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Abstract: This feasibility study utilized regression models to predict makespan robustness in dynamic
production processes with uncertain processing times. Previous methods for robustness determina-
tion were computationally intensive (Monte Carlo experiments) or inaccurate (surrogate measures).
However, calculating robustness efficiently is crucial for field-synchronous scheduling techniques.
Regression models with multiple input features considering uncertain processing times on the critical
path outperform traditional surrogate measures. Well-trained regression models internalize the
behavior of a dynamic simulation and can quickly predict accurate robustness (correlation: r > 0.98).
The proposed method was successfully applied to a permutation flow shop scheduling problem,
balancing makespan and robustness. Integrating regression models into a metaheuristic model,
schedules could be generated that have a similar quality to using Monte Carlo experiments. These
results suggest that employing machine learning techniques for robustness prediction could be a
promising and efficient alternative to traditional approaches. This work is an addition to our previous
extensive study about creating robust stable schedules based on deep reinforcement learning and is
part of the applied research project, Predictive Scheduling.

Keywords: surrogate measure; regression model; computational cost reduction; uncertainty; stochastic
processing times; robust scheduling

1. Introduction
1.1. Production Environments and Schedule Representations

In order to highlight the relevance of an efficient robustness estimation, production
environments and the representability of production schedules must be introduced. Pro-
duction schedules can be generated by mathematical methods for sequencing activities
by assigning them to limited resources in order to optimize an objective function [1]. To
depict different forms of manufacturing with specific constraints, a variety of optimization
models have been developed. Permutation flow shops (PFSs), which can often be found
in the industry, are suitable as an introductory example. According to Rossi et al. [2], the
following constraints apply in traditional PFSs regardless of uncertainties:

1. Every production job has m operations (activities), each to be processed on a different
machine (resource);

2. Within each job, the machines must be visited in a sequential order 1, . . . , m;
3. Operations of a job can only start when any previous operations of the job have been

completed;
4. Each machine can only process one operation at a time;
5. The job order is equal for all machines (jobs cannot overtake each other in the line);
6. All operations must be processed exactly once and non-preemptively.

Common deterministic objectives minimize the makespan (min Cmax), flow time or
total tardiness of jobs. Although the model is comparatively easy to formulate and has
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only one decision variable (order of jobs on the first machine), it is a non-deterministic
polynomial-time (NP) hard problem [2].

Other well-known production environments are the flow shop (FS), and job shop (JS)
as well as their flexible forms. The FS problem is a generalization of the PFS problem
without considering constraint 5. Accordingly, jobs in the production line can overtake
each other. The JS is another generalization of the FS without considering constraint 2. As
a result, the jobs can be based on different material flows with different machine orders.
In flexible environments, a machine must be selected from a set of alternatives for each
operation. This makes the problems even more difficult to solve, since a resource allocation
decision must also be made in addition to the sequencing decision [1].

Regardless of specific constraints and decision variables, a feasible solution to these
problems can be represented as a directed acyclic solution graph (DASG) G(O, Ψ) [3], where
O is the set of scheduled operations, and Ψ is the set of directed predecessor relationships
between the operations. For traditional production scheduling models with one resource
type and m ≥ 2 machines, every operation vertex in the DASG has Φ ∈ {0, 1, 2} outgoing
and incoming edges. Figure 1 shows different exemplary solutions to PFS, FS and JS
problems with three jobs and two machines. In addition to the DASG, a Gantt chart is
presented at the top to visualize the assigned operations on the timeline. The red arrows
highlight the critical path of the schedule. Dashed arrows represent job successors, and
solid arrows represent machine successors.

Figure 1. Exemplary feasible solutions to (flexible) PFS, FS and JS problems with three jobs and two
machines (Gantt and DASG representation).

1.2. Robustness Measures

Since many real-world production processes are influenced by uncertainties, there has
been a substantial amount of research on scheduling in dynamic environments that takes
into account factors such as uncertain processing times (UPTs) or dynamic events such as
machine failures. In contrast to reactive rescheduling, robust (syn. proactive, predictive)
scheduling plays a crucial role in anticipating uncertainties in advance. The aim is to create
a robust schedule (RS) in such a way that occurring events change its baseline structure as
minimally as possible [4–7].

Consequently, a robust scheduling problem is an extension of its deterministic coun-
terpart considering uncertainties and further objectives for robustness optimization [8].
Generally formulated, a baseline objective (min Z) is balanced with a robustness objec-
tive (min R). In addition, a number of constraints Θ1, . . . , Θη with stochastic parameters
are considered:

min Z

min R

s.t.

Θ1, . . . , Θη

Regarding R, prior studies such as [4,9] established a definition for robustness: A
schedule is robust when the performance of a realized robust schedule (RS*) deviates as
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minimally as possible from the performance of its baseline RS. The performance deviation
refers to a schedule metric Z (e.g., Cmax) before and after realization:

R = RSZ − RS∗Z

In order to obtain a reliable result, Monte Carlo experiments (MCEs) are required to de-
termine uncertainty effects in complex stochastic settings. Alternatively, surrogate measures
(SMs) can be used to quickly but inaccurately estimate R (see Section 1.3). In connection
with positive robustness values (R > 0 ⇐⇒ RSZ > RS∗Z), the RS was planned too conser-
vatively. Otherwise, if R < 0 ⇐⇒ RSZ < RS∗Z, the RS is too optimistic. Figure 2 visualizes
this effect: After realization of a schedule, there is a deviation between the planned and
actual makespan (RSCmax < RS∗Cmax

). Consequently, the RS was planned too optimistically.
The figure also shows machine idle times x1, . . . , x3, where an operation is not assigned
to the resource. x2 is a slack time between two operations that can be used to extend the
preceding operation without affecting the overall structure of the schedule.

Figure 2. Exemplary schedule with two jobs and two machines (Gantt representation).

In the context of robust scheduling, several authors consider stability S as a second
measure. According to most authors, a schedule is stable when the realized operations
o ∈ RS∗O are terminated as defined a priori [9]. Thus, S can be calculated by the sum of
absolute deviations of operation completion times oe:

S =
| RS∗O |

∑
i=1
| (RSOi )e − (RS∗Oi

)e |

Robustness R and stability S have been identified as conflicting measures [9–12].
Moreover, both measures are in a triangular conflict with several baseline objectives [10,12].
For this reason, it is recommended that robust scheduling methods balance these three
dimensions. Complementary to robustness measures, another part of the literature took
focus on fuzzy numbers, where different model parameters such as processing times or
due dates are represented as fuzzy intervals [13,14]. The practical advantage of using fuzzy
numbers is the easy calculability of operation completion times [3] or waiting times [15].
However, the calculation of robustness is likely not trivial in the context of more complex
uncertainty models and cannot be performed analytically [16]. This suggests that the robust
scheduling literature beyond fuzzy intervals mainly utilized SMs or MCEs.

1.3. Robust Scheduling Techniques

As this work is supplementary to our prior research, we direct readers to the section
“Literature Review” presented in [17], which provides an overview of relevant studies in
the field of robust scheduling. The studies have been classified based on the following four
dimensions:

• Scheduling stage: (A) RS generation in a second stage based on a given DASG. (B) Ag-
gregated with baseline objective optimization.

• Optimization technique: (A) Adding buffer times to critical operations. (B) Creating
neighbor solutions, e.g., by swapping operations.

• Evaluation technique: (A) Obtaining robustness by MCE. (B) Estimating robustness
by SMs.
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• Robustness objective: (A) Standalone robustness [R]. (B) Robustness and stability
[R, S]. (C) Robustness, stability and baseline objective [R, S, Z].

This study pays special attention to the third dimension, the evaluation technique. Ei-
ther R can be estimated by using SMs (see [5,8,16]) or by performing MCEs (see [4,10,11,18]).
On the one hand, MCEs require a lot of computational time but generate reliable results [16].
On the other hand, SMs, which are arithmetic measures to approximate R or S without
performing MCEs, can be calculated quickly but show an insufficient accuracy [8]. Tradi-
tional SMs are total or free slack time per operation, number of critical path operations per
machine and average makespan per neighbor RS [19]. Zahid et al. [20] provided a compre-
hensive survey of surrogate measures utilized both in production and project scheduling.
Their objective was to investigate various parameters that can aid the assessment of robust-
ness in the context of tardiness in project scheduling. Their results underline the importance
of total slack. More sophisticated SMs are presented in [8,16,21]. Xiao et al. [8] presented
two new surrogate measures that both consider the estimated robustness degradation of
the critical path as well as of the non-critical path. The authors highlighted the importance
of the inspection of the non-critical path, since other studies such as [22] only considered
operations on the critical path of a schedule. In a follow-up study [16], the authors analyzed
how the expected delay in the schedule realization is propagated downstream the schedule.
Both studies share a common set of limitations. Firstly, they necessitate a parameter set by
a decision maker. Secondly, the proposed surrogate measures are exclusively applicable for
normally distributed processing times. In each study, the authors recommended further
research for different distribution types. Yang et al. [21] criticized the fact that many SMs
under-utilize the available information contained in a schedule. Thus, the authors utilized
a single-hidden layer feedforward network with an extreme learning algorithm to predict
the robustness. Three types of information are integrated in the prediction, namely proba-
bility of machine breakdown, workload and location of total slack. The proposed method
eliminates the need for manual weighting of the three factors. The authors recommended
extending this approach to other types of uncertainties, such as uncertain processing times.
To the best of our knowledge, this is the only approach that utilizes machine learning
(ML) for robustness estimation. In contrast to these highly specific surrogate measures
designed for an individual class of problems, Himmiche et al. [23] proposed a modeling
framework based on stochastic timed automata that enables robustness evaluation based
on evaluation and model-checking techniques. The primary benefit of this approach lies in
its versatility, as it can be easily adapted to different types of workshops and different types
of uncertainties. Conversely, a significant shortcoming is the computation time, which
dramatically increases the the size of the workshop.

1.4. Motivation and Contribution of This Work

The study is motivated by lack methods to predict robustness measures, which are
efficient and accurate at the same time. According to Section 1.3, robust scheduling methods
utilize computationally intensive MCEs to obtain these measures, or SMs, which are either
imprecise due to under-utilization of available information or are highly specific and thus
not applicable to a wide range of problems. This leads to decisive disadvantages and short-
comings in field-synchronous scheduling methods. Thus, it should be investigated how the
advantages of accuracy and computational efficiency can be combined. The contribution
of this work is a method that merges the beneficial attributes of the methods outlined in
Section 1.3. It combines

• the analysis of disturbance propagation throughout the schedule [16];
• the utilization of different types of information in combination with ML [21];
• and the versatility presented in [23].

The approach utilizes regression models (RMs) to predict the makespan robustness
(R = RSCmax − RS∗Cmax

) based on generic DASGs with gamma distributed UPTs. Operations,
machines, noisy operations end times, idle and slack times are considered as a priori input
features for the RMs. In Section 2, the scope of the method is narrowed down. Moreover,
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hypotheses for validating the method are presented. Subsequently, details of the RMs, the
training data and the implementation are described. According to the hypotheses, the results
are presented and discussed in Section 3. It could be shown that RMs can predict very accurate
robustness scores in a very short computing time and without computationally intensive MCEs.

2. Method

In this chapter, we first present the scope and utility of the proposed method and for-
mulate hypotheses for verifying its contribution. Subsequently, we describe mathematical
modeling, implementation specifics, and training data related to the RMs.

2.1. Scope and Utility

In general, the prediction method is independent of the specific baseline problem, since
it is already based on the DASG representation of a generated schedule. It can therefore be
used for job shops and flow shops with m > 1 machines regardless of specific constraints
and baseline objectives. Due to the universal calculation of uncertainties and their effect
on the critical path (see Section 2.4), the method can also be applied to other types of
distributions. However, further uncertainties such as dynamic release times or due dates
are not taken into account in this proof-of-concept study.

To illustrate the utility and applicability of the method, Algorithm 1 provides a sim-
plified robust scheduling trajectory search. It is an abstract algorithm to show the basic
procedure of many current heuristics to optimize a baseline objective and/or robustness
measures. Here, a search method with n iterations is conducted, which successively gen-
erates neighborhood solutions of a schedule to identify a good local optima considering
stochastic and deterministic objectives. When utilizing MCEs in the EVAL function to
obtain the robustness, a large number of simulations is required in complex environments
(see Section 2.5). It is even conceivable that the number of MCEs m is larger than the number
of search iterations n. This leads to a complexity of O(nm) ' O(n2), which can be a crucial
bottleneck in reactive real-time environments with extensive simulations. Integrating a
RM into the EVAL function, the number of simulations can be substituted with a singular
prediction, which corresponds to a reduced complexity of O(n). In this way, the same
complexity prevails, as is the case with SMs.

Algorithm 1 Exemplary local search robust scheduling heuristic (simplified pseudocode)
1: RS1 ← CIS(O) . Create initial schedule based for a set of operations O (output: DASG)
2: RS∗1 ← EVAL(RS1) . Evaluate the initial schedule considering uncertainties
3: for i← 1, i ≤ n, i← i + 1 do . Conduct a local search for n iterations
4: RS2 ← CNS(RS1) . Create neighbor solution, e.g., by changing the operation order
5: RS∗2 ← EVAL(RS2) . Evaluate the neighbor
6: if FIT(RS∗2) > FIT(RS∗1) then
7: RS1 ← RS2 . Replace the current schedule if the neighbor has a better fitness
8: end if
9: end for

10: return RS∗1

2.2. Hypotheses and Statistical Measures

In order to concretize the contribution of this study (see Section 1.4), the following
hypotheses are formulated and tested in the experiments:

H1. If EPTs are utilized to create an RS, and R 6≈ 0, it is caused by deviating idle times between
RS* and RS.

H2. If the DASG as well as all related UPTs are known, R can be predicted with little computational
effort (without performing MCEs).

H3. If RMs come close to the precision of MCEs and significantly outperform SMs, robust schedul-
ing problems can be solved more efficiently.
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To evaluate the performance of the RMs, we utilized a set of commonly used metrics
in the ML literature. These are Mean square error (MSE), root mean square error (RMSE),
mean absolute error (MAE) and mean absolute percentage error (MAPE). The metrics are
widely recognized for their effectiveness in evaluating model performance and are often
used in combination in many studies [24]. RMSE and MSE are calculated based on the
mean squared distances between predicted and actual variables. These metrics quantify
prediction errors and are well suited for determining model accuracy [25]. However,
because of the squared distances, they are sensitive to extreme values and are therefore less
suitable for analyzing outliers. In contrast, MAE and MAPE are more suitable in this case,
as they measure the absolute distances between the predicted and actual variables [26].

Moreover, the Pearson coefficient r was used to test the correlation between actual
and predicted values. Considering the number and independence of the input features,
a coefficient of 0.7 ≤ |r| < 1 indicates a very high positive or negative correlation, while
a value of 0.3 ≤ |r| < 0.7 indicates a moderate one with a fuzzy-firm linear rule [27].
The hypotheses H1, H2, H3 are rejected if it is not possible to observe a very high absolute r
value. H3 is also rejected if the absolute r values of traditional SMs indicate a very high
correlation. In order to ensure a good behavior to outliers, H2 is rejected if the RMs do not
obtain a low MAPE score (MAPE < 10%) [28].

2.3. Uncertainty Modeling and Operation Parameters

In real-world production environments, UPTs are often distributed asymmetrically
and can be approximated with Pearson distributions such as the gamma distribution [29].
In our proposed method, gamma distributions with a shape parameter α and a rate param-
eter β = 1 in combination with a minimum duration γ were utilized to depict UPTs. Each
operation o ∈ RSO has an UPT distribution tuple oU containing the parameters (α, γ). The
probability density function can be calculated as follows:

PDF(x) =
βα

(α− 1)!
(x− γ)α−1e−β(x−γ)

Based on this, the mean processing time oE = α
β + γ and the standard deviation

oσ =
√

α
β2 are given. Moreover, each operation belongs to a job oj, j = {1, . . . , n} and

to a machine ok, k = {1, . . . , m}. According to the topological sorting of the schedule’s
DASG, each operation has an index i = 1, . . . , |O |. Given the DASG, an operation has a
determined start time os and end time oe. According to Φ (see Section 1.1), every operation
has 0..2 direct predecessor operations←−o j,

←−o k and 0..2 direct successor operations −→o j,
−→o k

located within a job j or on a machine k.

2.4. Prediction Features

In order to predict R, the a priori features ω1, . . . , ω11 were considered as an input for
the RMs (see Table 1). In this context, a priori means that they can be derived from the
(uncertain) parameters and the structure of the DASG. In other words, the features can be
collected without MCEs or information about the RS*.

Besides features concerning idle and slack times, so-called overlapping integrals λ
of an operation’s PDF were considered. Figure 3 shows an operation o and its machine
successor −→o k. The PDF of o is depicted in orange. The shape of the PDF indicates that
there exists a certain probability that operation o will cause a delay of operation −→o k. This
probability of delay pd is depicted in blue and can be calculated as follows given that CDF
is the corresponding cumulative density function to PDF:

pd = 1− CDF(x′), x′ = (−→o k)s − os − oγ

Given the probability of delay pd, the expected delay Ed can be calculated as follows:

Ed =

(∫ ∞

x′

PDF′(x)
pd

dx
)
− x′
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Table 1. RM features to predict R.

ω1 Sum of idle times ∑
| RSX |
i=1 RSxi

ω2 Number of machines m
ω3 Number of operations nm
ω4 Number of overlapping integrals λ ∈ Λ (see Figure 3)
ω5 Standard deviation of all λ
ω6 Mean λ

ω7 Mean operation duration 1
nm ∑nm

i=1(RSOi )E
ω8 Standard deviation of operation durations
ω9 Mean free slack relative to nm
ω10 Mean total slack relative to nm
ω11 Total slack standard deviation

Figure 3. Two subsequent operations on a machine mk. With a probability of pd, the machine
predecessor operation −→o k is shifted to the right on the time axis. Expected shift: Ed.

Then, the overlapping integral can be calculated as follows:

λo,−→o = pd ∗ Ed

2.5. Test Data Generation

Benchmark studies about production scheduling have traditionally employed well-
known test instances such as that proposed by Taillard [30]. However, this paper does not
deal with the development of a scheduling algorithm but with the investigation of how
robustness can be estimated with RMs regardless of a specific scheduling problem and
method. In the robust scheduling literature, many authors such as [8,9,11] have generated
custom test data to depict specific uncertainties. Since ML models require a sufficiently
large quantity of training data with a broad consideration of different parameter scales
(number of machines, jobs, uncertainties), we also generated custom data due to the lack of
existing suitable instances.

In order to train and test the RMs, 500 generic RS* samples were created and labeled
via MCEs (see Algorithm 2). Per generated DASG, a random number of jobs and machines
was chosen (CH1 function). For each operation, a random UPT was chosen from a set π
containing different gamma distributions (CH2 function). In order to create the DASG, the
vector O was split into n equal-sized sectors, each representing a job with its k sequential
operations. The job permutation was determined by the sector order 1, . . . , n.

Algorithm 2 Generate one sample (pseudo code)
1: n← CH1(3, 5, 7, 10) . Choose a random number of jobs
2: m← CH1(2, 3, 5, 7) . Choose a random number of machines
3: O← CH2(π, nm) . Choose nm non-unique random UPTs from π
4: RS← GS(O, k) . Generate RS with EPTs
5: RS∗ ← MCE(RS, O) . Evaluate RS* via MCE
6: return CF(RS, RS∗) . Collect features (see Section 2.4)
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The RS* was then obtained by MCE, where the jobs were processed by DASG topo-
logical sorting. Per experiment, the processing time p of each operation was determined
randomly by the distribution p ∼ UPT. The number of experiments ε to be carried out
was determined automatically by an adaption of the standard deviation of the means
method [31]. A lower precision bound of 2× 10−3 and a mean RS∗Cmax

standard deviation σ
was considered relative to the RS makespan. The benefit of this approach is that all samples
are evaluated with a similar accuracy with respect to R.

ε =


√

σ(RS∗Cmax
)−1

2 ∗ 10−3


2.6. Regression Model Implementation

The following common and widely utilized RMs in the applied ML literature have been
tested: linear regression (LR), random forest, support vector machine, gradient boosting
and neural (deep feedforward) network. In the processing stage, min–max normalization
was applied to all features. Due to the data-generation process (as described in Section 2.5),
no further data cleaning was deemed necessary. Then, a univariate feature selection
was performed using scikit-learn, resulting in reducing the feature space to the eleven
most important features. All models were trained using a four-fold cross validation, with
standard scikit-learn hyperparameters used for all models except the neural network.
The neural network parameters, including network structure and size, learning rate and
learning algorithm, were optimized using grid search.

3. Results

The following sections present and discuss the results from the numerical experiments,
addressing the formulated hypotheses.

3.1. Idle Time Deviation

R and idle time deviations between RS and RS* are certainly related, which confirms
H1. It is to be assumed that ∀o ∈ RS∗O : oe − os ≈ oE. If R 6≈ 0, then the deviation between
RSZ and RS∗Z is purely affected by idle times. Thus, the following equation precisely
approximates R:

RCmax ≈
∆X
m

=
1
m

(| RSX |

∑
i=1

RSxi − RS∗xi

)
(1)

It relativizes the sum of idle time deviations ∆X with regard to the number of machines
m. A RMSE < 1% could be obtained, which can be explained by measurement errors from
MCE (for more information see Table 2). Overlapping integrals λ > 0 lead to a leverage
effect in schedules with idle times or more than one machine: If the actual operation
completion time oe lies inside an integral, it shifts and delays the successor operation
−→o k or −→o j, which recursively shifts its direct successors as well [3]. Thus, a cumulative
displacement of critical path operations is the reason for ∆X 6= 0. In other words: the
more overlaps, the noisier oe, os but not oE [32], and thus the noisier the idle times between
operations. To sum up, this finding suggests to include idle times and overlapping UPTs
as features in the RMs. By accounting for these factors, the models may be better able to
capture the complex dynamics of the system and provide more accurate predictions.

3.2. Regression Model Validation

H2 could be confirmed: RMs were able to appropriately predict makespan robustness
based on a priori information including overlapping integrals. Table 2 shows the summary
statistics of validation results of the implemented ML models. According to the obtained
scores, all ML models had low prediction errors and a high robustness to outliers. Thus,
it can be inferred that RMs generally appear to be well suited for predicting robustness.
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Even if a hyperparameter search was conducted for the neural network, LR still had the
highest accuracy. One possible explanation is that the data exhibit a linear structure, which
is an advantage for LR models. In contrast, neural networks are more suitable for modeling
complex nonlinear relationships [33].

Table 2. Comparison of robustness prediction models (results after cross-validation).

Method MSE RMSE MAE MAPE

Equation (1) (H1) 0.00004 0.0065 0.0050 0.0095
LR 0.00202 0.0450 0.0363 0.0683
Neural network 0.00283 0.0525 0.0408 0.0877
Gradient boosting 0.00292 0.0539 0.0404 0.0903
Random forest 0.00410 0.0639 0.0481 0.1099
Support vector machine 0.00428 0.0654 0.0536 0.1017

To further examine the LR performance, Figure 4 displays a residual analysis. Al-
though there are some minor outliers, the data points show a clear linear direction and
a symmetric form with evenly distributed errors. No funnel shape or obvious nonlinear
relationship can be observed in the residuals, which is is an indicator that there is no
heteroscedasticity or other dependencies. If we now turn to the coefficients of the trained
model, we observed that ω10 (coefficient = 1.12) had the greatest influence on the predic-
tion, which indicates a multicollinearity at first glance. Upon closer analysis, there is a
high correlation with ω11 (coefficient = −0.69). However, without considering ω11 as a
feature, the model’s predictions noticeably worsen. Therefore, both the mean total slack and
its associated standard deviation are important features for prediction. Other important
features were ω4 (coefficient = −0.63) and ω1 (coefficient = 0.44), which confirms the
association between overlapping UPTs, idle times and critical path operations. Overall, the
analysis suggests that suitable features were selected to predict the makespan robustness.
Moreover, the findings suggest that multiple different features are needed to define an
accurate SM.

Figure 4. Residual analysis of the LR model (best identified RM) with 125 test samples.

3.3. Surrogate Measure Benchmark

H3 could be confirmed in the context of the considered test data: RMs obtain very
high correlations with actual makespan robustness and clearly outperform SMs. The ML
models were benchmarked against three widely used SMs. Traditionally, most surrogate
measures are based on slack, and the importance of slack for robustness estimation was also
confirmed in [20]. As mentioned in Section 1.3, recent developments in the field of surrogate
measures are problem-specific and thus cannot be readily applied to this benchmark. Our
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first SM for robustness was the average slack measure introduced in [4] and utilized by
many researchers such as [8,9,12,16,34] up to today. The proposed measure is given by

SM1 =
1
|RSo| ∑

o∈RSo

so

where so denotes the total slack of operation o. Total slack is defined as the units of time
an operation can be delayed without increasing the makespan. However, since operations
on the same path in a schedule share total slack, summation of total slack of all operations
could potentially overestimate the capability of the buffer [20]. In [34], the authors proposed
the total sum of free slack, which is defined as the units of time an operation can be delayed
without delaying the start of the next operation SM. It is calculated as follows:

SM2 = ∑
o∈RSo

fo

where fo denotes the free slack of operation o. The third SM we used was also introduced
by [34]. SM3 is given by the weighted sum of total slack for each operation

SM3 = ∑
o∈RSo

wok

wtotal
so

where wok describes the workload of the machine operation o that it is processed on, wtotal
describes the total workload of all machines, and so is again the total slack of operation o.

Since the introduced SMs do not try to estimate the actual robustness of a schedule,
but try to correlate with it, a correlation analysis of the SMs and the predicted robustness
values of the ML-algorithms was conducted. As shown in Figure 5, the predictions of
the ML algorithms strongly correlate with the actual makespan robustness, which was an
expected result given the results from the previous experiment. The SMs, on the other hand,
have only a moderate negative correlation with actual robustness. A possible explanation
for this outcome is that common SMs tend to focus on a limited number of variables
to assess robustness, which may be an overly simplistic assumption. However, in the
previous section, it was found that several factors associated with the critical path affect the
robustness. This includes not only individual measures of slack times or workloads, but also
more detailed features to describe the schedule and its uncertainties as comprehensively as
possible. In the next section, the compared methods are applied to a new scenario beyond
the provided test data. Here, we investigate how the different approaches affect the actual
quality of generated RSs.

Figure 5. Correlation benchmark of selected RMs and SMs. Key finding: RMs clearly outperform
SMs in the approximation of Cmax robustness.

3.4. Application Study

To investigate the applicability and transferability of the RMs as well as their concrete
advantages over SMs and MCEs, this experiment evaluates the proposed approach in the
context of a typical robust scheduling procedure. We implemented a simulated annealing
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with research strategy (SARS) algorithm proposed by [17] to solve a robust PFS scheduling
problem considering the constraints formulated in Section 1.1. The algorithm was executed for
100 iterations, and per iteration, a solution neighbor was generated by swapping the positions
of two randomly selected jobs. The following multi-criteria objective function is defined for
the synchronous minimization of the expected makespan and the makespan robustness:

min Cmax = max
o∈RSO

{ oe }

min RCmax =


|RSCmax − RS∗Cmax

|, if MCEs are utilized to determine robustness
|PREDICT(RS)|, if LR is utilized
−SM2, else

(2)

In terms of robustness evaluation, the specific value for Equation (2) can be determined
by MCE, SM or by a RM. As SM2 and LR exhibited the strongest correlations, they were
selected as the models to be benchmarked. When selecting the best feasible solution,
80% priority (weight) was given to the robustness objective, and 20% was given to the
makespan objective. In order to demonstrate the transferability of the method, we used
a well-known test instance (ta001) introduced by [30] to evaluate the performance of the
three methods. The instance consists of 20 jobs and 5 machines, and we modified it to
include UPTs. Based on each operation processing time, we selected a random shape
parameter α ∈ {1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5} and the scale parameter β = 5 to generate a
gamma distribution (see Section 2.3).

Figure 6 depicts a benchmark of the three methods in terms of the specified prob-
lem. In addition to LR and SM2, MCEs were performed to varying extents. In one case,
200 stochastic simulations were conducted per creation of a neighbor solution, while in
the other case, 400 simulations were conducted. Due to the 100 iterations of the SARS
procedure, a total of 20,000 and 40,000 simulations had to be performed. For each method,
25 samples were collected to analyze the mean and variability of the obtained values. A
closer inspection of the plots confirms the assumption that a traditional SM, while computa-
tionally efficient, yields relatively poor results. This applies to both the average values and
the variance achieved. Particularly for the robustness values achieved, there are sometimes
unacceptable outliers, which explain the moderate correlation observed in experiment
3 (see Section 3.2). On the other hand, MCEs provide significantly better schedules, but
this comes at the cost of a large number of simulations. Especially when using extensive
material flow simulations with computation times of several seconds per run, this is a cru-
cial and potentially unacceptable hurdle. Another noteworthy observation is the varying
robustness spread between 200 and 400 simulations per iteration. Doubling the number
of simulations leads to higher precision and greater reliability of the method to minimize
actual robustness. However, this is a critical tradeoff in terms of computation time.

If we now turn to LR, the benefits of the method become apparent in the figure.
Utilizing ML models, it is possible to generate RSs that are close in quality to the MCE-
based schedules with a minimum of computing time. Although the achieved makespan is
slightly worse compared to the MCE-based method, the average achieved robustness is
surprisingly even better. However, this initially unexpected result is understandable with
regard to a slight model bias. One possible explanation in this context is that the model
provides a rather pessimistic prediction of robustness. On the one hand, this leads to the
generation of even more RSs. On the other hand, however, it also affects the conflicting
objective of minimizing makespan, as displayed in the figure. The same pattern can also
be observed between MCE× 200 and MCE× 400. Using fewer simulations results in a
slightly less precise estimated robustness, but in comparison to MCE× 400, it leads to a
slightly better actual robustness and a slightly worse makespan. One possible solution
to address this issue in this case is to use two plausible strategies. The first is to further
improve the training of the RM to reduce the mentioned pessimism. Alternatively, the
prioritization of the objectives could be adjusted in favor of minimizing makespan.
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Figure 6. Comparing RSs generated by LR, SM2 and MCE integrated into a SARS algorithm.

Overall, it has been confirmed that SMs generate significantly less optimal and less
reliable schedules compared to what can be achieved with multivariate RMs. Thus, the
results of this last experiment complement the results from the previous sections. In this
specific scenario, it was possible to reconfirm H3 from an application-oriented perspective.
However, more scenarios must be investigated in future works.

4. Conclusions

This work employed RMs to predict makespan robustness for generic production
schedules represented by DASGs and with the consideration of gamma-distributed UPTs.
Within a computational study, three hypotheses H1, H2, H3 could be confirmed: Overlap-
ping uncertainty distributions on the critical path leas to a cumulative displacement of
actual operation end times, which accordingly makes the idle time windows more noisy
(see Section 3.1, H1). This effect needs to be taken into account to construct feature vectors
for ML models. In this manner, RMs and especially LR algorithms are suitable to accurately
predict robustness with multiple a priori variables from the baseline DASG and are known
before schedule realization or evaluation (see Section 3.2, H2). Utilizing these models,
well-known SMs could be significantly outperformed (see Sections 3.3 and 3.4, H3). Overall,
the models offer a promising alternative to previous approaches such as inaccurate SMs
and computationally intensive MCEs. In particular, they combine the advantages of both
approaches: A well-trained model is able to anticipate the output of runtime-intensive
simulations with a single prediction. If it is integrated into a optimization procedure, the
complexity can be significantly reduced without major loss in solution quality. From a
practical point of view, time-critical robust scheduling procedures could be executed in
an even more resource-saving manner without the need of stochastic material flow simu-
lations. This is particularly relevant in the context of rescheduling procedures that need
to react quickly during daily operations to create a new RS. However, further research is
necessary to evaluate the external validity of the method in other scenarios. The method
must be tested with other scheduling models, uncertainty modelings, robustness or stabil-
ity measures. Although we assume that our method can be applied to other distribution
types, the effect of dynamic events such as machine failures must to be analyzed more
closely. Moreover, it would also be interesting to investigate how the method performs on
real-world production data. Consequently, the results of this study clearly motivate further
research on this topic.
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Abbreviations

DASG Directed acyclic solution graph
EPT Expected processing time
FS Flow shop
JS Job shop
LR Linear regression
MCE Monte Carlo experiment
ML Machine learning
MAE Mean absolute error
MAPE Mean absolute percentage error
MSE Mean square error
PFS Permutation flow shop
RM Regression model
RMSE Root mean square error
RS Robust schedule
RS* Robust schedule after (MCE) realization
SM Surrogate measure
UPT Uncertain processing time
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