW.

This paper contains a short section on materials and methods (Section 2). The results
section (Section 3) contains the weld metal chemistry measurements (Section 3.1); metal
powder yield percentages calculated from the mass balance (Section 3.2); the quantification
of the exothermic effect of aluminium additions (Section 3.3) and the 3D slag sample
element speciation and distribution measurements (Section 3.4). The discussion covers the
thermodynamics of simple chemical interactions (Section 4.1); thermochemical equilibrium
calculations (Section 4.2) and the SAW process flow diagram (Section 4.3). Section 5 contains
the conclusions.

2. Materials and Methods

Welding test conditions are described in brief in Section 2.1, since the detailed de-
scription of the welding tests and the sampling and analyses methods are already avail-
able [10,33]. Section 2.2 describes the details of the thermochemical calculations made to
model the gas phase reactions in SAW, with metal powder additions included.

2.1. Welding Tests

Welding tests were performed as bead-on-plate weld runs, typically of 260 mm length,
onto a 350 mm long carbon steel plate. The plate thickness was 12 mm, and the plate width



Processes 2023, 11, 1116 4 of 19

was 300 mm. The welding parameters were 500 A and 28 V at 42 cm/min travel speed to
provide a heat input value of 2.0 kJ/mm. Welding was carried out DCEP (direct current
electrode positive) with a weld wire of 3.2 mm diameter [10,33].

The weld metal cross section photographs in Figure 1 display the base case (BC) weld
made without any metal powders added, in comparison with the MP11 weld metal cross
section made with the addition of metal powders, namely 7 g each of Al, Cr, Co and Cu.
Metal powders were sourced from the following chemicals suppliers: Al (99.7% Al) and Co
(99.9% Co) from Sigma-Aldrich (St. Louis, MI, USA), Cu (99.8% Cu) from GoodFellow, and
Cr (99.0% Cr) from Alfa Aesar, Ward Hill, MA, USA. The welding parameters applied in all
welding tests were the same. The analysis methods applied to the input materials, namely
the base plate steel, steel weld wire and the flux, were described previously [5].
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Figure 1. Photograph of BC and MP11 weld metal cross-sections.

2.2. Thermochemical Calculations for Gas Phase Reactions

Previous studies by Coetsee and De Bruin illustrated the application of aluminium
powder as de-oxidiser in SAW to control the weld metal total ppm O in the alloying
of the weld metal with chromium-containing powders [4,6,8,9,11,12] and with titanium-
containing powders [5,7,9]. The added aluminium lowers the partial oxygen pressure at
the molten flux-weld pool interface. In addition, aluminium in the arc cavity lowers the
oxygen partial pressure in the arc cavity [3,4,11,12,34]. The latter effect was confirmed
from thermochemical calculations [4,10–12]. FactSage 7.3 thermochemical software was
used to calculate the gas–slag–powder alloy equilibrium. This gas–slag–metal equilibrium
model is similar to the simulation model previously successfully applied to calculate the
carbon steel weld metal total ppm O in SAW for different flux formulations [25]. The
gas–slag–powder alloy equilibrium calculation results were used to compare the likely end
state gas composition for different proportions of aluminium, specified as input for the
equilibrium calculation. The FToxid, FSstel and FactPS databases were selected for use in
the equilibrium calculation in the Equilib module. Plasma species were included in the
equilibrium calculation as part of the gas phase stream [35]. The calculation results are
discussed in Section 4.2.

3. Results
3.1. Weld Metal Chemistry

The bulk weld metal compositions of the BC and MP11 weld metals are summarised
in Table 1. The methods applied to cut the weld metal samples and the chemical analyses
methods used are described in detail elsewhere [10]. For comparison purposes, the weld
metal analyses by EDX at the centre of the weld geometry are summarised in Table 2 for
the areas as marked in Figure 2. The analyses in Tables 1 and 2 confirm that alloying of the
weld metal by Al, Cr, Cu, and Co occurred. Details of the SEM equipment used In the EDX
analyses were described previously [10].
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Table 1. Bulk chemical composition of weld metals (mass%).

%C %Si %Mn %O %Al %P %S %Ni %Cr %Cu %Co %Fe

Base
Case 0.110 0.260 1.300 0.0499 0.032 0.022 0.011 0.005 0.110 0.110 0.003 98.03

MP11 0.097 0.757 1.417 0.0176 4.463 0.023 0.006 0.043 5.500 5.260 5.307 77.05

Table 2. SEM-EDX analyses of marked areas (a, b and c) in the MP11 weld metal, as indicated in
Figure 2 (mass%).

%Si %Mn %Al %Cr %Cu %Co %Fe

a 0.70 1.50 4.10 5.81 5.61 5.91 76.4
b 0.70 1.40 4.10 5.81 5.51 5.91 76.6
c 0.72 1.54 4.00 5.75 5.44 5.95 76.6
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The results in Table 1 show that the application of Al as a de-oxidiser element also
reduced some of the MnO and SiO2 from the flux to add Mn and Si to the weld metal. The
aluminothermic reduction of MnO and SiO2 released additional heat into the weld pool,
as indicated by the exothermic reaction enthalpy values next to Equations of reactions (2)
and (3). This effect was also identified in the previously reported work by Coetsee and De
Bruin on aluminium-assisted alloying of the SAW weld metal with chromium-containing
powders [4,6,8,9,11,12] and titanium-containing powders [5,7,9].

Since reactions (2) and (3) occurred in the SAW process due to Al powder addition,
the aluminothermic reduction of FeO and CrO should also be considered, see reactions in
Equations (4) and (5). The aluminothermic reduction of FeO was confirmed in previous
similar works [36,37]. The aluminothermic reduction of FeO via reaction (4) indicates
control of the oxygen potential at the weld pool–slag interface. In the same way, chromium
oxide can be reduced by aluminium via Equation (5) [6].

3(SiO2) + 4(Al) = 3(Si) + 2(Al2O3) ∆H
◦
2000 ◦C = −82.1 kJ/mol Al (2)

3(MnO) + 2(Al) = 3(Mn) + (Al2O3) ∆H
◦
2000 ◦C = −248.4 kJ/mol Al (3)

3(FeO) + 2(Al) = 3(Fe) + (Al2O3) ∆H
◦
2000 ◦C = −416.5 kJ/mol Al (4)

3(CrO) + 2(Al) = 3(Cr) + (Al2O3) ∆H
◦
2000 ◦C = −326.6 kJ/mol Al (5)

( ): liquid.
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Comparison of the weld metal total ppm O in Table 1 for the BC and the MP11 weld
metals indicates the extent of the de-oxidising effect of Al. The BC weld metal total ppm
O is 499 ppm O, compared to the much lower MP11 weld metal total oxygen content of
176 ppm O.

3.2. Mass Balance

A mass balance was carried out to quantify the yield of Al, Cr, Co, and Cu from the
added metal powders to the weld metal. The mass balance measurements and calculations
procedure are the same as described in detail in previous works [3,7–12]. These values are
displayed in Table 3. The %yield is calculated as a percentage of the 7 g of Al or Cr or Co or
Cu added to the weld run. Table 3 shows that the MP11 yield values were calculated as
66% Al yield, 82% Cr yield, 78% Co yield and 78% Cu yield.

Table 3. Mass balance numbers and percentage yield calculation results for Al, Co, Cr and Cu.

Al
(g)

Cr
(g)

Co
(g)

Cu
(g)

Powder
(g)

Wire
(g)

Base Plate
(g)

Weld Metal
(g) %DR(wire + MP)

%Al
Yield

%Cr
Yield

%Co
Yield

%Cu
Yield

MP11 4.7 5.7 5.5 5.5 21.4 51.1 31.9 104.4 69 66 82 78 78

3.3. Heating Effect Quantification from Exothermic Reactions with Aluminium

Alumina is formed as product in the reactions displayed as Equations (2) and (3),
and was shown to be easily absorbed into the molten flux because the reactions occurred
at the molten flux–weld pool interface [5,6,37]. The exothermic reaction heat contribu-
tions from reactions (2) and (3) were quantified by the calculation methods, as reported
previously [7–12]. The calculation results in Table 4 show that the exothermic reactions (2)
and (3) released sufficient energy to increase the weld metal temperature by 68 ◦C.

Table 4. Exothermic heat added to the weld pool from reactions (2) and (3).

SiO2
(g)

MnO
(g)

Al
(g)

Reaction (2)
(kJ)

Reaction (3)
(kJ)

Reactions (2) & (3)
(kJ)

Weld Metal
∆T (◦C)

MP11 1.36 0.34 0.90 −2.49 −0.79 −3.28 68

The weld metal total ppm O content in Table 1 is a function of the chemical reactions
and physical effects that influence the rate at which oxide inclusions float out to the molten
slag–weld pool interface, at which point the inclusions are chemically absorbed into the
slag phase. Therefore, the time available for oxide inclusions to float from the weld pool
to the molten slag–weld pool interface is set by the weld pool solidification time [38]. The
weld pool chemistry sets the melting temperature range of the weld pool and therefore the
solidification time from a fully liquid to a fully solid weld pool for the same weld pool mass.
The cooling curves for the BC and MP11 weld metal compositions are shown in Figure 3.

The weld metal solidus temperature is much lower for the MP11 weld metal compared
to the BC weld metal, even though the liquidus temperatures are similar, with a difference
of only 29 ◦C. Therefore, the expectation is that the MP11 weld pool will take more time
to solidify than the BC weld pool, providing more time for oxide inclusions to float to
the weld pool–slag interface and absorb into the slag layer. This difference in weld pool
solidification time will contribute to the lower total weld metal oxygen content analysed in
the MP11 weld metal, as compared to the BC weld metal, see Table 3.

3.4. Speciation and Distribution of Cr, Co and Cu in the Slag

The methods of SEM (scanning electron microscope) images and EDX (energy disper-
sive X-ray) analyses were applied recently to investigate the speciation and distribution
of the elements in post-weld slags [4,12,37]. These studies clearly showed the presence of
three-dimensional (3D) structures which formed from vaporisation and re-condensation
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of oxy-fluorides. In this study, the combination of Al, Cr, Co and Cu metal powders was
applied in SAW, and therefore the behaviour of these metallic elements in the gas phase is
of interest. Dome structures were also observed in this work, similar to the dome structures
in the previous studies [4,12,37]. Somewhat different 3D structures were observed in the
current work as discussed in the following sections.
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Figure 3. Solidification curves for MP11 and BC weld metal compositions from Table 3 (mass%
proportion liquid phase in steel).

A typical dome structure inside the post-weld slag is displayed at low magnification
(605×) in Figure 4a, as the BSE (backscattered electron image) image. Within this slag dome,
several 3D structures are seen, such as smaller and larger spheres and irregular porous
shapes in the framed area marked in Figure 4a. The EDX maps of the field of view (FOV) in
Figure 4a can be seen in Figure 4b. The EDX analyses indicate that the dome surface matrix
phase consists of Al-Mg-Ca-Si-Na-K-Ti-Fe-Mn oxy-fluoride. The EDX maps for K and Ti
are not shown, because these elements appear throughout the phase areas in an averaged
fashion. The spherical 3D structures of 10–40 µm in diameter consist of Fe-Mn-Si fluorides
with some Cr, Cu and Co contained in some of the spheres. The average EDX analysis of
the FOV in Figure 4a is shown in Table 5, and confirms that Cr, Cu and Co are present in
the dome structure. The importance of this observation is that it confirms the vaporisation
of Cr, Cu and Co added as metal powders, which is in agreement with previous studies on
different alloy powder combinations applied in SAW [4,12,37].

Table 5. Average EDX analyses of 3D slag in Figures 4–6.

Figure %F %O %Al %Si %Mg %Ca %Mn %Fe %Cu %Na %K %Ti %Cr %Co

4 21.8 25.8 9.4 9.6 6.9 5.7 8.0 5.7 0.6 3.5 0.3 1.5 0.4 0.5
5 19.4 12.0 5.0 10.8 4.0 3.2 30.5 5.2 0.4 2.4 0.2 3.6 0.9 2.2
6 17.6 10.7 4.4 10.0 4.2 3.6 20.3 17.2 1.8 2.8 0.4 3.8 1.2 1.5

The framed area in Figure 4a is shown in Figure 5a at a magnification of 3930× to better
view the 3D structures in this area. The EDX maps of the FOV, as displayed in Figure 5b,
confirm that the dome surface matrix phase at the left-hand boundary of the image consists
of Al-Mg-Ca-Si-Na-K-Ti-Fe-Mn oxy-fluoride, with embedded spheres of Fe-Mn-Na-Cu
oxy-fluoride. Interestingly the separate presentation of Cr and Co is observed in the porous
structure of about 10 µm as adjacent parts of Cr oxy-fluoride and Co oxy-fluoride. To the
right side of the porous 3D structure, the round structure embedded in the dome surface
matrix phase appears; it contains Si-Cu-Na-Mn-Fe oxy-fluoride, although the copper EDX
map is faint in this area. The average EDX analysis of the FOV in Figure 5a, as shown in
Table 5, confirms that less of the dome surface matrix phase is contained in Figure 5a, since
less Al and Mg are present in this analysis when compared to that of Figure 4a.
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The blocked area in Figure 5a is shown enlarged at 28,290× in Figure 6a. Nano-sized
oxy-fluoride strands and spheres are seen at the edges of this image, similar to those
identified previously [37]. In agreement with the previous conclusions of Coetsee and
De Bruin, these structures confirm the vaporisation and re-condensation of oxy-fluorides
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within the slag dome structures [4,37]. The EDX maps show that Cu and Na formed a
distinct condensation pattern on the surface of the Si-Cu-Na-Mn-Fe-Co oxy-fluoride sphere.
The Co content in the sphere is very faint in Figure 6b. The average EDX analysis of the
FOV in Figure 6a is similar to that of Figure 5a, with less Mn and more Fe contained, and
an increased Cu content confirmed, see Table 5.
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Figure 6a.
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The significance of the above results on the slag dome element speciation and distri-
bution is that these results are in agreement with previous similar studies, confirming the
vaporisation of the added metal powder elements of Cr, Cu and Co applied in different
combinations. The re-condensation of the vaporised metals as oxy-fluoride 3D structures
within the welding slag dome structures is observed in this work, and is in agreement with
previous similar observations [4,12,37].

4. Discussion

Previous works by Coetsee and De Bruin on unconstrained metal powder additions
in SAW with aluminium as a de-oxidiser have confirmed that aluminium controls the
weld metal total ppm O. The action of the aluminium de-oxidiser is to lower the partial
oxygen pressure at the molten flux–weld pool interface [3–12]. In some of these previous
studies, thermochemical calculations of the gas–slag–metal powder equilibrium were made,
and these calculations confirm that aluminium is also present in the arc cavity, and can
therefore also lower the oxygen partial pressure in the arc cavity [4,10–12]. This agrees
with conclusive previous work that evidenced the transfer of Al from the flux via the gas
phase in the arc cavity [34]. In this study the unique combination of unconstrained metal
powders of Cu, Cr, Co and Al added to the SAW process is illustrated. The addition of
Cu metal powder in this combination may modify the behaviour of the other elements
in the arc cavity. This is particularly true of Al, because both Al and Cu metals have
similar high vapour pressures [12]. Thermochemical calculations in both simplified single
reaction calculations and complex gas–slag–metal powder equilibrium calculations were
used to investigate the likely gas phase reaction changes due to added Cu, Cr, Co and Al
unconstrained powders in the SAW process.

4.1. Simplified Chemical Interactions

Given the close association of Cu and Na observed in the condensation pattern on the
surface of the sphere in Figure 6b, it is of importance to consider the natural tendencies
of the elements to vaporise at the temperatures relevant to the SAW process. The vapour
pressure of the pure metallic elements as a function of temperature is shown Figure 7. The
order of the lines in Figure 7 indicates that ease of vaporisation ranges from highest to
lowest in the following order: Na and K, overlapping, then Mn, Al, Cu, Cr, Fe, Co and lastly,
Si. The vapour pressure curves in Figure 7 were calculated in FactSage 7.3 thermochemical
software using the ELEM database in the Reaction module [35]. The lines for Al and Cu in
Figure 7 are very close to each other, indicating that aluminium and copper are expected
to be vaporised to an equal extent at the high temperatures prevailing in the arc cavity,
namely 2000 to 2500 ◦C [39,40]. K and Na are added in SAW flux as oxides, so that the K
and Na ions in the arc cavity may stabilise the arc [41]. Therefore, based on the chemical
behaviour of the elements as displayed in Figure 7, it is possible that Na and Cu interact as
vapours to form the condensation patterns in Figure 6b.

Previous Gibbs free energy calculations confirmed that NaF(g) and KF(g) are most
easily formed from reaction of Na2O and K2O with CaF2 in reactions of the type displayed
in Equation (11) [3,10,11]. The relative position of the lines in Figure 8 indicates that the
fluorides of the main elements in the SAW reaction system considered here may all be
transformed by reaction with Al(g) to release metal vapour in reactions similar to the
reaction in Equation (10). Particularly, copper and cobalt may be transformed in this way,
as the lines in Figure 8 for CuF2(g), as per Equation (6), and CoF2(g), as per Equation (8),
have the larger difference from the Al-fluoride formation lines, such as seen in Equation (9).

{Cu}+ {F2} = {CuF2} (6)

2{Cr}+ 3{F2} = 2{CrF3} (7)
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{Co}+ {F2} = {CoF2} (8)

2{Al}+ 3{F2} = 2{AlF3} (9)

2{Al}+ 3{CuF2} = 2{AlF3}+ 3{Cu} (10)

(CuO) + {CaF2} = {CuF2}+ 〈CaO〉 (11)

( ): liquid; { }: gas; < >: solid.
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Previous works on the application of Cu-Ti-Al and Cu-Cr-Al metal powders in SAW
have confirmed the stabilising effect of copper in combination with aluminium [7,8]. This
effect is due to the formation of an initial melt of low liquidus temperature, into which the
high-melting point metals such as Ti and Cr are easily dissolved before mixing into the
weld pool [7,8]. The same effect is illustrated in the liquidus projection diagram Figure 9.
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The proportion of Cr to Co is the same as in the added metal powders, and in the weld
metal analysis in Table 1. The composition point in Figure 9 (filled circle) is the equivalent
composition point for the Cr-Co-Cu-Al ratios in the MP11 weld metal composition in
Table 1. Figure 9 indicates that this mixture of metal powders was completely liquid at
1250 ◦C. This temperature is much lower than the liquidus temperature of the base case
weld metal at 1516 ◦C, see Figure 3. This stabiliser effect of copper in the alloy and steel
phases only considers the alloying effect in the weld pool, and does not take the gas phase
reaction behaviour of copper into consideration. Although copper is less easily oxidised to
its oxide when compared to easily oxidised elements such as Cr and Al, the interaction of
copper with other elements in the arc cavity should be considered.
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4.2. Thermochemical Equilibrium Calculations

The above simplified gas phase reaction considerations do provide some insights into
the general chemical trends of likely gas phase reactions in the SAW arc cavity. However,
it has been shown that gas–slag–metal powder equilibrium calculations in FactSage 7.3
thermochemical software may provide additional insights [4,10–12]. Therefore, more
realistic thermochemical calculations were made to investigate the probability of species
formation, especially in the gas phase, as described in Section 2.2.

The metal powder input masses of 7 g each of Cr, Co and Cu were specified as inputs to
the calculation. The Al input mass in the calculation was varied between zero, 50% and 100%
of the maximum of 6.1 g Al. The calculation in Section 3.3 shows that 0.90 g Al of the input
value of 7 g Al was used in the aluminothermic reduction reactions, Equations (2) and (3).
Therefore, the input of Al at 100% Al usage for the gas phase reactions was set as 6.1 g Al.
The major compounds in the calculated gas compositions are displayed in Figure 10 at the
different levels of aluminium added. Table 6 displays the calculated loss percentages of Cr,
Co, Cu and Al to the gas phase, the gas phase partial oxygen pressure (PO2) values, and the
calculated free electron concentration in the plasma, as calculated in FactSage 7.3. Although
arc cavity temperatures for SAW are much lower than in other open arc-welding techniques,
the formation of arc plasma is still relevant. The free electron concentration in the gas phase
is an indication of the level of arc stability due to plasma formation [42]. The first ionization
potential of the elements is typically quoted in welding research as an indication of the
likely importance of an element in arc plasma stability reactions by releasing electrons
upon ionization [1,23,24,43]. Because metals have lower ionization potentials as compared
to non-metals, the metals are ionized preferentially [43]. The metals of Al, Cu, Cr and Co
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all have similar ionization potentials of 5.986, 7.726, 6.767 and 7.881, with that of Al at the
lower level among these elements [44]. Therefore, all of the metals may be ionized, but
Al, at the comparatively lower value of 5.986, should be ionized more readily. The relative
change in free electron concentration at equilibrium as shown in Table 6 indicates that
Al(g) plays a role in this effect. In comparison, no such effect was observed in changing the
copper addition level in the calculations. In contrast, the lower ionization potentials of K
and Na at 4.341 and 5.139 are in agreement with the reason for adding these elements to
the welding flux to stabilise the arc [41,44].
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Table 6. MP11 expected metal loss to gas according to gas–slag–metal powder equilibrium at 2500 ◦C,
calculated in FactSage 7.3 thermochemical software (Equilib module) [35].

GramAl Mass% Cr
to Gas

Mass% Co
to Gas

Mass% Cu
to Gas

Mass% Al
to Gas PO2 (atm) Free Electron Volume

Fraction in Gas Phase: e[−]

zero 13 10 42 0 1.4 × 10−6 2.8 × 10−5

3.00 27 14 68 57 3.1 × 10−7 4.0 × 10−5

6.10 41 18 80 50 8.5 × 10−8 5.4 × 10−5

Figure 10 confirms that it is likely that significant quantities of Na and Cu are formed in
the gas phase, even in the absence of Al. Therefore, the condensation association of Na and
Cu in Figure 6b as Si-Cu-Na-Mn-Fe-Co oxy-fluoride is possible. The equilibrium calculation
results in Figure 10 and Table 6 indicate that more Cu is vaporised with increased Al added
into the gas-slag-metal powder system. Very little of any other copper gas phase species
was calculated, less than 1 volume percent, compared to the large quantities of copper
metal vapour, as shown in Figure 10. Because of the similar tendency of pure aluminium
and pure copper to vaporise, as shown in Figure 7, the expectation is that vaporised copper
may substitute for aluminium vaporisation. However, the more complex thermochemical
calculation results in Figure 10 and Table 6 do not support this simplified consideration
of the vaporisation behaviour of Al and Cu. As discussed previously, a possible reason
for the lesser vaporisation of copper is that copper vaporisation is reaction-controlled,
and is therefore dependent on the number of reaction sites available at the melt–gas
interface [45]. Both sulphur and oxygen are surface-active elements and are present in the
SAW process, especially oxygen, and can fill surface active sites, thereby limiting copper
vaporisation. Therefore, this kinetic effect of filled reaction sites can explain the lower
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extent of copper vaporisation in the SAW process, as compared the thermochemically
predicted extent of copper vaporisation from the gas–slag–metal powder equilibrium.
Another possible explanation for the discrepancy in the copper vaporisation extent values
as experimentally observed vs. from the equilibrium calculations is that the equilibrium
calculation is carried out for a set temperature, and therefore the calculation does not
simulate the re-condensation effects that occur as the gas phase cools.

4.3. SAW Reaction Flow Diagram with Al, Cr, Co and Cu Metal Powder Additions

The SAW reaction flow diagram in Figure 11 is slightly modified from the previously
reported diagram for Al, Cr, Co powders applied in SAW [4]. Flow diagram additions
were made to account for Cu vaporisation, as indicated by the light blue lines, and for the
stabiliser effect of Cu via initial low liquidus temperature alloy melt formation, as shown by
the reaction O in Figure 11. In the following section, only the main reactions are highlighted,
since a detailed description of the reaction flow diagram is available elsewhere [4].
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Figure 11. SAW reaction flow diagram with Al, Cr, Co and Cu powder additions.

Reaction steps A to E are as presented from previous works, and represent the transfer
of oxygen from the molten flux (slag) to the weld pool [17,20–22,25,46].

Reaction E presents the reaction of the excess oxygen with molten steel at the arc
plasma–weld pool interface to form FeO. The trend of increased FeO in the molten flux (slag)
with increased weld metal total ppm O is well established [22,37]. Therefore, the slag FeO
content serves as an indicator of the oxygen potential prevailing at the molten flux–weld
pool interface [22,37]. The application of aluminium powder to the SAW process to lower
the oxygen potential prevailing at the molten flux–weld pool interface is well illustrated in
the series of reported studies by Coetsee and De Bruin, for both chromium-[4,6,8,9,11,12,37]
and titanium-containing metal powder combinations [5,7,9]. Therefore, similar to reaction
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G for the reduction of MnO from the molten flux, FeO may also be reduced by aluminium,
see Equation (4) in the text.

The reduced oxygen potential at the molten flux–weld pool interface prevents oxida-
tion of chromium powder to CrO and Cr2O3, and also prevents oxidation of Co to CoO
to prevent chromium and cobalt loss to the slag. Since Cr has a high affinity for oxygen,
the formation of CrO may occur at the arc plasma–weld pool interface, i.e., reaction E2
in Figure 11. The CrO may be reduced at the slag–weld pool interface by aluminium via
Equation (5) in the text in Section 3.1 [6,8]. The effective action of aluminium de-oxidiser in
lowering the partial pressure at the slag–weld pool interface ensures that Co and Cr metal
powders remain in the metallic state to be melted into the initial alloy pool, (reactions I and
M). Since there is an excess of Al added, some of the Al also dissolves directly into the weld
pool, see reaction H. The initial alloy pool formed from the melting of the added metal
powders is represented as reaction step O in Figure 11. This initial alloy melt is formed due
to the stabiliser effect of Cu, in combination with Al, in forming a low liquidus temperature
alloy melt which easily dissolves high-melting point Cr, as identified previously in the
application of Cu-Cr-Al metal powders in SAW [8].

Previous thermodynamic analysis of simplified single gas phase reactions confirmed
that the loss of Cr and Co in SAW from added metal powders is due to Cr and Co vaporisa-
tion and/or the subsequent reaction of chromium and cobalt vapour with F2 gas to form
CrF3(g) and CoF2(g) [4,10]. These reactions are represented as green text for Cr reactions
and dark blue text for Co reactions in Figure 11. The source of F2 gas is the dissociation of
CaF2(g), according to reaction L. Formation of F2 gas in the arc cavity from the dissociation
of CaF2(g) in the arc plasma appears possible, since the Ca and F were analysed in the arc
cavity gas phase, when a CaF2 based flux was used in SAW test runs [1,23].

The reactions of Cu are marked as light blue text and lines in Figure 11. Copper can
also be vaporised at the arc plasma–weld pool interface, as indicated in reaction J3. The
thermodynamic analysis in Section 4.1 indicates that metallic copper is the likely copper
species in the SAW process, and that copper does not readily react with F2 gas.

Reactions M1 and M2 in Figure 11 indicate the reaction of aluminium vapour with the
fluorides of chromium and cobalt, CrF3(g) and CoF2(g), to transform these fluorides to Cr
and Co vapour. Chromium, cobalt and copper can be vaporised from various reaction sites.
These sites include the weld pool surface at the arc plasma–weld pool interface, as well as
the unconstrained molten metal powder surfaces before the metal powders are dissolved
into the alloy pool or the weld pool. The results presented here are in agreement with
previous similar work on the SAW process, in which different metal powder combinations
with aluminium and copper were applied [7–9,11].

In conclusion, from the results presented in this study, it is confirmed that copper
may be added with Al, Cr and Co metal powders without changing the oxygen control
reactions in SAW. The role of Cu as a stabiliser compound, in combination with Al, is likely
via formation of an initial low liquidus temperature alloy melt, which allows high melting
point metals such as Cr to be melted more efficiently into the weld pool. The gas phase
behaviour of Cu and Co in the arc cavity is to be vaporised as metal and form part of 3D
phase structures consisting of Si-Cu-Na-Mn-Fe-Co oxy-fluoride. Copper vaporisation does
not appear to substitute for vapour losses from the Cr, Co and Al powders.

5. Conclusions

This study illustrates the effective application of Al as a de-oxidiser element in SAW
to control the weld metal total ppm O within acceptable levels. The added Al controls the
system oxygen potential at lowered levels to limit element loss to the slag, especially for
expensive elements such as Co and Cr. The successful application of Al in SAW opens
the SAW process to application in advanced steel formulations of high Al content, such
as low density/high-entropy steels and low-density stainless steels. The application of
unconstrained metal powders can improve the overall SAW process productivity because
it removes the need to manufacture alloyed wire and pre-alloyed powder, since these are
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expensive and time-consuming steps. The specific conclusions drawn from the Al-Cr-Co-Cu
metal powder combination applied in this work are as follows:

1. Al, Cr, Co and Cu unconstrained metal powders were successfully applied in SAW
to alloy carbon steel weld metal whilst controlling the total weld metal ppm O at an
acceptable level.

2. The added copper metal powder vaporised as metallic copper in the arc cavity, and
was incorporated into the Si-Cu-Na-Mn-Fe-Co oxy-fluoride upon re-condensation
from the gas phase.

3. Thermochemical calculations indicate that copper vaporisation does not substitute for
aluminium vaporisation, even though both elements have similar vapour pressures at
specific temperatures.

4. Copper, in combination with aluminium, has a stabiliser effect in SAW due to its
formation of an initial alloy melt of low liquidus temperature. This initial alloy melt
lowers the temperature required to melt high-melting point metals such as Cr into the
weld pool.

5. Nano-sized oxy-fluoride strands and spheres in the dome structures of the 3D slag
sample indicate that vaporisation and re-condensation of oxy-fluorides occurred.
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