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Abstract: The content of this research paper is focused on the applications of selected operation
research methods in the field of rescue services. The first theoretical part aims at identifying the most
important aspects of the real system, which should be taken into account whenever a rescue system
is to be redesigned or optimized. It also contains an in-depth description of system performance.
Based on the found criteria, a mathematical model for a new system design is proposed. The second
part of this paper is practically oriented. A short case study performed with real data on the rescue
service system in Slovakia is reported herein, and the obtained results are compared with current fire
brigade deployment. We concentrate on improving the most important criteria of the real system. If
the suggested mathematical model proves to be hard to solve with common optimization tools, we
will develop an efficient solving algorithm. From a general point of view, the main scientific goal
of this research article is to summarize current trends in location science, which could be useful for
the optimization of fire brigade deployment. Since the strategic decisions in location service centers
to some nodes of the network are usually made for long periods, different properties and possible
failures are discussed to be considered with the mathematical models and associated solving tools.

Keywords: location analysis; fire brigade deployment; mathematical modeling; service accessibility
improvement

1. Introduction

One of the most important functions of every good human society is to protect people
and minimize potential dangers caused by unexpected threats to life and health from
various natural or industrial sources [1–8]. This activity is largely handled by the Integrated
Rescue System (IRS), which also includes the Fire and Rescue Service. Such a system is also
operated in Slovakia [9–13].

Firefighting units in every country of the world form a system that protects the health
and lives of citizens and cannot be based on chance or only on the will and willingness
to help [14–16]. From a social point of view, every country tries to promote the flawless
functioning of this system and to find the optimal level of financial costs for its performance.
Obviously, all fire departments cannot be equipped or trained equally, and it makes no
sense for them all to have the same response time.

The state helps citizens in fighting fires and carrying out rescue work in the case of
natural disasters and other extraordinary events by sending Fire Protection Units (FPUs).
Other entities also have the obligation to establish fire protection units, e.g., significant
industrial enterprises with a higher degree of fire risk, the Armed Forces of the Slovak
Republic, and also the local government in the form of the village’s Voluntary Fire Brigades.
It is therefore possible to create a system of mutual assistance, which creates a prerequisite
for the provision of assistance to citizens within a time limit of up to 15 min. Such a system
of providing assistance within a specified time limit and with a predetermined number of
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fire protection units is defined in the conditions of the Slovak Republic in the Fire Protection
Act (314/2001 Coll.) and the Decree of the Ministry of the Interior of the Slovak Republic
on firefighting units (611/2006 Z.z.).

The internal organization and equipment of fire protection units, including the de-
ployment of individual types and categories of fire protection units, must be determined
so that the territory of a municipality is secured with the required number of forces and
resources according to the degree of danger. From this point of view, the deployment of fire
brigades plays an essential role in the system’s performance. Each type of fire protection
unit has its operational value (operational equivalent). This value indicates the ability of the
fire protection unit to carry out activities involving fighting fires and rescue work during
natural disasters and other extraordinary events. The operational value of a fire protection
unit consists of the departure time after the alarm is declared and the territorial jurisdiction.
The departure time is the period from the declaration of the alarm for the designated forces
and means of fire protection to their departure from the place of their deployment. The
law for various types of fire brigades establishes this period. The territorial coverage is
the optimal distance for a certain type of fire protection unit to reach the place of interven-
tion, expressed as the travel time in minutes, which defines the territory of its standard
operation, the so-called intervention circuit. Obviously, it can be generally assumed that
the travel time is proportional to the distance needed to be traveled within the associated
transportation network, i.e., roads [9–13].

Without any doubt, finding the optimal deployment of forces and resources is a diffi-
cult challenge for all decision-makers responsible for the quality of the service provided
to citizens affected by an emergency. In this paper, we want to point out that operations
research may serve as a core scientific field to support responsible authorities when search-
ing for a new deployment of fire brigades in the network covering the served geographical
area [2,7,9,15]. Since the problem of locating forces, resources, and employees can be
formulated in mutual ways, making use of mathematical models and/or integer linear
programming, we concentrate herein on a brief summary of current trends in location sci-
ence that are applicable to the family of rescue services [1,5–7,11,12,14–17]. Obviously, we
provide the readers with plenty of references to recently published papers, which contain
the results of performed numerical experiments with the dataset of the Emergency Medical
Service (EMS) system being operated in Slovak self-governing regions.

This research paper is structured in the following way: After the introduction section,
there are explained basic modeling concepts with response time minimization and coverage
criteria [17–19]. The mathematical models are discussed in detail together with possible
modifications and reformulations enabling their better solvability. Basic models are accom-
panied by a small computational study, in which we emphasize the most important points
and (dis)advantages of particular approaches. The second part of the paper is focused on
theoretical advanced challenges. The proposed mathematical models are more complicated,
and they try to consider various aspects of the real world that may significantly affect the
system’s performance, and from this point of view, they should not be abstracted when
formulating models for associated location problems. Herein, we mention robustness not
only as a system’s resistance to difficulties in the transportation network [6,8,16] but also as
the concept of so-called reengineering, which follows from the existing system and limits
the number of performed changes in current fire brigade deployment [20,21]. It may be
useful for the public to accept new system designs better and more easily. Finally, we
present herein the possibility of managing the problem of searching for new modes of fire
brigade deployment using a bi-criteria model, which brings several new challenges and
requires the development of new approaches to solving [22–26]. Many of the following
sections are accompanied by a small illustrative example in a figure to explain the concepts
being discussed better. We hope that such small practical examples could help to make
the sections more accessible to those readers who may not have a deep background in fire
brigade deployment or optimization.
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To sum up the main contribution of this paper, it is aimed at various kinds of op-
timization approaches, the goal of which is to find an appropriate mode of fire brigade
deployment, which would benefit from considering several aspects of the real world in
the decision-making process. This means that we provide the readers of this article with
a summary of current trends in location science for emergency services. Due to the lack
of real-world data, several concepts are discussed only in a theoretical way. Nevertheless,
future research in this science could emphasize the real impact of optimization approaches
on real system performance efficiency and service accessibility for clients.

2. Basic Modeling Concepts

This section addresses the problem of the optimal deployment of fire protection
units using operations research tools. Because this problem can be formulated in many
different simple or advanced ways, the most common objectives that are optimized are
discussed herein.

The basic and simultaneously the most commonly used modeling concept follows
the fact that fire brigades, firefighters, and available equipment are limited. Financial
budget is also one of the biggest restrictions, which needs to be considered. It is natural
that a fire brigade cannot be established wherever one would like it to be. The simplest
modeling concept is based on the task of selecting a given number of fire brigades from
a set of candidate locations in order to optimize a given quality criterion. The optimized
objective function usually takes the form of total or average disutility expressed as the
social or financial costs proportional to the distances fire protection units have to go to reach
the demand points in which the associated services need to be provided. The response
activity of firefighting units in the Slovak Republic consists not only of fighting fires but
also of carrying out other interventions to save the lives and health of people, property,
and the environment. Since the 1990s in the last century, the development of intervention
activities of fire brigades has been characterized by a significant increase in activities aimed
at carrying out rescue work in natural disasters, road traffic accidents, and other situations,
as well as an increase in the number of technical interventions of various kinds. Let us
return to the optimized quality criteria. The duration between an emergency call for help
and the firefighters’ departure to the scene of the extraordinary incident can also be used
to describe the aforementioned inutility. Of course, perceived disutility decreases with
increasing proximity to a fire station.

Based on the above-mentioned theoretical starting points, the first modeling con-
cept follows the weighted p-median problem with thousands of potential service recip-
ients [1–3,9,11,12,18–21,23–26]. The cardinality of the set of candidates, in which a fire
station could be established, may take the value of several hundred or thousands as well.
Thus, the mathematical model of the problem with real-world input data represents a huge
challenge, because the associated solving process may run into the computational limits of
available common hardware and software tools. Therefore, it is interesting not only from a
modeling point of view but also from the viewpoint of efficient algorithm development.
Let us focus now on the mathematical formulation of the problem.

The solving process of the standard weighted p-median problem consists of searching
for the best selection of exactly p components (p is a positive integer number) from a given
finite list of candidates. The mentioned selection must be performed in such a way that the
optimization criterion takes its optimal value. The used criterion may take several forms,
but the most common one can be expressed as the average distance between system users
and the nearest fire station. To put this another way, the common modeling technique takes
into account the so-called average service recipient.

In order to formulate the problem mathematically in the form (1)–(6) by means of
linear programming, the following notations have to be introduced. Let I be the set of
candidates for placing a fire station or another similar resource. The set I is formed by
a list of network nodes, which fulfill the standards for establishing a fire station. As we
know, the fire station requires a special building and meeting different technical features
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and other aspects. Similarly, let J represent the list of service recipients. This set is usually
formed by all the inhabited nodes of the associated transportation network or by those
points in which the fire risk is high, i.e., industrial objects. Each element of J is weighted
with a non-negative (but not necessarily integer) coefficient bj. This coefficient may express
the number of system users aggregated at j or it can estimate the frequency of demands
toward the fire station from the dwelling place j. From the modeling point of view, the
concrete interpretation of this weighting coefficient does not matter. The disutility for a
client placed at j coming from the fire station candidate i is prompted as a non-negative
dij. Although integer values have been shown to have some advantages, any value of
dij does not necessarily need to be an integer. The problem described above is known
under the notion of the weighted p-median problem, which has received much attention
in the literature, particularly from the perspective of formulating solutions and efficient
algorithms for large instances [1–3,9,11,12,18–21,23–26].

In the usual formulation of the weighted p-median problem, the strategically important
decision of the selection of at most p elements (sometimes exactly p elements are required)
from the candidate list I has to be made in order to optimize the given criterion. The
aforementioned strategic decision of a fire station establishment may be formally modeled
with a binary variable yi∈{0, 1} equaling 1 if a fire protection unit is to be placed at i∈I.
To finalize the formulation of the associated model, the allocation variables zij∈{0, 1} are
introduced for each element i∈I and for each node j∈J to assign an affected service recipient
(the entire aggregated community) located in j to a fire station established at the candidate
item i with a value of 1.

To complete the model correctly, the variables yi and zij must satisfy the given rules.
The expressions (1)–(6) represent the basic model of the problem of minimizing the average
distance from users to the nearest fire stations.

Minimize
∑
i∈I

∑
j∈J

bjdijzij

∑
j∈J

bj
(1)

Subject to : ∑
i∈I

zij = 1 f or j ∈ J (2)

∑
i∈I

yi = p (3)

zij ≤ yi f or i ∈ I, j ∈ J (4)

yi ∈ {0, 1} f or i ∈ I (5)

zij ∈ {0, 1} f or i ∈ I, j ∈ J (6)

Despite the fact that the above-formulated model of the weighted p-median problem
is very well known, let us briefly recall the sense of the above expressions. The minimized
objective function (1) represents the average distance from service recipients to their closest
FPU. The allocation constraints (2) ensure that each served network node j is assigned to a
located FPU. Such an assignment is achieved in combination with the link-up constraints
(4). This way, the model provides the decision-makers as well as the territorial jurisdiction.
Formula (3) keeps the highest possible number of located FPUs. The mandatory constraints
(5) and (6) ensure the correct values of the decision variables.

Even though the weighted p-median problem seems easy to understand and imple-
ment in a common optimization environment, it may bring several difficulties if the solved
instance acquires too big a size. Considering the fact that the model contains two big matri-
ces (input data and decision variables), the associated branch and bound method requires
a large amount of memory space. If the set of candidates contains several thousands of
elements, then the usage of the model (1)–(6) becomes questionable. On the other hand,
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practical problem instances have led to deeper analyses, which have resulted in a new way
of problem modeling. Let us specify this in more detail.

If one looks at the model (1)–(6), the most important starting point for the new model
consists of the constraints (2). Note that for each j∈J, there is only exactly one variable
zij taking the value of one. This means that each supplied network node is associated
with only one established fire station. From the standpoint of evaluating the objective
function (1), it is not crucial to know which FPU is closest to network node j because the
distance, not the FPU, is what matters the most. If we know the list of located FPUs, we
can easily identify the nearest one for any served node. Thus, the territorial jurisdiction
may be computed secondarily, and it is not necessary to model it with allocation vari-
ables. The so-called radial formulation, which was first published in [27–29] and revised
in [30,31], provides the remedy for the aforementioned shortcoming of the location-
allocation model (1)–(6).

The radial approach is built on the idea of excluding the assignment of served nodes to
established FPUs, and it is based on a specific expression of the distances from users to their
nearest fire stations. To formulate the radial model, let the symbol m denote the highest
value in the matrix {dij}, i.e., m = max{dij: i∈I, j∈J}. Let us assume that the distances in the
matrix are integers. Otherwise, the covering approach could be easily adjusted [31]. For
each served network node j∈J and for each integer value v = 0, 1 . . . m − 1, we introduce
a binary variable xjv∈{0,1}. This auxiliary variable equals one if the distance dj* from the
served network node j∈J to the closest FPU is greater than v; otherwise, it takes the value
of zero. After that, the distance dj* for each j∈J can be reformulated as (7).

dj∗ =
m−1

∑
v=0

xjv f or j ∈ J (7)

Similar to the common set covering problem, a matrix {as
ij} has to be defined according

to the following expression (8).

av
ij =

{
1 if dij ≤ v
0 otherwise

f or i ∈ I, j ∈ J, v = 0, 1, . . . m− 1 (8)

After introducing all input data structures, the problem’s radial model can be ex-
pressed as (9)–(13).

Minimize
∑
j∈J

bj
m−1
∑

v=0
xjv

∑
j∈J

bj
(9)

Subject to : xjv + ∑
i∈I

av
ijyi ≥ 1 f or j ∈ J, v = 0, 1, . . . , m− 1 (10)

∑
i∈I

yi = p (11)

yi ∈ {0, 1} f or i ∈ I (12)

xjv ∈ {0, 1} f or j ∈ J, v = 0, 1, . . . , m− 1 (13)

The objective function (9) expresses the same average distance as the original objective
function (1), but it does not need the allocation variables. The relationship between the
variables xjv and yi is controlled via the linkage expressions (10). When at least one fire
station is placed in the radius v from the served network node j, the variable xjv can take a
value of zero. Condition (11) maintains the rule that the highest number of located FPUs
cannot be exceeded. The last two series of mandatory restrictive requirements (12) and (13)
control the range of the variables yi and xjv.
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If the distances are not integers or one is satisfied with an upper or a lower approx-
imation of the distances, the above-introduced radial formulation can be generalized by
using zones, as suggested and discussed in [30,31].

The presented location-allocation and radial models (1)–(6) and (9)–(13) suffer from
one big weakness that significantly decreases their usability in the real world. It must
be noted that the rescue system works as a queuing system. The requests for service
occur randomly, and they can be neither expected nor directly estimated. Consequently,
the nearest fire station may be temporarily unavailable at the time of a new emergency
call, and thus, this station would not be able to accept the request for service. In such a
situation, the demand is covered by the nearest available FPU, which does not have to be
the closest-located one. The mentioned generalization is known as the concept of so-called
generalized disutility, which has been studied in many papers, e.g., [30]. Let us recall its
principle using a mathematical formulation.

Without any loss of generality, it is assumed that the r closest-located fire stations may
participate in covering the current demand for service occurring anywhere. In the adjusted
quality criterion, qk stands for the likelihood that the k-th nearest FPU is the one that is
closest, currently available, and may be able to meet increased service demand. This idea
greatly increases the realism of the deterministic model because it considers the stochastic
behavior of the real system at a certain level. The basic idea can be easily understood by
looking at Figure 1, which was originally created for a medical rescue system.
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Figure 1. The main idea of generalized disutility.

The adjusted mathematical model, which takes into account the main idea of general-
ized disutility, takes the following form.

Minimize
∑
j∈J

bj
m−1
∑

v=0

r
∑

k=1
qkxjvk

∑
j∈J

bj
(14)

Subject to :
r

∑
k=1

xjvk + ∑
i∈I

av
ijyi ≥ r f or j ∈ J, v = 0, 1, . . . , m− 1 (15)

∑
i∈I

yi = p (16)

yi ∈ {0, 1} f or i ∈ I (17)

xjvk ∈ {0, 1} f or j ∈ J, v = 0, . . . , m− 1, k = 1, . . . , r (18)

The objective function (14) expresses the average distance from served network nodes
to the nearest available FPU. The constraints (15) ensure that the sum of variables xjvk over
k expresses the number of fire stations in the radius v from the network node j, which
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remains as the number r. The constraints (16), (17), and (19) keep the same meaning as in
the above mathematical models.

3. Fair Modeling Approaches

This section addresses possible ways to master the requirements of system users for
fair access to service. Without mentioning it directly, it is obvious that the optimization of
an average distance may lead to an unfair system design. The fire stations are located via
the model in such a way that they are placed near big network nodes with high weight
coefficients bj. Thus, the model does not reflect any form of fairness at all. There may be
many clients whose distances to the nearest FPU exceed the average value many times.
Those people would consider the resulting system design unacceptable [9,32,33].

The strongest way of mastering fairness consists of the minimization of the maximal
distance from served network nodes to the nearest FPU. For simplicity, we report the basic
model without the concept of generalized disutility.

The min–max strategy attempts to reduce the worst distance by solving network nodes
that are too far from a nearby fire station. The accompanying solution process looks for
optimal sites for the centers. The model may, of course, employ the same notations as those
first introduced for the previous location-allocation model (1)–(6). The aforementioned
definitions apply to the variables yi and zij. In order to find exactly p locations in the
candidate list I, it is necessary to minimize the maximum disutility experienced by the user
in the worst possible position. In addition to the above terms, it is essential to introduce
a non-negative variable h, which represents the minimized upper bound of the distances
between the served network nodes and their nearest service providers. This problem’s
specific location-allocation model can be expressed as (19)–(26).

Minimize h (19)

Subject to : ∑
i∈I

zij = 1 f or j ∈ J (20)

∑
i∈I

yi = p (21)

zij ≤ yi f or i ∈ I, j ∈ J (22)

∑
i∈I

dijzij ≤ h f or j ∈ J (23)

yi ∈ {0, 1} f or i ∈ I (24)

zij ∈ {0, 1} f or i ∈ I, j ∈ J (25)

h ≥ 0 (26)

As the model (19)–(26) is based on the model (1)–(6), no additional explanation is
required. The upper bound of all perceived disutility values is provided by the objective
function (19), which is represented as a single variable, h. Each perceived disutility is
kept below or equal to the upper bound h thanks to the constraints (23). The mandatory
constraint (26) is superfluous because the value of h is contained in (23).

Two key issues need to be addressed practically. The first of them arises from the
need for allocation variables zij as in model (1)–(6). Therefore, the solution to real cases
usually requires unacceptable amounts of memory and computational time. The second
inconvenience follows from the model structure, mainly from the link-up constraints (23).
Simple reformulation into a radial form as before (see the models (1)–(6) and (9)–(13))
will not help now, because the complicated model structure remains unchanged (see
constraints (23) and the objective function (19)). Binding structural constraints may help
to explain the branch and bound method’s sluggish convergence. Looking closely at the
model’s structure, we discover that the radius formulation of the original model enables a
straightforward simplification of the problem without the requirement for the upper bound
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h and constraints (23). The transformation’s core is in utilizing the beneficial aspects of
covering issues and is predicated on the following: The values of the variables xjv in the
radial model form a specific sequence with a certain structure. Sorting out the variables
xjv according to the index v from 0, the corresponding list of items then has the form
(1, 1, . . . , 1, 0, 0, . . . , 0). Therefore, in the beginning, the variables have a value of one, and,
occasionally, they change their values and keep being zero [31]. This observation is then
the key to transforming the former min–max model into a covering model.

The minimization of the biggest distance can be realized via the following iterative
approach: From the sequence of distances d0, d1, . . . , dm, where 0 = d0 and m = dm, we
choose the “middle” division point Ds. For this distance, we solve a simple coverage model
(27)–(31), based on which we will see whether such a feasible solution to the problem in
which all distances between served network nodes and their service providers (fire stations)
do not exceed the value of Ds exists or not. If there is such a solution, all variables xj will
take a value of zero. In the opposite case, at least one variable xj that is not zero will occur.
We determine the coverage coefficients aij for the given Ds based on a simple property: if
dij ≤ Ds, then aij = 1; otherwise, aij = 0. The problem solved for the dividing point Ds can
then be expressed as (27)–(31).

Minimize ∑
j∈J

xj (27)

Subject to : xj + ∑
i∈I

aijyi ≥ 1 f or j ∈ J (28)

∑
i∈I

yi = p (29)

yi ∈ {0, 1} f or i ∈ I (30)

xj ≥ 0 f or j ∈ J (31)

If in solving the model (27)–(31), we learn that the sum of variables xj is zero, then we
repeat the calculation for a lower element Ds; otherwise, we continue with a higher dividing
point Ds. In this way, by combining the model (27)–(31) with the bisection method applied
to the whole list of values d0, d1, . . . , dm, we can easily obtain the minimum distance of
the worst-situated nodes from their closest fire stations. Solving the min–max problem by
repeatedly computing a simple coverage problem takes a considerably shorter time than
solving the original model, even if formulated in a radial way.

We decided to report the min–max model as an extreme way to achieve a certain
level of fairness. This approach is not suitable in practice for one simple reason. While
the common weighted p-median model locates fire stations that are near big network
nodes, the min–max approach tries to establish FPUs in such a way they would be near the
worst-situated users. None of these concepts are acceptable for a certain group of people.
Via the minimization of the highest distance, we worsen the average. Therefore, we present
herein a compromise, which consists of extending the original model (1)–(6) or (9)–(13) with
additional constraints. This way, the fairness demands will be expressed in the following
way, which was originally suggested to optimize the Emergency Medical Service systems
in Slovak self-governing regions [34].

Let us introduce a new parameter D (which does not necessarily need to be an integer),
which represents a “critical” distance (see Figure 2). In addition, we set a parameter B
to limit the number of customers or their locations that can be farther than D from any
fire station.
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Figure 2. Visualization of fairness approach parameters.

A collection of binary variables zj must be provided in order to represent the aforemen-
tioned fairness criterion using mathematical expressions. The variable zj∈{0, 1} is defined
for each location of the clients j∈J. It takes a value of zero if the client’s location j is covered
by service within the radius D from the nearest fire station. As can be seen in Figure 2, the
auxiliary variable z12 takes a value of one, and the variables z6, z8, z10, and z13 take a value
of zero. The mathematical expression can take the form of (32).

zj + ∑
i∈I

dij≤D

yi ≥ 1 for j ∈ J (32)

The number of system users whose distance to the nearest stations exceeds D can be
limited via expression (33). It should be noted that the parameter B is given as a percentage,
i.e., it takes the real value from the interval [0, 1].

∑
j∈J

zjbj ≤ B∑
j∈J

bj (33)

If one wanted to apply fairness demands less strongly for individual clients, but only
for clients’ locations regardless of the number of clients sharing the locations, this could be
carried out by replacing the constraint (33) with the simpler expression (34).

∑
j∈J

zj ≤ B|J| (34)

To complete the model with the mentioned extensive constraints, it is necessary to
also add the obligatory constraints (35).

zj ∈ {0, 1} f or j ∈ J (35)

When new fairness constraints are added to the preceding model (9)–(13), the original
set of workable options is reduced. As a result, the expanded model’s optimal solution
might have a larger objective function value, which would worsen the average level of
service accessibility for customers.

Inappropriate settings of parameters D and B may cause infeasibility of the problem
because the given number p of fire protection units to be located may not be enough to
cover the whole area in the required fair way. In such a case, it is useful to know the
minimum required number of facilities to be able to meet the problem constraints.

The resulting objective function value of the following simple set covering model
(36)–(40) can be used to determine the minimum number pmin of stations necessary to satisfy
the fairness requirements. The set covering strategy is used in the model, and besides the
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variables that were already included in the previous model, no more input data are needed.

Minimize pmin = ∑
i∈I

yi (36)

Subject to: zj + ∑
i∈I

dij≤D

yi ≥ 1 for j ∈ J (37)

∑
j∈J

zjbj ≤ B∑
j∈J

bj (38)

zj ∈ {0, 1} f or j ∈ J (39)

yi ∈ {0, 1} f or i ∈ I (40)

The minimized objective function (36) expresses the number of located fire stations.
The structural constraints (37) and (38) are taken from the fairness expansion statement. Of
course, expression (34) can replace constraint (38). The mandatory constraints (39) and (40)
maintain the range of the decision variables used.

Since the problem described in terms (36)–(40) minimizes only the number of fire
station locations and does not consider the average distance of customers to the nearest
service providers, the model (9)–(13) with additional fairness constraints can be solved for
pmin in order to obtain the optimal locations of the fire stations.

4. Small Case Study with Basic Models

Theoretical approaches to the search for optimal FPU deployment were explained in
previous chapters. In this section, a small computational study is reported. Its main goal
is to demonstrate how optimization may bring several changes and improvements to an
existing system and how different parameters affect the resulting system design.

The preliminary numerical experiments were performed using the FICO Xpress 7.7
(64-bit, release 2014) optimization kit. Particular models were solved with a common PC
with the 11th gen Intel® Core™ i7 1165G7 2.8 GHz CPU and 40 GB RAM.

The computational study begins with a brief analysis of current FPU deployment
in a selected region. Even if we used the datasets of all regions depicted in Figure 3, the
present tables would only report the results for the Žilina autonomous region. The other
outcomes were quite comparable. Thus, we decided against publishing large tables with
many similar numbers.
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Figure 3. Self-governing regions of Slovakia.

The Žilina autonomous region is located in the northwestern part of the Slovak Re-
public (see Figure 3). The region includes five subareas (Horné Považie, Kysuce, Liptov,
Orava, and Turiec), which are divided into eleven districts. In an area of 6809 km2 (14%
of the Slovak territory), 690,778 people live in the region, and the population density is
101.4 inhabitants/km2. The counties of the Žilina autonomous region are shown in Figure 4.
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Figure 4. Districts of the autonomous region of Žilina.

The region of Žilina is formed by 315 network nodes, which correspond to individual
cities, villages, and small communities. For simplicity, we assume that each network
node offers at least one possible location for establishing a fire station. Otherwise, the set
of candidates would be necessary to redefine. Obviously, all inhabited nodes represent
possible demand points in which an emergency may occur. Thus, sets I and J are the same.
The weight coefficients bj are set according to the number of inhabitants, and they are
rounded up to hundreds since more precise data for fire brigade deployment (degree of
fire risk, number of emergency calls, etc.) are currently not available. Let us now focus on
the fire brigade system in Žilina.

The fire brigade system in the self-governing region of Žilina currently operates
15 stations, which are deployed in Bytča, including Čadca, Dolný Kubín, Kysucké Nové
Mesto, Liptovský Hrádok, Liptovský Mikuláš, Martin, Námestovo, Rajec, Ružomberok.,
Terchová, Turčianske Teplice, Turzovka, Tvrdošín, and Žilina. The average distance be-
tween served network nodes and their nearest located fire station is 5.37, but the maximal
relevant distance from a user’s location to the nearest FPU is already 33. This fact confirms
that there is at least one dwelling place or a small community that is too far from any service
provider. As we can see, the longest distance exceeds the average value multiple times. Just
for interest, the number of residents whose distance exceeds the value of 10 is 1407 (this
number is given in 100s), which represents more than 20 percent of the served population.
Obviously, such a simple analysis confirms the necessity of system optimization. Therefore,
we performed some numerical experiments with the basic models.

The first experiment to report was aimed at solving the basic weighted p-median
model (1)–(6) for p = 15 to verify the existence of a better solution, which could improve
current fire brigade deployment. Since the solved problem was small, the computational
time necessary for finding the optimal solution did not exceed 3.5 s. When we focused on
the objective function (1), we could see that the average distance decreased from the original
value of 5.37 to 5.31. This means that currently, the fire protection units are not deployed
in an optimal way. The distance for the worst-situated users remained unchanged, and it
still equaled 33. The percentage of clients beyond the 10 min limit was 19.39. Finally, we
compared the resulting system designs, i.e., the list of network nodes with a fire station
located. The optimization process of the location-allocation model (1)–(6) produced a
slightly different result. The original centers in Námestovo, Terchová, and Liptovský
Hrádok are suggested to be replaced with those in Krušetnica, Zubrohlava, and Belá. To
sum up the first numerical experiment, the exchange of three fire stations may bring an
improvement in service accessibility and decrease the number of users whose distance
exceeds ten.

Even though the average distance as the studied quality criterion had acceptably small
values in both the current and the optimal system designs, and thus the obtained solutions
were satisfactory, we concentrated on studying how the number of located stations impacts
the studied objective function value. Therefore, we performed a series of computations
with different values of p starting from five. The obtained results are summarized in
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Table 1, which has the following structure. Each row of the table corresponds to one
problem instance with a different value of parameter p. For each problem instance, the
computational time in seconds is reported in the column denoted by CT. The objective
function value is given in the next column denoted by AvgDist. Analogically, we use DmM
to denote the maximal relevant distances, i.e., the distances from the worst-situated users
to their nearest FPUs. Finally, the last column denoted by PB contains the percentage of
users behind the limit of 10 min from the nearest fire station.

Table 1. Results of numerical experiments with the location-allocation model (1)–(6) using the dataset
for the self-governing region of Žilina.

p CT AvgDist DmM PB

5 3.48 12.31 45 50.57

6 3.17 10.7 42 44.97

7 3.19 9.24 42 40.96

8 3.34 8.49 42 37.17

9 3.11 7.76 42 33.56

10 3.19 7.28 38 30.70

11 3.31 6.81 33 28.90

12 3.70 6.37 33 26.97

13 3.00 5.99 33 24.42

14 3.20 5.65 33 22.10

15 3.80 5.31 33 19.39

16 2.95 4.98 33 17.00

17 2.99 4.79 33 16.13

18 2.96 4.61 33 15.74

19 2.96 4.44 26 14.46

20 2.98 4.28 26 13.30

The data reported in Table 1 show expected trends. The higher the number of located
fire stations, the shorter the average distance because the fire brigades are near potential
demand points. Despite this positive message, the highest distance remains too big and
much above the average.

The second reported portion of experiments was aimed at the minimization of the
maximal distance, i.e., for the model (19)–(26) with possible considerable acceleration with
the series of models (27)–(31). Those models are suggested to find a system design in which
the maximal relevant distance cannot be decreased with a given number of stations. As
before, we solved the models for different values of parameter p. To save space, we report
Table 2 in a different format. The objective function of the model is reported herein in rows
denoted by DmM. For each resulting system design, the average distance was computed,
and its value is given in the row denoted by AvgDist. Thus, each column of the table
corresponds to one solved problem instance.

Table 2. Results of numerical experiments with minMax model (19)–(26) using the dataset for the
self-governing region of Žilina.

p 5 6 7 8 9 10 11 12 13 14 15

DmM 41 34 34 31 28 27 25 23 23 23 22

AvgDist 17.50 15.21 13.75 12.38 11.53 11.40 11.67 12.04 9.59 9.32 10.67
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The achieved results are interesting from an analytical point of view. Even if the
maximal relevant distance is the smallest possible, the average distance values do not seem
very good. This can be explained by the fact that the model minimizes only the highest
distance, and it does not care about the average. Thus, applying one criterion may lead
to worsening the average value of distances. If we compare the results in Tables 1 and 2,
we can see that the minimization process of the highest relevant distance using the model
(19)–(26) caused a significant increase in the average distances. For practical usage, it would
be useful to combine these two approaches and create a two-stage method [35]. In the
first step, the maximal distance could be minimized, and then the average value could be
optimized under the condition of not worsening the previously found limit for the maximal
distance. Another possibility consists of incorporating some form of fairness constraints
into the basic model, as suggested at the end of the previous chapter.

5. Advanced Challenges and Future Modeling Directions

The previous parts of this paper were focused on applications of the basic modeling
concepts in the field of fire protection units. Obviously, all suggested mathematical models
were based on a significant level of abstraction. This means that many important aspects of
the real system could not be taken into account.

Strategic decisions, which are the core output of the optimization process, are usually
made for long periods (several years), and thus, the methodology of searching for the
optimal structure of fire stations plays an important role. Let us suggest some new views
on station network optimization.

5.1. System Robustness

Certain standard circumstances are typically anticipated for a network via which
the service is offered while creating or redesigning a fire system. This indicates that no
unforeseen issues or service delivery delays are assumed. However, this assumption is
not correct and does not apply to all types of service systems. It must be understood that
the emergency service system runs continuously for 24 h a day, 365 days a year. Logically,
many different undesirable effects that can occur randomly anywhere and at any time
can adversely affect the performance of the system. Such critical adverse events represent
uncertainty, the source of which can be divided into two main groups:

1. Endogenous (internal) causes: These adverse events are due to the service system
itself. At the time the fire protection unit is requested, staff may be temporarily
unavailable because they are serving another user of the system. To include such
situations in the decision-making process, the concept of so-called generalized disutility
was introduced.

2. Exogenous (external) causes: This group of problems includes various impairments
of transportation networks due to the time of day (morning and afternoon rush hour),
weather, or technical condition of roads. Such events are independent of the designed
system but may negatively affect its performance. Separate distance or time matrices
usually describe such critical events and thus form so-called harmful scenarios. The
goal of the solution process is, then, to find a mode of service center deployment that
minimizes the mentioned negative effects of the harmful scenarios.

The time perspective is an additional factor that needs to be taken into account. The
solution reached has strategic relevance since changes in service center deployment brought
about by the results of the related decision process are frequently anticipated to continue
for a very long time. System robustness should therefore be taken into account. The goal
of system robustness is to make the designed system as resistant to unpredictable and
destructive events as humanly possible. Let us discuss a quick, real-world example.

Simple examples of various factors that can negatively impact the operational effi-
ciency of a service system and cause high traffic volumes in the corresponding transporta-
tion network are shown in Figure 5.
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Figure 5. Uncertainty following randomly occurring failures in the network.

As was already indicated, when making decisions during the strategic stage of sys-
tem design, it is important to take detrimental occurrences that happen at random into
account. The following diagram illustrates how the ideal placement of two service centers
is impacted by the extension of a network arc. The little numbers at the network nodes
signify how many service requests are there in each node. The standard conditions and
optimal distribution for the two service centers are shown in the left portion of Figure 6
after the weighted two-median problem is solved. The identical network graph is shown
on Figure 6’s right side but with a longer arc brought on by a negative event. As can be
observed, the optimal solution to the problem is dramatically altered by the proposed arc
evaluation, and the resulting system designs are different.
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In the practical application of robust service systems, there are usually more disjoint
harmful events and much larger networks. Therefore, finding the optimal use of service
centers in terms of the robustness of the systems is a challenging task for experts in the
field of operations research. Another big challenge consists of generating scenarios, which
could follow an advanced analysis of the associated transportation network.

To incorporate system resilience into the associated mathematical model, a finite set of
damage scenarios must be formed that covers the most commonly expected disruptions
to service delivery. In this way, the associated public service system can be mitigated by
minimizing the highest adverse impact of each scenario.

5.2. System Reengineering

The basic idea of system reengineering follows from the analysis of current service sta-
tions’ deployments, which may not be optimal due to changing demands (changed weight
coefficients of the served nodes) and the development of an underlying transportation
network. Another reasonable explanation could be based on the assumption that any kind
of optimization may bring a system design that differs a lot from the current deployment.
Too many changes require a lot of financial costs, and they may be hardly accepted by the
public even if the new system design could be much better.
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To illustrate the problem of system reengineering in more detail, consider the simple
example in Figure 7. Suppose the diagram on the left represents a current zoom out of the
four fire stations highlighted in blue. Every vertex represents a possible demand point
or network node. The sum of the distances from each network node to the nearest fire
station was used as a quality metric to evaluate the current deployment. A value of 66 is
assumed here. If we allow the current position of the firefighting unit to change and move
the station from node 2 to node 6, we can redesign the system and achieve better values
for the considered criteria. The new system design is shown in the diagram on the right
and has a score of 64. This small example demonstrates the principles and goals of system
reengineering. It is not a big change, but the effect is noticeable.
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Figure 7. Simple example of system reengineering.

The basic idea of system reengineering can be achieved by solving the following
radial model, which follows the original approach described in (14)–(18). Herein, a small
adjustment must be performed. The original set I of candidates for locating a fire station
needs to be divided into two separate disjoint sets, IR and IF. While the set IF contains
locations in which fire protection units must be located (or must stay unchanged from the
current deployment), the set IR contains nodes that are necessary to decide on. Based on
these preliminaries, the radial model for system reengineering with generalized disutility
may take the form of (41)–(45).

Minimize
∑
j∈J

bj
m−1
∑

v=0

r
∑

k=1
qkxjvk

∑
j∈J

bj
(41)

Subject to :
r

∑
k=1

xjsk + ∑
i∈IR

as
ijyi + ∑

i∈IF

as
ij ≥ r f or j ∈ J, v = 0, 1, . . . , m− 1 (42)

∑
i∈I

yi = p (43)

yi ∈ {0, 1} f or i ∈ I (44)

xjvk ∈ {0, 1} f or j ∈ J, v = 0, . . . , m− 1, k = 1, . . . , r (45)

Basic system reengineering may be accompanied by auxiliary constraints, which raise
some extra restrictions. Let us mention two of them. The first rule limits the total number
w of fire stations, the locations of which can change. The second rule limits the distance
between the current and newly suggested location of a fire brigade. In addition to the sets
IF and IR, let us define the set IL as those currently deployed fire stations that are allowed
to change their locations.

To formulate the rules concisely, we derive several auxiliary structures using Figure 8.
We assume that all points 1–11 represent served network nodes and the black points 2, 3, 9,
and 11 represent current FPU locations.
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Figure 8. Simple example of reengineering restrictions. The black filled nodes represent currently
deployed centers and the other nodes are used as candidate locations.

Let Nt = {i∈IR: dti ≤ D} denote the set of all possible locations to which a fire station
t∈IL can be moved subject to the limited length of the move. If we consider the example
depicted in Figure 8, we can observe that the center located at point 9 can be moved to 6, 8,
10, and 13 or stay unchanged. Thus, the set N9 = {6, 8, 9, 10, 13}. Similarly, N3 = {3, 4, 6}.
Additionally, let Si = {t∈IL: i∈Nt} denote a set of all fire stations, which can be moved to
i∈IR subject to the mentioned limitation. Here, S6 = {3, 9}. Realize that t∈Nt and i∈Si for
t∈IL and i∈IR, and thus IL⊂ IR.

The choice to move centers from their current positions to new ones is now modeled
with a set of decision reallocation variables. If the fire station at t is moved to i, the variable
uti∈{0, 1} for t∈IL and i∈Nt takes a value of 1. Using the above-introduced structures and
variables, we suggest the following model extension.

∑
i∈IL

yi ≥ p− w (46)

∑
i∈Nt

uti = 1 f or t ∈ IL (47)

∑
t∈Si

uti ≤ yi f or i ∈ IR (48)

uti ∈ {0, 1} f or t ∈ IL, i ∈ Nt (49)

Expression (46) prohibits having more than w modified FPU locations. An FPU can be
moved from its current location t to a maximum of one other potential site within radius D
thanks to constraints (47). As long as the moved station’s initial location is within radius
D, constraints (48) allow for the transportation of a maximum of one center to place i. In
addition, these restrictions guarantee consistency between decisions about center location
and motion.

5.3. Multi-Objective Optimization

The fact that only one goal is followed at a time is one of the main shortcomings
of practically all of the modeling and solution approaches discussed in this study. Fire
departments and many other services are far more complex; thus, it would be too strict to
reduce them to a single goal. Hence, creating modeling and solution strategies that enable
us to achieve appropriate outcomes for issues where at least two separate criteria must
be taken into account at once will be a future research task for professionals in operations
research, mathematics, and applied computer science. Let us think about the following
brief illustration.
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Whenever the decision-making task of the best possible deployment of fire protection
units is formulated in a general way, it can take the form of (50).

min

{
f (y) : yi ∈ {0, 1}, i ∈ I, ∑

i∈I
yi = p

}
(50)

The objective function f (y) used in model (1) may take several different forms, and it
directly affects the solvability of the problem using the available approaches. If we wanted
to make the system of fire brigades’ design problem more general, we could add at least
one extra objective. The former problem (50) can be rewritten in the form of (51).

min

{
f1(y), f2(y) : yi ∈ {0, 1}, i ∈ I, ∑

i∈I
yi = p

}
(51)

The combination of two criteria may bring several difficulties into the decision-making
process, mainly in situations in which the used objectives contradict each other. This means
that improving one of them is not possible without worsening the other one.

Let us concentrate on the set of all feasible solutions to the problem (51) with any form
of used objective functions. The vector y of the location variables yi for i∈I can describe
each feasible solution. Since each solution y can be evaluated with two objectives, f 1(y)
and f 2(y), each element of the feasible solutions set can be visually reported with one point
of two-dimensional Euclidean space. The large cardinality of the input set I causes the
impossibility of processing the complete set of feasible solutions. Thus, a suitable output of
any multi-criteria optimization consists of a small subset called Pareto front [22–26].

A Pareto front is generally formed by a small number of solutions satisfying the
non-dominance property for each pair of its members. It should be noted that in bi-criteria
optimization, each feasible solution P can be evaluated with two criteria, f1(P) and f2(P),
regardless of their form. A solution P can be considered a non-dominated solution if every
other solution R for which [f1(P), f2(P)] 6= [f1(R), f2(R)] satisfies the following inequality
f1(P) < f1(R) or f2(P) < f2(R). The explanation of the Pareto front can be easily understood by
looking at Figure 9.
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If we look at Figure 9, we can see that the green solutions A and B are members of
the Pareto front because they are not dominated by any other solution. This means that
none of the Pareto front members are equally good or better in both quality criteria. On the
contrary, the red solutions C and D do not belong to the Pareto front. Particle A dominates
solution C, and solution D is dominated by both particles A and B. For completeness, let
us note that MLM and MRM represent the bordering members of the Pareto front. While
MLM denotes the most left member, the symbol MRM is used to denote the most right one.
The bordering members can be obtained by optimizing only one of the given criteria.
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One of the next research challenges could consist of creating new exact and heuristic
approaches for bi- or even multi-objective optimization problems to fulfill current trends
in location science. One particular goal could be aimed at combining optimization with
simulation verification as in [36], or we could focus on artificial intelligence and self-learning
algorithms as suggested in [37–39].

5.4. Other Optimization Challenges

Fire brigade deployment represents a complex system, the optimization of which
deserves proper planning, analysis, and a suitable level of abstraction. The existing system
of fire stations could be analyzed from many other points of view than those described
in this paper. The time accessibility of service is not the only possible criterion. As
mentioned in the introductory part of this paper, individual fire stations are not equally
equipped with technical devices and employees as well. Thus, the type of station should
be taken into account. Another optimization approach may be based on an iterative
approach. This means that the stations should be located first, and then, personal and
technological resources may be distributed to those stations. As an advanced strategy, we
could distinguish between professional and volunteer fire brigades. Since the real system is
very complex, it may be useful to identify its critical features that should not be abstracted
while the optimization process is being performed. An irreplaceable role could be played
in the proper consideration of network nodes’ degree of fire risk.

To sum up the proposed modeling and optimization challenges, it is natural that the
operations research field has a lot to offer. If everything turns out well, remarkable results
can be achieved. Several applicable research directions also in the field of searching for
optimal fire brigade deployment have been proposed in recent publications [40–44].

6. Conclusions

The optimization of fire brigade’ deployment plays an important role from many
points of view. This research paper was aimed at two levels of mathematical modeling. The
first part of this paper summarized the basic modeling concepts, which were accompanied
by a small computational study. We showed concrete ways in which simple models can
deploy fire brigades. The second half of this paper introduced several advanced challenges,
which could bring novelty into the design of rescue service systems.

After the introductory section, explained several basic modeling concepts were ex-
plained. The mathematical models were discussed in detail together with possible modifica-
tions and reformulations. The second part was focused on theoretical advanced challenges.
We discussed system robustness and the concept of so-called reengineering, which follows
from the existing system and limits the number of performed changes in current fire brigade
deployment. Finally, we presented the possibility of managing the problem of searching
for a new mode of fire brigade deployment using a bi-criteria model. Since each modeling
concept may produce very different results, a simulation model could be helpful to identify
the best modeling strategy. It could also assist us in identifying some weak points of the
suggested models to create a suitable and complex optimization method for firefighters.

Since many defined modeling concepts and optimization approaches need additional
input data or network analyses, they are not reported within this computational study. For
example, evaluating system robustness requires defining the set of detrimental scenarios.
They can either result from a network analysis, or they can be created by experts in
transportation science. Due to lack of data, we would like to analyze system robustness in
a separate article, in which we will discuss all problems that are connected to robust system
designing. On the other hand, making emergency systems robust is an important concept;
therefore, we decided to also report this in this paper, at least theoretically.

Future research in this field could be aimed at the verification of several advanced
modeling strategies by performing numerical experiments with real data and identifying
the best strategy for practical usage. Another topic could focus on some possible adjust-
ments of existing methods to produce results that are more precise or on developing other
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algorithms that could work better or faster. Thus, the optimization of fire brigades is
interesting for experts in more scientific fields.
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