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Abstract: In the toxicological testing of new small-molecule compounds, it is desirable to establish in
silico test methods to predict toxicity instead of relying on animal testing. Since quantitative structure–
activity relationships (QSARs) can predict the biological activity from structural information for
small-molecule compounds, QSAR applications for in silico toxicity prediction have been studied
for a long time. However, in recent years, the remarkable predictive performance of deep learning
has attracted attention for practical applications. In this review, we summarize the application of
deep learning to QSAR for constructing prediction models, including a discussion of parameter
optimization for deep learning.

Keywords: bioinformatics; convolution neural network; computational models; deep learning; graph
convolutional networks; parameter optimization; quantitative structure–activity relationship

1. Introduction

Toxicity tests using experimental animals are generally performed to evaluate the
toxicity of chemical substances, but there is a need to develop in silico toxicity-prediction
methods from the viewpoint of time consumption, cost reduction, and 3R. The acronym
3R stands for replacement (use of alternative methods), reduction (reduction in the num-
ber of animals used), and refinement (sophistication of experimental methods and pain
reduction in experimental animals). These are based on international guiding principles for
biomedical research involving animals, which have been advocated based on the principles
developed for human experimental techniques [1–7].

An alternative method to the use of experimental animals to investigate general tox-
icity, which reduces the expense and the duration of the test period, is to use cultured
mammalian cells to examine the lethal effects of chemical substances on cell viability using
calculations of LD50, the amount statistically estimated to cause 50% mortality within
a certain number of day, usually expressed as the amount of substance (mg/kg body
weight) when administered orally to a group of experimental animals [8]. In addition,
microorganisms, plants, insects, cultured cells, etc. have been used to detect mutagenicity
in somatic cells, due to their association with carcinogenicity, using a short-term search
method. Toxicogenomics, a genome-based toxicity-evaluation method, has recently come
into use to investigate the causes of side effects of drugs and chemical substances, using
the information obtained when side effects have occurred [9,10]. In other words, toxicoge-
nomics is a basic technology for rapidly and efficiently predicting the toxicity and side
effects of drug-candidate compounds. This toxicogenomics method consists of (1) creating
a database of side effects and expressed gene groups for existing drugs, (2) understanding
the pattern of genes expressed by candidate substances, and (3) matching the results with
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the database. In other words, for drugs that have caused side effects in the past, by applying
the drugs to animal tissues and human tissues, it is important to examine the pattern of the
kinds of gene groups that are expressed when the side effects develop. The side effects are
then categorized according to the symptoms and occurrence status and compiled into a
database. By allowing new drug-candidate substances to act on animal and human tissues
and examining the gene-expression patterns, in which the substances effect as agonist or
antagonist for target protein leading to transcriptional activation of suppression, it is then
possible to predict the occurrence of side effects by comparing and collating them with
gene-expression patterns in the database.

In general, there are two main methods for predicting the properties of chemical
substances: the use of the quantitative structure–activity relationship (QSAR) and the
categorical approach [11–18]. The QSAR is a method for predicting the physical properties,
environmental fate, or toxicity of substances (for which there is a paucity of information
available in the relevant datasets) using model formulas obtained statistically from pa-
rameters such as their physical properties [11–18]. For example, these include ecological
structure–activity relationships (EcoSAR) that determine chemically acute and chronic
toxicity to aquatic organisms such as fish, aquatic invertebrates, and aquatic plants; tox-
icity prediction using computer-assisted technology (e.g., TOPKAT) that quantifies the
electronic and shape attributes of structures of possible two-atom fragments using their
electrotopological state; and expert judgments about the alert structures, functional groups,
and partial structures that contribute to the development of toxicity because specialized
knowledge is required [19–27]. In contrast, the categorical approach is a method for group-
ing and evaluating the structural similarities of groups of substances that show similar or
regular patterns of toxicity [28–30]. This approach predicts untested results for other chem-
icals using test–result datasets already obtained for some of the chemicals in the category,
rather than requiring data for every single chemical. In addition, a hazardous-assessment
support system has been developed as an integrated platform that provides evaluation
support from the structure of chemical substances using the analogy of repeated-dose
toxicity [31–33]. Although such a structure–activity relationship can be applied to toxicity—
including mutagenicity, where the relationship between a certain chemical structure and
the molecular mechanism of the toxicological reaction is clear—uncertainties cannot be
ruled out for toxicity that results from complicated molecular mechanisms. Furthermore, in
the toxicology in the 21st century (Tox21) program in the United States—a unique federal
collaboration of the U.S. Environmental Protection Agency (EPA) and the National Toxicol-
ogy Program (NTP), which is headquartered at the National Institute of Environmental
Health Sciences, etc.—efforts are being made to evaluate toxicity in humans by construct-
ing a test system for evaluating the reactions between proteins and chemical substances
that have possible toxicity together with a high-throughput evaluation system for many
chemical substances [24–37]. However, problems with this approach include the fact that
the toxic effects in vivo are not always clear for a large number of test substances obtained
from in vitro test results and the coverage of the prediction model. Hence, the domain
of applicability in which this model can generate predictions with a given reliability is
not clear.

Currently, studies using artificial intelligence-based (AI-based) toxicological prediction
systems that employ computer simulations based on the chemical structures of small
molecules and their toxicological mechanisms have become prominent in various fields
because of the incredible performance of convolutional neural networks (CNNs) that
capture and identify features by the repeated division and compression of large amounts
information, such as that contained in images [38–41]. In this review, we summarize the
latest studies on in silico prediction models of chemical and toxicological actions as novel
QSAR strategies using AI-based image classification.
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2. Toxicological Evaluation Approach
2.1. Toxicological Knowledge Framework and Tox21 Project

In addition to reinforcing evaluation methods that combine safety factors with conven-
tional toxicity tests, the practical integration of comprehensive gene-expression networks
induced by chemical exposure in experimental animals with bioinformatics technology is
attracting attention as a new hazard-assessment system that eliminates the use of animals
as an alternative to conventional methods.

The goal of the Tox21 project was to establish a high-throughput toxicological-evaluation
method that did not rely on experimental animals, using the initial interactions of chemical
compounds with proteins in vivo, including nuclear receptors, to elucidate the toxicological
pathways. It embodies the idea of an adverse-outcome pathway, which is a structured de-
scription of a sequence of causal events at different levels of the biological system that lead
to an adverse health or ecotoxic effect. The central component of this proposed approach is
a toxicological knowledge framework built to support a chemical-risk assessment based on
mechanistic reasoning [42,43].

2.2. Convolutional Neural Networks

A CNN is a type of deep-learning system that specializes in image recognition. After
repeating the combination of the “convolution layer” and “pooling layer” multiple times, it
finally outputs the result through a connected layer [44,45]. “Convolution” is an image-
processing technique that extracts image features through a filter or kernel. At the same
time, as the features of the image are emphasized, recognition accuracy is improved by
creating a model that is resistant to “positional deviation”. In CNN, it is common to insert
a pooling layer between consecutive convolutional layers. The role of the pooling layer is to
reduce the size of the spatial dimension, where a parameter, that is, the amount of computation,
can be reduced, and overfitting can be controlled, and the pooling layer works independently
for each depth of input. “Pooling” is an operation that reduces space in vertical and horizontal
directions. One pooling method referred to as “mean pooling” averages the numerical values
in a filter; another, referred to as “max pooling,” simply takes the maximum value [46].
CNN architecture, AlexNet, was designed by Alex Krizhevsky in collaboration with his
Ph.D. supervisors, Ilya Sutskever and Geoffrey E. Hinton (Figure 1) [47–49]. This structure
has five convolutional layers, some of which have max pooling layers. In addition, three
fully connected layers with softmax functions are used for the output layer, so AlexNet
contains eight layers in total. It is a variant of a CNN design published by Yann LeCun
et al., and it applies backpropagation to Kunihiko Fukushima’s CNN architecture called
Neo cognition [50–54]. It adopts the rectified linear unit (ReLU) function, Dropout, and
data expansion as features to improve accuracy [55,56]. The depth of the model is essential
for high performance, and although it has a high computational cost, it was realized by
using Graphic Processing Units (GPUs). A GPU Coder can be used to generate optimized
code for prediction of various pretrained deep learning networks from a Deep Learning
Toolbox.
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Figure 1. Architecture of a CNN model of AlexNet (Front. Bioeng. Biotechnol. 2019, 7, 65. [57]).

Another type of CNN model is the visual-geometry group proposed in 2014 and
announced by a research group at Oxford University. ImageNet is one such model, which
has been implemented and pretrained and can be used easily. It is available in TensorFlow,
PyTorch, etc., [58,59]. This model uses a CNN with 16 layers (VGG16) or 19 layers (VGG19)
and, similar to AlexNet, it has a fully connected layer that greatly increases the number of
parameters, resulting in a heavy network. However, it has good accuracy, is easy to use,
and has a simple architecture. It uses many convolutions with a small 3 × 3 kernel size.
After VGGNet, structures such as ResNet, with increasing numbers of channels, have been
used in various models [60–65]. They repeat the flow of convolutions two or three times
and then employ max pooling. Moreover, the number of channels is doubled by using
a convolution after the pooling process and using ReLU as the activation function after
each convolution. Each convolution has the following parameters: kernel size 3 × 3, stride
1, and padding size 1. This convolution is easy to use, in that the size of the feature map
does not change, and it is widely used in other CNNs. Furthermore, connecting two 3 × 3
convolutions reduces the number of parameters, compared to one 5 × 5 convolution, and it
has the same receptive field. This multiplexing of layers increases the number of times the
activation function is applied, which increases its expressiveness. However, this structure
has the problem that the number of parameters to be learned is relatively large, due to the
large number of channels and the three fully connected layers at the end.

2.3. GoogLeNet

GoogLeNet is another pretrained CNN, which has 22 layers, and has won the 2014
Image Classification Challenge Contest (Figure 2) [66–69]. The main feature of GoogLeNet
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is the Inception module, a small network that consists of multiple convolution layers, which
convolve the original input image, and pooling layers, which reduce the original image
while retaining important information. A large CNN can be constructed by stacking several
Inception modules. The Inception module actively uses 1 × 1 convolutions—also called a
bottleneck layer or pointwise convolution—which is a method for calculating by dividing
the convolution into vertical and horizontal directions. The convolution in each channel
direction has the same effect as dimensionality reduction, which reduces the number of
calculations, and multiplex layers apply various transformations and concatenate them
all together. This improves the drawback of CNNs, in which the image size decreases as
the convolutional layers become deeper. Approximating the result with a small group of
convolutional filters improves the trade-off between the expressiveness of the model and
the number of parameters. In the convolution layer, this number is given by the number
of input channels × number of output channels × kernel size, excluding the bias term. A
normal convolution is dense because all parameters have some value, but Inception does
independent convolutions of different sizes, which greatly reduces the number of non-zero
parameters by applying multiple convolution layers in parallel and finally concatenating
and processing the result of the computations.
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Figure 2. The CNN model in GoogLeNet consisting of a 22-layer-deep neural network. (a) Imple-
mented with a novel element dubbed an Inception module. Sub-networks consisting of pooling,
convolution, softmaxActivation, and softmax named by auxiliary loss is added in this main line to
prevent the vanishing gradient problem. (b) Inception module: a module intended to have high
expressive power while reducing parameters, by internally creating paths of various sizes and per-
forming quantification by reducing the dimension of each path (Front. Bioeng. Biotechnol. 2019, 7,
65. [57]).

In GoogLeNet learning, classification is performed even in sub-networks that branch
from the middle of the network, and auxiliary loss is added to prevent the vanishing-
gradient problem that occurs in machine learning when a neural network using a gradient-
based learning method and error backpropagation becomes so small that learning becomes
uncontrollable [70–72]. When learning uses backpropagation, which computes the gradient
of the loss function with respect to the weights of the network for a single input-output
example, the weight of each node in the neural network is updated in proportion to the
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gradient obtained by partially differentiating the loss function calculated at each step
with the weight of its node. The vanishing-gradient problem is caused by this gradient
becoming so small that the neural network weights are less likely to be updated. In the
worst case, weight updates may not occur at all. With classical activation functions such as
a hyperbolic tangent function or a sigmoid function, the backpropagation method uses the
chain rule, which works backward from the output layer of the neural network to calculate
the partial derivative of the loss function concerning the weight of each node. As a result,
by propagating the error directly to the middle layer of the network, vanishing gradients
can be prevented and the network can be regularized. In addition, since the same effects
as ensemble learning can be obtained, improvement in generalization performance can
be expected. Moreover, even if the auxiliary loss is not introduced, learning may progress
similarly by adding batch normalization. GoogLeNet also introduces Global Average Pooling
(GAP) as another feature [73]. A fully connected layer has conventionally been used as the last
layer, but overfitting—a phenomenon that reduces versatility—has often been a problem.
By adopting GAP instead of using fully connected layers, GoogLeNet reduces overfitting.
A deep neural network is a mathematical model that mimics the human brain. It is a neural
network with four or more layers that supports deep learning and deepens the layers.
GoogLeNet can be thought of as a pretrained deep neural network since CNNs are a type
of deep neural network. In addition, deep neural networks also include autoencoders
that have the same input and output data. Recursive neural networks also exist. They are
used for natural-language processing, e.g., for languages such as Japanese and English that
humans normally use.

Furthermore, pre-learning is a technique in which each layer first learns and then is
connected to other layers. This solves the vanishing-gradient problem that occurs when
deep learning is performed because learning does not progress in the middle of a layer.
A “pretrained deep neural network” is therefore a neural network with four or more
layers designed to avoid the vanishing-gradient problem. GoogLeNet, a pretrained CNN, is
designed to avoid the vanishing-gradient problem. It is a model that is mainly used in the
field of image classification. The technology reads the elements of an image and determines
the category to which it belongs. It achieves this using AI, which is a field in which CNNs such
as GoogLeNet excel. Therefore, it can be used without training. To explain the mechanism
of image classification simply, after inputting the original image, the image is converted
into a form that can be categorized easily, and the elements are extracted and categorized in
a format that is easy for the computer to understand. Based on the classification result, the
image is classified into a category set by humans. Depending on the training dataset, the
ImageNet dataset can classify images into 1000 types of object categories, such as keyboard,
mouse, pencil, many animals, etc. Similarly, the Place365 dataset can classify images into
365 types of places, such as fields, parks, runways, lobbies, etc.

In addition, GoogLeNet is capable of transfer learning, which can further improve
performance by generating new image-classification patterns and by creating a new model
by slightly modifying what has been learned from a training model. This can shorten the
learning time by eliminating the startup time required to collect data and learn it. In image
classification using GoogLeNet, the sizes of images that can be processed in principle are
224 × 224 squares. Thus, it is necessary either to prepare a square image in advance and
convert it into a square in the program, or program the system so that the image does not
have to be a square. After reading the image and adjusting its size, GoogLeNet uses a
function that performs the classification process, specifies the image above, and processes
the classification. Finally, it displays the predicted category into which the read image has
been classified.

2.4. Xception

Xception is an evolution of the GoogLeNet model; additionally, it is an improved
model of the Inception method in GoogLeNet with a depth of 71 layers and ~5.5% error
rate. A characteristic of the Xception architecture is the separable convolution layer, which
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can completely separate the information in the spatial direction and in the channel direction
for convolution. Xception achieves high accuracy in large-scale image recognition with the
same parameters through parameter reduction. Additionally, instead of ordinary convolution,
Xception uses pointwise and depthwise convolutions, which have a skip connection, identity
mapping, and no nonlinear function between depthwise and pointwise convolutions,
instead of ordinary convolution. In contrast, Inception, the origin of Xception, contains a
nonlinear function because the corresponding depthwise convolution does not convolve
channel 1; hence, nonlinearity is important in such cases. As for computational complexity
and the number of parameters in ordinary convolution layers, the input feature map size is
F × F, the number of input channel size is N, the kernel size is K × K, and the number of
output channels is M. Then, the computational complexity of this convolutional layer is
F2NK2M because the cost of convolution per point in the input feature map is K2N, and by
applying this to the F2 points in the input feature map, a 1-channel output feature map is
generated, and there are M output feature maps. In M output feature maps, the amount
of calculation is the same as above; however, there are M types of convolutions with K2N
parameters, so it has K2NM parameters.

The key to Xception and MobileNets is to reduce the amount of computation and the
number of parameters by devising the configuration of the convolutional layers. Partic-
ularly, while ordinary convolution convolves simultaneously in the spatial and channel
direction of the feature map, both factorizes the channelwise (pointwise convolution) and
the spacewise convolutions (depthwise convolution). The pointwise convolution is a 1 × 1
convolution used to skip connections such as ResNet. Although convolution in the spatial
direction is not performed, convolution in the channel direction is performed. Pointwise
convolution is the normal convolution, where K = 1; hence, the computational complexity
is F2NM and the number of parameters is NM.

Alternatively, depthwise convolution performs spatial convolution for each channel
of the feature map. Since convolution in the channel direction is not performed, the
cost of one normal convolution is reduced from K2N to K2; therefore, the computational
complexity of the convolution layer is F2NK2 and the number of parameters is K2N.
Applying pointwise and depthwise convolutions as described above makes it possible to
approximate an ordinary convolutional layer that simultaneously convolves in the spatial
and the channel directions with fewer parameters and less computational complexity.
Furthermore, computational complexity is reduced from F2NK2M to F2NM + F2NK2 and
ratio to 1/K2 + 1/M. Usually, M >> K2 (e.g., K = 3 and M ≥ 32), then the computational
complexity is reduced to ~1/9. Moreover, pointwise convolution is more of a bottleneck.

Xception model:
ReLU-depthwise-pointwise-BN-ReLU- depthwise- pointwise-BN- ReLU-depthwise-

pointwise-BN (+identity mapping)

2.5. MobileNets

MobileNets are a class of efficient models designed for mobile and embedded vision
applications, where computational, space, and power resources are typically limited. In
the past, the focus of model development was to improve accuracy by making it deep
and more complex. However, MobileNets was designed to maximize accuracy using the
limited resources of on-device and embedded applications. MobileNet architecture is
based on depthwise separable convolutions, which is a combination of depthwise and
pointwise convolutions. The streamlined MobileNets architecture uses depthwise separable
convolutions as the main building block of the network. MobileNets balance the trade-off
between accuracy and speed by multiplying the number of channels in the feature map
and the input image size by factors such as those with r < 1 while using the same network
architecture. Therefore, the MobileNets realizes high-speed image recognition on Mobile
while maintaining accuracy.

MobileNets model: depthwise-BN-ReLU- pointwise-BN- ReLU



Processes 2023, 11, 1296 8 of 25

3. Graphical Neural Networks (GNNs)

Graph theory is said to have started when Euler introduced it to problems such as the
seven bridges of Königsberg [74]. By definition, a graph is a data structure represented
by objects (nodes) and relationships between them (edges). An adjacency matrix A that
expresses whether there is a connection between two given nodes provides a representation
for handling graphs mathematically [75]. A degree matrix D represents the number of
edges connected to each node. The Laplacian matrix L combines these two: L = D − A; it is
normalized as follows:

A∈ RN × N ,

D∈ RN × N (1)

Lsym = D−1/2L D−1/2 = 1− D−1/2A D−1/2,

where N is the number of nodes.
The adjacency matrix A = (ai,j) of a graph G = (V, E), where V is the number of vertices

(nodes), and E is the number of edges, is a binary matrix that indicates whether two nodes
are adjacent; i.e., whether there is an edge between them. It is defined as:

(ai,j) = 1, (i,j) ∈ E (2)

0, otherwise

where E is the number of edges.
The degree matrix D = (di,j) of a graph G is a matrix in which the numbers of edges,

bond degrees, containing nodes are arranged on the diagonal. It is defined as follows:

(di,j) =→ ∑
k

ai,k, (i=j) (3)

0, otherwise

Conventional deep learning mainly deals with collections of individual data, vectors,
data arranged in grids, images, and sequential data, text, or voice. Because of a lack of
expressive power in dealing with various phenomena and data in the world, graph theory
was incorporated into deep learning and developed. For example, there are many GNN
models, which are neural networks designed for problems involving graphs, with graphs
as the core for multivariate time series [76–80]. In addition, graph-based machine learning
is gaining increasing attention in many fields. For example, it is possible to understand an
entire picture by processing local data separated by grids and overlaying several layers of
CNNs. Graphs, on the other hand, do not care about Euclidean distance, and they can be
used to combine data points related to an image and treat them as a data set.

Moreover, methods such as predicting ligand activity for compounds and target
proteins are used in a variety of applications by extracting molecular features from the
molecular structure using machine learning and using classification that evaluates the
structural similarity of molecules. Among them, a molecular graph convolution neural
network, which applies a deep learning model to chemical molecules, is used to more
efficiently realize learning and analysis based on molecular structures.

Another approach is representation learning. Low-dimensional vectors can be used to
represent nodes, edges, and subgraphs. While traditional methods of machine learning rely
on manually setting feature values, graph-embedded methods can learn them instead. How-
ever, graphical methods also have their drawbacks; they are inefficient because parameters
are not shared between nodes, and direct embedding cannot be generalized. Various GNN
forms have therefore been proposed to address these deficiencies. However, graphs have
the following difficulties, and deep learning, which has shown remarkable performance for



Processes 2023, 11, 1296 9 of 25

data such as images and natural language, has had problems in applications to graphs. First,
since a graph is not a tensor like an image, the definition of convolution is not trivial. Even
searching on a graph is not easy; for example, no known algorithm can solve the problem
of determining whether two graphs have the same shape in polynomial time (this is the
“graph isomorphism problem”) [81–83]. Furthermore, there are many different types of
graphs, e.g., undirected/directed, weighted/unweighted, labeled/unlabeled, large/small,
etc. The task to be solved for each is also different. In molecular-activity prediction, the goal
is to regress some value from the entire graph. Therefore, different algorithms have to be
designed for different tasks. In addition, memory and computational complexity become
bottlenecks when dealing with large-scale graphs, so efficient algorithms must be devised.

Furthermore, information and constraints specific to the domain in which the graph
appears may be intrinsically related to the task. For example, when treating a molecule
as a graph, it is important to think about the algorithm that is to be used to determine
the bond order and valence for each atom; for example, these quantities can only be
suppressed to a maximum of about five for phosphorus (P). While such constraints can
be used actively since the elements that determine the characteristics of the graph and the
nodes to be handled differ from domain to domain, it is difficult to design a unified and
general-purpose algorithm, and results tend to be scattered.

Over the past few years, many investigators have attempted to solve these prob-
lems by applying deep learning to graphs. The tasks that a GNN must perform include
classification, regression, clustering, ranking, link prediction, and relationship prediction.
Originally, graphs were often used to solve network-type optimization problems using
nodes and edges. Combining a graph with a neural network has expanded these applica-
tions. By using neural networks, especially deep learning, it has become possible to extract
feature values that could not be achieved with conventional network analysis.

The concept of a GNN first appeared in 2005, and since then, there has been a boom in
deep learning, and GNN research has become quite active. In particular, since 2016, major
methods have emerged, such as that of a Gated GNN and Graph Convolution Network
(GCN), which is an architecture that can learn embedded representations of nodes both
with and without supervision based on the features of the nodes [84–87] (Figure 3). When
obtaining an embedding representation for node A on a graph with a two-layer GCN,
the GCN computes the embedding representation of the node by repeated aggregation
of neighboring nodes. The inner part of Equation (4) below represents the calculation
of the first layer, in which node feature X is aggregated with the adjacency matrix A,
a weight W is applied, and a nonlinear transformation is applied. The second layer
receives representations of the nodes neighboring node A and computes an embedded
representation of node A itself; this corresponds to the outer part of the formula below. The
task on the graph is then solved using the final embedded representation of node A.

Za = f [Af (AXW(0)) W(1)] (4)

The disadvantage of a GCN is that—since the representation of a node is calculated by
aggregating all adjacent nodes—if there is a node with a high degree, such as a node in a
large-scale graph, the number of nodes to be calculated may increase accordingly.
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A GNN repeats convolutions like a CNN. For example, a CNN convolves information
from image data in eight directions: up, down, left, right, and obliquely. The difference
is that a GNN convolves information either around a target node or for the entire graph.
There are various types of GNN methods. When convolving information into nodes, the
Aggregate and Combine processes are common, but the specific methods in the two are
different. Aggregate performs the task of aggregating information from adjacent nodes,
while Combine performs the task of updating node information from the information
collected by Aggregate. When performing graph classification/regression tasks, the final
feature value of the entire graph is generated by a method called Readout. In the most basic
form of deep learning that deals with graphs, the latent vector hi for node i is obtained
through the following steps. Using the learning function F(x), apply the following formula
until the latent vector hi converges.

Step 1: ∑
j∈N(i)

F (hi, hj, Fi, Fj, Fij)→ hi (5)

This captures the features around node i. Then compute the output using the learned
function O(x):

Step 2:Yi = O(hi, Fi). (6)

Here, F(x) and O(x) can be modeled with an ordinary forward-propagating neural
network [85]. Weights are learned by iterative error backpropagation to minimize the error
between Yi and supervised labels (e.g., using the Almeida–Pineda algorithm). In addition,
when obtaining the latent vector for the entire graph, it is possible to use the latent vector
by considering something like a master node that is adjacent to all nodes. However, this
method has several drawbacks and is not very practical. Step 1 does not end unless F(x) is a
contraction map. Since the recursive process in Step 1 is repeated, the amount of calculation
is large. A gated-graph sequential neural network (GGS–NN) replaces the recursion process
in Step 1 with a Gated Recurrent Unit (GRU), which is the gating mechanism in a recurrent
neural network (RNN) and which has better performance on certain smaller datasets and
removes the constraints of contraction mapping [86–92]. The GRU concept can be expressed
using the following formula:

ht = (1− z)· ht−1 + z· f (xt + r· ht−1). (7)
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That is, the hidden state ht is updated by the weighted sum of the following two ele-
ments. One is the hidden state ht−1 one step before. The other is a nonlinear transformation
of the input xt and the hidden state r · ht−1 weighted by f. For example, if z = 1, the input
is ignored, and the hidden state is preserved. Conversely, if z = 0, a new hidden state is
calculated from a nonlinear transformation of the input and the hidden state. The quantity
r affects the computation of new hidden states. If r = 0, the new hidden state is computed
from the input only, while if r = 1, both the input and the hidden state are used. The values
of z and r are also computed from xt and ht−1. Compared to a simple RNN, a GRU enables
hidden-state retention by updating the gate z and thus providing long-term memory. In
addition, a more compact hidden representation can be obtained by enabling the removal
of hidden states using the initialization gate r.

GNN can handle atypical and complex data that cannot be handled by Multilayer per-
ceptron, CNN, etc.; hence, most methods, such as deep learning, computer vision, natural
language processing, etc., are developed based on a graph. Initially, graph theory was intro-
duced as a one-stroke problem such as the Seven Bridges of Königsberg by Euler. Currently, it
is widely applied to molecular structure analysis, etc. Graph is a data structure represented
by objects (nodes) and relationships between them (edges). Conventional deep learning
mainly deals with collections of individual data (vectors), data arranged in grids (images),
and sequential data (text). Therefore, graph theory is adopted because it lacks expressive
power when dealing with data. Specifically, understanding the whole picture is possible
in CNN by processing local data separated using grids and overlaying several CNN lay-
ers. Conversely, the Euclidean distance is irrelevant in graphs, and data points related to
“objects” can be combined and treated as a data set.

Another feature of GNN is representation learning. Low-dimensional vectors can
represent nodes, edges, and subgraphs. In graph analysis, traditional machine learning
methods rely on manually setting of the feature values, whereas graph-embedded methods
can learn. However, it also has disadvantages: it is inefficient because parameters are
not shared between nodes, and its direct embedding cannot generalize. Furthermore, an
open problem with GNN is that they are vulnerable to adversarial attacks as a family of
neural networks. In addition, GNN is entirely a black box, and only some explanations are
available on the model based on examples. Furthermore, prelearning on graphs has just
started, and their research has different problem settings and viewpoints; therefore, a wide
range of research is still required in this field. Graphs are also becoming flexible. Thus, more
complex graph structures and powerful models are required for real-world applications.

4. Current QSAR

The safety of chemical substances is generally evaluated through biological tests using
animals, cells, microorganisms, etc. However, testing such a large number of chemicals is
impractical due to labor, time, expense, and animal welfare considerations. Therefore, effec-
tive screening tools for rapid and accurate identification of hazardous chemicals without
relying on biological testing are essential. Currently, several QSAR tools are used for hazard
prediction, but the prediction results have not been practically used (Table 1) [92–95]. In
contrast, QSAR is a method for in silico prediction of chemical substances that are likely to
cause adverse effects due to their chemical structures. Mutagenicity prediction with QSARs
is one of the QSAR approaches used for assessing the effect of chemicals on the human
health. This is a chemical structure–toxicity relationship study that predicts the toxicity
of a substance based on the known activity of structurally similar substances without
conducting biological toxicity tests. Because chemical toxicity is generally quantitatively
correlated, toxicity by QSAR predicts an endpoint toxicity.
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Table 1. Current Prediction Modeling Methods.

Methods Targets Model Data Ref.

Similarity-based
machine learning acute aquatic toxicity

distance-weighted
k-NN model, kernel-
weighted local
polynomial model

acute toxicity data of 495 organic
compounds to D. magna [94]

InterPred website tool

chemical
autofluorescence and
luminescence
interference

rule-based
classification models

DSSTox Database
(∼800,000 chemicals) [95]

Prioritization Strategy hazardous chemicals Conformal prediction
models

Tox21 and ToxCast
(∼55,000 chemicals) [96]

Open-source QSARs
and expert
system-based toolset

hazards and toxicity of
priority pollutants

docking exploration
models

oroform, 2-chlorophenol, 2,4,6-tri-
chlorophenol, pentachlorophenol,
and 2,3,7,8-TCDD) wer

[97]

However, the mutagenicity test (genotoxicity test) is not a quantitative evaluation, but
the results are binary regardless of whether they are mutagenic. Therefore, it is easy to
verify the prediction model, that is, if the prediction is correct or incorrect. Currently, there
are two main mutagenicity QSAR models: rule-based and statistical-based. The rule-based
model defines characteristic substructures that bring about positive results from the known
rule-based QSAR data, and qualitatively predicts test results based on ruled empirical rules.
In contrast, statistics-based QSAR is an AI model that predicts test results using machine
learning, such as multivariate analysis and pattern recognition, by converting the structure
into geometric, electronic, and physicochemical descriptors, using those descriptors that
are highly correlated with the positive test results after decomposing the structure of a
chemical substance into fragments. As for these QSAR models, there are issues regarding
prediction performance, selection of descriptors, or practical realization.

Furthermore, comparative molecular field analysis (CoMFA) attracts attention as a
recent QSAR topic [93]. Conventional QSAR can be analyzed in a relatively short time and
is relatively easy-to-handle without requiring any special program software or computers.
However, to handle only 2D structural formula information, it is difficult to explicitly handle
3D structural information of drugs, which is often important for the expression of drug activity.
Therefore, in addition to the drug activity value, the 3D structure of the drug is input, as well
as field data are calculated based on the 3D structure of the drug and the charge of each atom
is used as a parameter. Finally, the partial least squares (PLS) method, which combines
principal component analysis and multiple regression analysis, is used as a statistical
analysis method. The field data are obtained by embedding a compound in a 3D lattice
and calculating steric effects and electrostatic field representing the steric effect and the
electronic effect, respectively, using probe atoms at each lattice point. Performing statistical
analysis is possible using such grid point data that explicitly includes the 3D structure.

5. Deep Snap

Conventional machine learning approaches have the problem of reaching a plateau
in predictive performance when building predictive models using large-scale input data
as the number of times of learning increases. AI is also a promising tool for achieving
advanced QSAR toxicity predictions [98–101]. Previously, molecular descriptors—which
are indices that can be derived from the structure of the molecule, and which determine its
properties, especially in the field of cheminformatics—have been used to transfer chemical-
structure information to deep learning. However, since deep learning can directly use
image information as input data, this conventional method indirectly uses the molecular
structure and does not fully utilize the performance of deep learning. Therefore, one of us
(Y.U.) developed a new structural-information input method called “Deep Snap” that is part
of the image processing and allows learning of the characteristics of an entire molecule from
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image data [102]. This method can automatically extract molecular features directly from
the molecular structure without computing descriptors or the need for skilled techniques.

In the Deep Snap method, high-throughput conformer generation for large numbers
of chemical compounds is first performed by a Molecular Operating Environment (MOE)
application software program [103] (Table 2). Then, one three-dimensional (3D) structure
per compound, defined with rotatable torsions, is optimized to generate a single low-
energy conformation using the CORINA Classic software, and this is finally converted
into the Simulation Description Format (SDF). In this format, 3D molecular structures
are depicted as 3D ball-and-stick models, with different colors corresponding to different
atoms. These are captured automatically as snapshots at user-defined angles on the x-, y-,
and z-axes and saved as a PNG file with 256- × 256-pixel resolution (Figure 4). All the
PNG image files produced by Deep Snap are utilized as input datasets to the Nvidia Deep
Learning GPU Training System (DIGITS) on a four-GPU system, Tesla-V100-PCIE, which
is a pretrained open-source deep-learning model, Caffe with ILSVRC (ImageNet Large
Scale Visual Recognition Challenge) 2012 dataset extracted from ImageNet using the CNN
GoogLeNet, which is a 22-layer-deep CNN consisting of two convolutional layers, two
pooling layers, and nine “Inception” modules. Each Inception module has six convolution
layers and one pooling layer and utilizes four million parameters for image classification.
It is implemented using open-source software on CentOS Linux (Figure 5).

Table 2. Prediction Models Constructed using Deep Snap–Deep Learning Method.

Target Key Molecules AID Chemicals
Number max_ROC_AUC Tra/Val/Test

Ratio Ref.

constitutive androstane receptor agonist 1224892 7141 0.999 4:4:1 [103]
constitutive androstane receptor agonist 1224892 9523 0.791 2:1:1 [57]
glucocorticoid receptor antagonist 720725 7537 0.983 7:1:2 [104]
thyrotropin-releasing hormone receptor agonist 1347030 7662 0.934 3:1:2 [104]
transforming growth factor beta antagonist 1347032 7604 0.918 7:1:2 [104]
aryl hydrocarbon receptor - 201 0.959 2:2:1 [105]
progesterone receptor antagonist 1347031 7582 0.999 3:3:1, 4:4:1 [106]
thyrotropin-releasing hormone receptor antagonist 1259393 6663 0.998 4:4:1 [107]
progesterone receptor agonist 1347036 7586 0.951 5:1:3 [108]

Target key molecules: molecules for the construction of the prediction model; AID: bioassay records; chemicals
number: total number of chemical compounds for the construction of the prediction model; max_ROC_AUC:
maximum value of the ROC_AUC of the constructed prediction models; Tra/Val/Test ratio: ratio of the number
of chemical compounds for the construction of the prediction model; and ref.: reference number.

Numerous parameters must be adjusted to use the Deep Snap method. Previous in-
vestigations have studied the effects of the following parameters on the performance of the
prediction models: (1) the number of molecules per SDF, (2) the zoom factor percentage,
(3) the atom size for the van der Waals percentage, (4) the bond radius, (5) the minimum
bond length, and (6) the bond tolerance [57,104–106]. The results suggest that optimal
thresholds exist for attaining the best performance with these prediction models. In addi-
tion, using the Deep Snap approach with information about the chemical structure and
activity from the Tox21 10K library, investigators have constructed 35 prediction models for
nuclear-receptor agonists or antagonists [107]. Three prediction models outperformed the
best-performing models in the Tox21 Data Challenge 2014. However, the Deep Snap–Deep
Learning method is a complex system that consists of four steps: the preparation of a
3D molecular structure from one-dimensional chemical information, the generation of a
snapshot image of the 3D chemical structure, the construction of prediction models with
deep learning, and statistical calculations.



Processes 2023, 11, 1296 14 of 25

Processes 2023, 11, x FOR PEER REVIEW 13 of 25 
 

 

one of us (Y.U.) developed a new structural-information input method called “Deep Snap” 
that is part of the image processing and allows learning of the characteristics of an entire 
molecule from image data [102]. This method can automatically extract molecular features 
directly from the molecular structure without computing descriptors or the need for 
skilled techniques. 

In the Deep Snap method, high-throughput conformer generation for large numbers 
of chemical compounds is first performed by a Molecular Operating Environment (MOE) 
application software program [103] (Table 2). Then, one three-dimensional (3D) structure 
per compound, defined with rotatable torsions, is optimized to generate a single low-en-
ergy conformation using the CORINA Classic software, and this is finally converted into 
the Simulation Description Format (SDF). In this format, 3D molecular structures are de-
picted as 3D ball-and-stick models, with different colors corresponding to different atoms. 
These are captured automatically as snapshots at user-defined angles on the x-, y-, and z-
axes and saved as a PNG file with 256- × 256-pixel resolution (Figure 4). All the PNG image 
files produced by Deep Snap are utilized as input datasets to the Nvidia Deep Learning 
GPU Training System (DIGITS) on a four-GPU system, Tesla-V100-PCIE, which is a pre-
trained open-source deep-learning model, Caffe with ILSVRC (ImageNet Large Scale Vis-
ual Recognition Challenge) 2012 dataset extracted from ImageNet using the CNN Goog-
LeNet, which is a 22-layer-deep CNN consisting of two convolutional layers, two pooling 
layers, and nine “Inception” modules. Each Inception module has six convolution layers 
and one pooling layer and utilizes four million parameters for image classification. It is 
implemented using open-source software on CentOS Linux (Figure 5). 

 
Figure 4. Image production and angle in the Deep Snap. Number of pictures are determined by 
automatically capturing 3D chemical structure as snapshots at user-defined angles on the x-, y-, and 
z-axes. Then, it was saved as a PNG file with 256- × 256-pixel resolution for the Deep Learning pro-
cess. If the view was set as (180, 180,180), eight image pictures (A–H) were produced by the Deep 
Snap. 

Figure 4. Image production and angle in the Deep Snap. Number of pictures are determined by
automatically capturing 3D chemical structure as snapshots at user-defined angles on the x-, y-, and
z-axes. Then, it was saved as a PNG file with 256- × 256-pixel resolution for the Deep Learning
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Figure 5. The Deep Snap–Deep Learning procedure. The chemical structure in the SMILES format is
converted into a 3D structure in an SDF file. By applying Deep Snap, the 2D chemical-image data are
utilized as the input dataset for Deep Learning; the feature values were extracted automatically using
a CNN (Front. Bioeng. Biotechnol. 2019, 7, 65. [57]).

To improve these complicated processes, a novel one-step system that executes Deep
Snap sequentially using TensorFlow and Keras has been reported [108]. The effects of angles
on the generation of images have also been investigated using two Deep Snap systems: Ten-
sorFlow/Keras and DIGITS. Similar to the results obtained with DIGITS, the construction
of a model showing high prediction performance has been observed with Deep Snap using
TensorFlow/Keras. These results suggest that the 3D chemical-structure representation in
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the Deep Snap–Deep learning approach may be useful for molecular-image-based QSAR
analyses, and improvements to the Deep Snap–Deep learning method may aid in achieving
high-performing prediction models in various fields.

6. Explainability of Deep Learning

Unlike conventional machine learning models, neural networks, the underlying algo-
rithms of deep learning technology, are characterized by reduced feature engineering costs
with excellent discriminative and expressive power. However, the basis of the model’s
judgment is difficult to interpret. This is called the “black box problem” and is one factor
that makes applying AI technology in the society difficult. While this is applicable to
machine learning in general, it is particularly challenging in neural networks. Generally,
higher the complexity of a model, the more difficult it is to explain. For example, neural
networks are more “complex models” than relatively simple decision trees. Since the
black-box nature hinders the social implementation of AI, attention has been recently paid
to the interpretability of AI and machine learning models. Therefore, AI that can explain
the background of the output result and the basis of the judgment is generally called
explainable AI, or XAI for short. Some XAI techniques can be applied to unstructured data,
such as images, and structured data. Recently, the application scope of XAI has expanded,
such as optimizing behavioral patterns for reinforcement learning.

The representative methods used to interpret models are divided into two approaches:
(i) local surrogate and (ii) global surrogate. (i) Local explanations focus on specific input
data samples and their prediction results, rather than the overall trend of the model, to
interpret and visualize the basis for judgment. Specifically, predictive factors are estimated
by approximating a complex model with a simple and highly readable linear model. For
example, for tabular data, variables effective in predicting this time are calculated, and
for image data, part of this image effective in predicting is calculated. Approximating the
entire model can be complicated and difficult to understand, so it is important to focus
on the prediction results of a single sample and provide an interpretation. Conversely,
a global explanation analyzes the model as a whole and examines the contribution of
each feature to interpret the prediction basis, such as Grad-CAM, which is a method for
visualizing the prediction basis for the entire CNN model. The gradient information used
by the CNN model for image classification gives the image recognition model a basis for
judgment. The idea is to determine the pixels with high gradients, which significantly affect
the predicted class output, and then assign weights to them. A heatmap then displays the
range that CNN presumably analyzes for classification. In addition, local interpretable model-
agnostic explanations (LIME), which is a representative technique for local explanations,
approximates individual input data with a separate simple model. In contrast, the Grad-
CAM method gives the deep learning model a basis for judgment.

Deep learning can achieve extremely high accuracy in specific fields, and its range
of applications is expanding rapidly. However, such deep learning techniques also have
weaknesses. Among them, the biggest problem is determining the basis for their judgment.
Deep learning is good at learning the features in the data during the learning process. This
eliminates the need for humans to extract features, but conversely, it is up to the network to
decide which features to extract. As the name suggests, the extracted features have latent
weights in the deep network, and it is challenging to extract the “something” that they
learned in a form that humans can understand. In other words, “it should be learning
something without knowing what it is learning”. This is the interpretability problem in
deep learning. Sharing the process is important to be satisfied with the decisions made.
Deep learning has made great strides in images, and these methods are an effective way
to understand the decision-making process. First, the following two viewpoints exist for
understanding the basis of deep learning decisions

• Understanding the mechanism: Understand the process regarding the type of action
performed by the model to reach the output (white box understanding).
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• Understanding behavior: Understand the output type depending on the input type
(Black box understanding).

Since the “explanation” is given to humans, it must naturally be in an “expression” that
humans can understand. However, it cannot explain even if it can “express”. Even if the
expression is recognizable by humans, it may not have explanatory power. This difference
between representation and description is defined as follows:

• Representation: Human-understandable representation, converted explicitly into
image (visualization) or text. However, the mere enumeration of numbers and words
does not correspond to expressions.

• Explanation: “Representing” the features (pixels in the input image, words in the
input text, etc.) that contribute to the output of the network.

In other words, “explanation” is not simply “expression,” such as visualization or
writing, but it becomes “explanation” only after “expressing” the feature value that con-
tributes to the output of the network. Thus, there are two steps: (i) calculating the influence
of each input on the output, and (ii) then expressing it in a human-understandable form.

Techniques for actually explaining the output of a network can be broadly divided
into the following.

• create an input that maximizes the output of the network
• analyze the sensitivity of the input
• reverse the path from the output to the input
• estimate output trends from various inputs
• infer judgment criteria from the amount of change
• remediate learning results to be predictable
• incorporate a point of view of the input into the model.

6.1. Activation Maximization

For a network dealing with classification problems, its output will have the classi-
fication probabilities for each category. Suppose we can find an input with a very high
classification probability for a certain category, then the network regards it as a “representa-
tive example” of that category, and if it can be identified, it is useful for inferring the basis
for judgment. When a network that has learned image features by unsupervised learning
(autoencoder) performs classification, there arises a problem of finding x* that maximizes
the probability p of being classified into class c, which is the minimal input.

x* = maxx log p (wc|x) − λ||x||2

There is also a method to constrain it to be on the unit sphere by setting ||x||2 = 1.
However, then the output will certainly be the maximum. Since there is a possibility of
mysterious images that humans cannot understand, a state like overfitting, there is also a
pattern that imposes a constraint closer to the actual input.

x* = maxx log p (wc|x) + log p (x)

p(x) means adding the probability that the data will appear. When the image features
are visualized using equivalent constraints, and if the input data have high dimensions, it
becomes very difficult to estimate this p(x) with high accuracy. Therefore, there is also a
method of combining with generative models, such as variational autoEncoder (VAE) and
generative adversarial networks (GAN), where x* will be generated from a suitable vector
z through the generator.

maxZ∈Z log p (wc|g(x)) − λ||x||2

The above equation shows the method of generating an image from z that is classified
into class wc. In GAN, there is an equivalent constraint to this constraint, i.e., the constraint
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that the generated image is classified into the same class as the real class. However, what
GAN aims for and what it aims for in understanding the basis for judgment are slightly
different. In short, it is better to be somewhat abstract than something that looks real.
Therefore, in the above equation, the λ||x||2 constraint is applied to suppress the width
of the expression. However, deep dream uses this technique and optimizes the input image
and random noise so that the output of the network is maximized.

6.2. Sensitivity Analysis

A feature is considered important if it considerably impacts the output by changing
the output. In other words, the importance of an input can be understood by examining
the amount of change that the network is sensitive to each input. This can be achieved
by looking at the gradient since differentiation can reflect the amount of change in an
output. Since neural networks primarily learn from gradients, this works well with existing
optimization mechanisms. The sensitivity to the input x can be easily calculated as follows:

S(x) = (∂f/∂x)2

SmoothGrad is a device that makes it look more beautiful. Since the gradient is too
sensitive to noise, it creates multiple samples with intentional noise and averages the results.
From these results, it is possible to identify the part of the change that increases or decreases
the error. For example, we know where to make the change to make it more like an object,
but we do not know why it is judged as an object in the first place.

6.3. Deconvolution

The deconvolution method has been proposed, where the network is propagated
to a certain layer and then back-propagated by setting zero to the part that need not
be examined, and the input contribution to this part can be backcalculated. To remove
negative values that attenuate the activation in this backpropagation, zero is set when the
value becomes negative during propagation or backpropagation. This results in nonlinear
processing that is equivalent to ReLU. We call this “guided backpropagation”. As a result,
we have succeeded in visualizing the important points.

Since we want to know only the part that contributed to the classification of the class,
a method of tracing the gradient backward from the desired label has also been proposed.
This is a method for calculating the contribution of each feature map up to class classification
and backpropagating with the weight. This allows you to obtain a heatmap-like output.
However, since the contribution is calculated in map units, obtaining contributions in pixel
units like the Guided backpropagation above is impossible.

In contrast, layer-wise relevance propagation (LRP) is a method that propagates the
relationship between layers in reverse and reaches the input. The idea is that the sum of
each input’s contribution to the output is equal across layers; only the distribution changes
during propagation. PatternNet/patternAttribution has been proposed as an improved
version of these methods. First, it is impossible to understand the basis for judgment simply
by analyzing the “weights” in the network in this method. This is because the input x is
first divided into s, which contributes to the final output y, and d; otherwise, s is noise
and is expressed as x = s + d. Then, considering that the output of the simple network is
wTx = y, weight w has the role of filtering d from x and extracting s, which contributes
to y. The role of the weight w is to cancel the noise d; moreover, the vector direction of
w depends on d, but it has no relationship with the desired s. Then, y = wTx = wT (s +
d), and since d should be canceled by w, wTd = 0 and wTs = y. Furthermore, y and d
should be completely uncorrelated, so cov[y,d] = 0, and cov [x,y] is equivalent to cov[s,y].
If the function to extract s from x is S(x), then cov[s,y] = cov[S(x),y]. Using this, S(x) can be
obtained. First, in a linear transformation, s, which can only output linear y, should also be
linear, so the correlation should be linear. Therefore, the following formula holds.

S = ay ≥ Sa(x) = awTx
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Substituting this into the cov relation above,

cov[x,y] = cov[S(x),y] ≥ cov[awTx,y] = acov[wTx,y] = acov[y,y].

a = cov[x,y]/cov[y,y] = cov[x,y]/σy
2

However, this is only a linear case and ReLU, which is often used for images, is a
nonlinear function that does not propagate in the negative direction. In this case, s and d also
need to be divided into s+ and d+ in the positive direction and s− and d− in the negative
direction. Thus, the enhanced DeConvNet/GuidedBackpropagation or LRP, which replaces
the backpropagated values with s+ and s−, are named as PatternNet or PatternAttribution,
respectively. In addition, the extraction ability of S(x) can be measured using the following
evaluation index ρ.

r(S) = 1−max corr
(

wTx, vT (x− S(x))
)
= 1−max

(
vT cov[d, y]

)
/
√

ρ2 vT d ρ2y

x − S(x) will have a very low correlation with wTx = y, resulting in a high value since
only d is a remnant after s is completely passed through. Hence, estimating the basis for
judgment with higher accuracy and measuring the estimation ability are possible.

6.4. LIME

The LIME method explores the behavior of the model not from a single input but from
variously deformed inputs. First, an input is generated that looks like the original image
is divided into several parts. Then, it is introduced to the trained model, and the decision
result is obtained. This result gives us a pair of input and model decisions and is learned
using a simple descriptive model prepared separately from the main model. This yields
the most important features from a simple trained model. Because of the simplicity of
the method, it can be applied to any model. Understanding black-box predictions using
influence functions formulates the effect on the output of this input data fluctuation. It
formulates the effect of each training data and the effect of changes to the training data;
this makes it possible to identify samples that contribute to the decision of the model or
decrease the decision accuracy, leading to changes that affect the decision of the model. In
addition, a machine learning model of the LIME mechanism identifies what is important
by masking the image, making it possible to visualize the important areas as masked areas.

6.5. Judgment Criteria Based on the Amount of Change

This is a method based on ensemble learning using decision trees. In each decision tree,
the amount of change to bring one decision result to another decision result is calculated,
and the smallest change is found among them. This method obtains the amount of change
at the minimum cost.

6.6. Constraint

The concept is to control the overall tendency while taking advantage of the expressive
power of the model, making it possible to reflect more detailed trends than accurately
applying linear models. In some cases, it would be better to increase the amount of data in
the first place, but there are often cases where it is not possible. Although there is a risk of
not being able to respond to situations that should be handled by imposing restrictions,
this method allows avoiding the risk of taking unpredictable behavior.

6.7. Attention

A method that introduces a mechanism that indicates the point of interest for the
input data to the model is called “Attention”. The basic idea of Attention is to use the
previously hidden layer and the past hidden layer when outputting. At that time, the
weight is distributed based on the important points. For example, when the hidden layer
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at time t is ht and the past hidden layer is hs, the attention (weight) for them can be defined
as follows.

at(s) = exp(score (ht, hs))/∑
s′

exp(score (ht, hs))

Many score variations exist, such as simply taking the inner product or preparing
weights for attention.

score(ht, hs) =


ht hs

ht Wa hs
va tanh (Wa[ht; hs])

Then, multiply this attention (weight) to create a vector (context) c for output at time t,
i.e., calculate the weighted average.

ct = ∑
s

at(s)hs

7. Discussion

QSAR and read-across predictions based on grouping approaches have been widely
used in the evaluation of pharmaceuticals and general chemical substances because they
provide information, such as target endpoints, without conducting tests. Additionally,
even in the Integrated Assessment and Testing Strategy, a new evaluation system that leads
to efficient testing and evaluation without conventional testing systems based mainly on
animal tests, predictions by QSAR/read-cross, etc. play an important role. In this way,
methods for predicting the activity of substances without conducting tests include the
QSAR model and the grouping approach, which is a general term for the analog/category
approach. Furthermore, the prediction of various properties of compounds is also carried
out in fields such as pharmacological activity and physical properties; however, the ap-
plication method is considerably different from that used for toxicity and its side effects.
Once the mechanism of pharmacological activity is clarified, predicting the activity of a
compound is possible based on the mechanism. QSAR is developed on the basis of drug
thermodynamics such as the movement of drugs from extracellular to intracellular and
reactivity at various receptor sites. In the docking approach, once the receptor enzyme and
the docking site are clarified, designing suitable compounds is possible by predicting the
pharmacological activity. In the field of toxicity or side effect prediction research, predic-
tion was initially conducted by chemical multivariate analysis or pattern recognition, and
chemometrics. Since then, rule-based AI has been implemented as AI-related technologies
have improved. Thus, there are currently only two types of in silico methods applied to
predict toxicity and side effects: (1) approaches based on chemical multivariate analysis
or pattern recognition, chemometrics, etc. and (2) approaches based on rule-based AI.
Compared with pharmacological activity and physical properties of drugs, various factors
are involved in its toxicity and side effects, making prediction difficult and limiting applica-
tion methods. Therefore, the prediction of toxicity and side effects of drugs is challenging,
and the application of in silico computer methods for their prediction is severely limited.
Furthermore, when considering individual methods for compound structure variability, the
QSAR response level is low as it is theoretically developed based on drug thermodynamics.
Therefore, the QSAR formula can only be applied if the compound structure has the same
basic skeleton and the positions of the substituents must also be fixed. In other words, the
prediction reliability of the QSAR formula is extremely high as long as the restrictions for
this compound’s structural formula are satisfied. However, the application of the QSAR
formula to compounds that do not meet this structural formula restriction ignores the
basic principle; hence, even if the prediction results are obtained in such cases, they are
completely unreliable. Basically, the prediction by the QSAR formula can be performed
only when structural formula restrictions are satisfied, and there is no point in applying
it to compounds that exceed the structural restrictions even a little. Furthermore, toxicity
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and side effect prediction of drugs basically needs to correspond to all compounds. In this
respect, QSAR has very little tolerance for compound structural variability; hence, it is a
method that is difficult to apply for toxicity and side effect prediction.

Conversely, chemical multivariate analysis or pattern recognition and AI methods
can handle all compounds based on the application principle; in this respect, the ability
to respond to compound structural variability is extremely high. Therefore, it is highly
possible to deal with compound structure variability, which is the biggest problem in
predicting toxicity and side effects. This point is a major reason why these two methods
have been applied not only in the past but are also used at present to predict toxicity and
side effects.

Additionally, in the case of ADME/T prediction, the expression mechanism is compli-
cated/difficult to identify, especially for toxicity and side effect prediction; furthermore,
it is not possible to identify the information on enzymes and receptor sites required for
structure-based drug-design (SBDD) and 3D-QSAR implementation. Therefore, SBDD and
3D-QSAR procedures cannot predict ADME/T. In future, it may be possible to apply it
to ADME/T if research based on the adverse outcome pathway (AOP) concept is actively
pursued in the field of toxicity, and the toxicity manifestation mechanism becomes clear.
Since QSAR is based on drug thermokinetics, it also partially involves pharmacokinetics
and pharmacodynamics of ADME.

To date, the QSAR system using deep learning has been applied in various fields, but
the QSAR system using 3D-chemical structure information has not yet been applied except
for Deep Snap. The prediction model constructed using Deep Snap showed a predictive
performance better than that of conventional machine learning methods such as random
forest and XGBoost. However, further improvement is needed to reduce the computational
cost, simplify the method, and achieve high throughput. In general, when learned with
deep learning, a reasonable performance can be demonstrated if there are about 5000 data
per class. However, if human-level accuracy is desired, a large-scale labeled data set of
about 10,000,000 items is essential.

In addition, despite the high predictive ability of the Deep Snap prediction model, the
explainability by which features extracted from CNN in the Deep Snap–Deep Learning
remains unclear. In other words, it is important to specify the part to be extracted as
a feature value by CNN and to interpret the predictions. Evaluations involving other
biomolecules in toxicology and biological systems are similarly applicable by delineating
3D-chemical structures using Deep Snap.

8. Conclusions

Recently, from the viewpoint of animal welfare 3R (replacement: use of alternative
methods, reduction: reduction of the number of animals used, and refinement: reduction
of suffering), the adoption of alternative methods for animal testing is progressing even
for chemical substances. Among these, in silico alternatives for animal experiments have
been developed for a long time, and QSAR is one of the most utilized methods. However,
QSAR has problems, such as its prediction performance, generalizability, and ability to
process significant amounts of data. Alternatively, prediction models using deep learning
have recently been shown to have high prediction performance and high data processing
capacity and are hence receiving attention. In this review, we demonstrated that a novel
QSAR system using deep learning based on molecular images can construct models with a
high prediction performance. Furthermore, by using 3D structural information, this system
may be able to utilize more structural information than predictive models using 2D graphs.
Therefore, this new system will be a powerful tool for predictive modeling in various fields.
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