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Abstract: Restrictions on competitive fishing activities due to the depletion of living marine resources
and the monitoring of fish resources for the purpose of marine ecosystem research are supported
by statistics on the protection of fish resources and ecosystem research, which are gathered through
existing observer monitoring systems. However, in the case of deep-sea fishing vessels and special-
purpose fishing vessels, some matters, such as collusive transactions with shipping companies and
shipowners and threats toward the observer, are problematic, as observers are always active on board.
Therefore, through the present study we would like to discuss the methodology and directions for
research on the independent role of the observer and the methods for improving the reliability of
data through systems that automate the monitoring of the acquisition of fish resources, which is
expected to be a continuing problem. After an analysis of research trends for each issue related to the
electronic monitoring system, future research directions are suggested on the basis of the findings,
and for the research currently in progress, this paper presents the results from a prediction server
and client and an image collector. In order to use these in the field in the future, as the detection
method and reliability of the electronic monitoring system that can automate self-learning should
be improved, we describe the image transmission technology, the image recognition technology for
studying fish, and the methodology for calculating the yield.
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1. Introduction

The problem of depleting living marine resources intensifies as each country develops
competitive fishing activities with larger fishing boats, in addition to the rapid develop-
ment of fishing technology and large-scale investments in the industry. The burden of
responsibility to comply with the resource conservation and management measures of
regional fisheries’ organizations has been left to the deep-sea fishing countries participating
in high-seas fisheries.

The Western and Central Pacific Highly Migratory Fish Resources Conservation and
Management Convention (WCPFC Convention) takes effect as a multilateral resource
conservation and management system, in which the coastal countries alongside the exclu-
sive economic zone and the deep-sea fishing countries whose nationals engage in fishing
activities in the specified area of water participate. Consequently, international cooperation
on conservation and the management of fish stocks across the entire migratory range has
become possible. This Convention and the associated processes are based on the 1995
Agreement for the Implementation of the Provisions of the United Nations Convention on
the Law of the Sea of 10 December 1982 Relating to the Conservation and Management of
Straddling Fish Stock and Highly Migratory Fish Stocks (UNFSA).

Since 2007, the Western and Central Pacific Fisheries Commission (WCPFC Conven-
tion) has implemented a number of specific conservation and management measures for
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highly migratory fish stocks, starting with a regional observer program. In addition, proce-
dural rules have been adopted that allow inspectors of non-shipping countries to exercise
the right to inspect high-seas fishing vessels suspected of violating the fishing regulations
of regional fisheries organizations under certain conditions. Such measures were adopted
in accordance with the provisions of the 1995 UN Convention on the Implementation of the
Regulations on the Conservation and Management of Fish Resources in the High Seas [1,2].

As a member of the WCPFC, there may be cases where Korea has to conduct on-board
inspections for high-seas fishing vessels from tertiary countries, and there may also be cases
where fishing vessels of Korean nationality are required to undergo on-board inspections by
inspectors from tertiary countries. In carrying out boarding inspections of high-seas fishing
vessels, it is necessary to comply with the requested international cooperation measures, as
a member of the WCPFC, by identifying relevant matters and reviewing the agreed upon
procedural rules. The management system for fisheries on the high seas is based on Article
116 of the United Nations Convention on the Law of the Sea, and Articles 63, Paragraph 2
and Articles 64 through 67 of the Convention are the relevant provisions.

In addition, specific regulations required by the WCPFC require major regional fish-
eries organizations to prevent and eradicate the Illegal, Unreported, and Unregulated (IUU)
fishing for the purpose of conservation and management of living marine resources.

Therefore, the implementation system of Monitoring, Control, and Surveillance (MCS)
includes the installation and operation of vessel monitoring systems (VMSs) for fishing
vessels on the high seas, the operation of regional observer programs, the operation of
port state inspection systems, and the operation of boarding inspection systems for fishing
vessels on the high seas. These include the surveillance of trans-shipments at sea, prepa-
ration of harvest statistics, registration of fishing vessels, and preparation of the Illegal,
Unreported, and Unregulated (IUU) fishing vessel list.

Table 1 shows the operational status of the MCS system of major regional fisheries
organizations related to highly migratory fish stocks [3–5].

Table 1. The current status of MCS operation system of local fisheries organizations related to highly
migratory fish resources [4].

MCS elements 1 CCSBT FFA IATTC ICCAT IOTC WCPFC

VMS 2: o 3 o o o o o
-Operating entity Shipper Secretariat Shipper Shipper Shipper Shipper
-Target boat Over 24 m Over 24 m Over 24 m Over 24 m Over 24 m Over 24 m
-Reporting interval 6 h 6 h 6 h 6 h 6 h 6 h

Observer system: o o o (Surrounding
net) o x 4 o

-Task Scientific research Scientific research,
surveillance Surveillance Scientific

research - Scientific research,
surveillance

-Operating entity Shipper Nearshore Shipper
Secretariat Shipper - Shipper,

secretariat

-Boarding ratio 10% Bilateral
agreement 100% 10% - 10%

-Bear costs x Vessel,
shipowner

Shipper
Secretariat x - Shipowner,

shipper
Monitoring port state x o x o o o
Monitoring boarding
in High sea x X x x x o

Surveilling the entry
of goods into ship x o(Prohibition) x o x o

Statistical document
preparation o - o o o o

List of IUU fishing
vessel name o x o o o o

Fishing vessel
registration o o o o o o

MCS elements 1: Commission for the Conservation of Southern Bluefin Tuna (CCSBT), Forum Fisheries Agency
Convention (FFA), Inter-American Tropical Tuna Commission (IATTC), The International Commission for the
Conservation of Atlantic Tunas (ICCAT), Indian Ocean Tuna Commission (IOTC), The Western and Central Pacific
Fisheries Commission (WCPFC); VMS 2: vessel monitoring system; 3: adopted; × 4: not adopted.
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With the current WCPFC Convention having come into effect on 19 June 2004, in
accordance with Article 26 (Boarding and Inspection) of the Convention, the Commission
has implemented Boarding and Inspection Procedures for fishing boats operating in the
high seas of the Convention area to ensure compliance with conservation and management
measures.

In addition, by having signed the WCPFC Boarding and Inspection Procedures in
September 2006, the agreeing parties must allow their national fishing vessel to be boarded
by an observer authorized according to the procedure, and inspectors assigned to the
inspection must comply with the boarding inspection procedures.

The international observer program can be divided into cases where Korean observers
board foreign fishing boats and perform duties and cases where foreign observers perform
duties on-board Korean fishing boats. Currently, the CCSBT, IATTC, ICCAT, etc [6,7]., are
implementing observer programs, and the WCPFC has recognized the national observer
program and sub-regional observer program since 2008 as part of the WCPFC regional
observer program and has agreed to achieve an observer occupancy rate of up to 5%.

Korea’s coastal waters observer system has certified embarkation observers and port
observers, which allows them to board fishing vessels or work at ports of landing to mon-
itor the exhaustion of Total Allowable Catch (TAC) and the fishing status for resource
management. It is a system that identifies and reports fishery resources and collects the
basic data necessary for evaluating fishery resources and identifying fishing characteris-
tics. According to their function, the observer can be classified as a science observer for
the purpose of collecting scientific information, a fishery (surveillance) observer whose
main purpose is to collect scientific information, but also has a monitoring purpose, and
an inspector or controller that collects minimal scientific information while focusing on
monitoring [8,9].

Depending on the observer duties, the types of observers in the TAC observer system
include embarkation observers and port observers; however, the term ‘observers’ generally
refers to the embarkation observers. The TAC observer system implemented by Korea
involves having an observer at the port of landing. The port of landing observer performs
observer duties such as grasping catches and collecting other scientific data at the port of
landing. In 2012, the boarding request rate, which was between 5% and 200% for each flag
country, increased to at least 50% and up to 200% in 2016, and the number of observers
required in Korea increased rapidly from 41 in 2012 to 115 in 2016.

In addition, in the case of the Commission for the Conservation of Antarctic Marine
Living Resources (CCAMLR), one international and one domestic observer are required to
board the vessel during the entire fishing season, and in the Western and Central Pacific
Fisheries Commission (WCPFC), where Korean tuna fishing boats operate the most, the
observer boarding rate is required to achieve 5%. If observers do not comply with the
required boarding rate, it is regarded as illegal fishing, making it difficult to secure quotas
and raising concerns about blocking exports of catches [6].

As such, the importance and role of the observer are increasing day by day, and due to
the strengthening of fishing regulations in the high seas, the demand for mandatory inter-
national observer boarding, and the appropriate boarding rate, is continuously increasing,
and is centered on regional fisheries organizations.

However, there are continuous departures due to the occurrence of fatal accidents due
to poor working conditions and the avoidance of activities due to the unstable contract
period that prevents boarding throughout the year. The United States, Japan, and Taiwan
have been nurtured by the state and have switched to private company management under
state support.

The observer’s independent activities are limited due to the system in which the
shipping company pays the observer’s expenses directly. Therefore, discrepancies can
result. For example, in the Antarctic waters, three Korean-flagged ships were suspected
of negotiating false reports and of illegal transportation, which was four to five times
higher than the average level in a specific sea area, and an investigation was initiated.
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Although a program to comply with the correct rules is operational, the considerable efforts
needed for solving problems related to the TAC investigations are limited to the observer’s
uncomfortable working environment and independent activities [9].

Therefore, there is an urgent need for research on the development of a surveillance
system that can remove the minimum intrusive elements from the pure scientific research
aspect of the observer by satisfying the observer requirements for the TAC as directly
related to the ship station.

In this paper, research on the assistance available for the observer is explained in Section 2;
the methodology and design of the related systems are discussed in Section 3; the experiment
and evaluation are described in Section 4; and the conclusions are given in Section 5.

2. Related Research

The systems that can assist the observer can be divided into harvest estimation and fish
species estimation. The method of analyzing the degree of integration of objects among the
object detection systems is representative of harvest estimation research, and the fish species
estimation is performed by the ‘you only look once’ (YOLO) and single-shot detector (SSD)
systems. This research is used to identify protected fish and estimate their numbers.

2.1. Harvest Estimation

Although there is no study that exactly matches the harvest estimation, similar or
representative studies include the crowdsourcing paradigm [10] and the image stitching
studies. The crowdsourcing paradigm makes it faster, cheaper, and easier for researchers to
gather the data they need for deep learning.

Crowdsourcing can provide tremendous benefits with vast amounts of data; however,
it requires specific strategies to validate the quality of the data collected. Manual data
validation is not an option in this case, as it requires a lengthy process and painstaking
work on huge amounts of data. To date, most validation strategies for crowdsourcing are
used for categorical data [11–15].

In particular, validation strategies for crowdsourcing in computer vision can only
be found in image classification cases [16] and object detection [17,18]. Unlike the object
counting case, the currently available datasets are not constructed using a crowdsourcing
paradigm. For example, the datasets of UCF CC 50 [19] and TRANCOS [20] are created by
hand. As a consequence, the data collected for both datasets are not enough to train a deep
learning algorithm (50 images for UCF CC 50 and 1244 images for TRANCOS).

Additionally, with respect to studies aimed at directly weighing fish, the most com-
monly used approach to weight estimation uses fish length as a predictor. For example,
there is a study using a method of estimating this length from the contour line of a fish
(Orechromis niloticus) and then treating the fish mass as a response variable [21]. Here,
the body surface area of the fish (with or without fins) and the height of the fish were
measured and tested on 64 images that were not used in the model fitting process, and the
fish contours with and without fins reached a high mean absolute percentage error (MAPE)
of 5%. A performance model is proposed, which is a similar model [22] using only length as
a characteristic variable; the only comparative model achieved an MAPE = 10%, resulting
in excellent results in the validation curve model. In the comparison of the contour without
a fin and the case with a fin, the MAPE = 12% is highly evaluated, but there seems to be
difficulty in setting the parameters. As a result, there is a 2% difference in performance
improvement between the two models. Another study reported in [22] used surface area
only, with an MAPE = 5–6%, and [23] applied several mathematical models to harvested
Asian sea bass to improve performance.

Here, the mass is measured in grams, and the fish surface area is studied by calculating
the units of cm2 on an image with a size of 1 mm per image pixel. MAPE values are 5.1% and
4.5%, respectively, when fitted to two different fish images of 1072 Asian perch [24]. In general,
fitting parameters are studied by applying them differently depending on the species [25,26].
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The focus of this study was to continue developing a method for automatic estimation
of harvested fish weight from images. Several conditions were presented to derive the
experimental results. The condition is to assume that a model excluding fins and tails
will be more accurate compared to a model using full-fish silhouettes [23]. It is obviously
much easier to extract the total fish surface area than to exclude fins that are not precisely
defined [22,27]. Therefore, using the additional formula of using Deep Convolutional
Neural Networks (CNN) [23,28], we present results that achieved an MAPE of 3.6% and an
MAPE = 11.2% in length estimation.

2.2. Fish Species Estimation

The estimation of fish species can be carried out using the automatic identification
of fish species from images or videos combined with electronic monitoring systems [29].
Therefore, the labor force for reporting catch statistics can be reduced and the accuracy of
reporting can be increased. Image analysis approaches are increasingly being used to gather
fish species information. These approaches have the advantage of automation, efficiency,
veracity, and accuracy as opposed to the traditional manual methods. Previous studies
have addressed how image analysis can be used to identify marine fish types.

A research paper [30] developed a nearest-neighbor classifier for identifying nine
species of fish using shape and color features and directed an acyclic graph multiplexing
for distinguishing six species of fish using wavelet-based texture features as inputs. In
some cases, class-supported vector machine classifiers [31] have been developed. In one
study [32], a method using image processing and statistical analysis was developed to
recognize 4 species of fish by color, shape, and texture characteristics, and the morphological
characteristics of 27 fish species were evaluated, resulting in three types that were significantly
different from each other. Automated morphological recognition has been successful on
different fish species [33]. In addition, a study [34,35] succeeded in recognizing 15 fish
species in underwater videos by combining hierarchical trees and Gaussian mixture models.
Representatively, the YOLO [36–38] and SSD [39,40] methods have been used to estimate fish
abundance using autonomous imaging devices and genetic programming-based classifiers.

Regarding model and harvest estimation, there are no distinctive studies, but the
representative studies include the crowdsourcing paradigm and image stitching studies
described in Section 2.1. It is expected that these techniques can also be used to estimate
harvest. The crowdsourcing paradigm makes it faster, cheaper, and easier to collect the
data needed for deep learning [23]. One problem, however, is that while crowdsourcing
can provide tremendous benefits with vast amounts of data, it requires a specific strategy
to verify the quality of the data collected.

This verification must take place by the use of pre-trained CNNs and fast region-based
CNNs to detect fish and recognize fish species in images from the ImageCLEF dataset [32],
or by using pre-trained CNNs as in [41] to video underwater. There is also a method
for recognizing fish species from images with random noise using CNNs and transfer
learning, such as in [42], and there is also a study [43] that automatically identified species
of tuna and billfish. However, in most studies, there is a part that requires learning through
labeling. A deep dependence can therefore be expected from the data used in the study.

2.3. Electric Monitoring System

Electronic monitoring (EM) began to be installed on ships for the purpose of preventing
safety accidents, but it has recently been used as a tool to collect information on the fishing
process and the numbers of fish caught [44–47]. However, there is no direct, real-time
analysis in these systems; they are manually screened and analyzed in marine data centers.
This enables the recording of harvested fish statistics; however, manual screening of EMS
images and videos is time consuming and labor intensive [46,48].

Therefore, an effective method is to use conventional image processing and machine
learning techniques to automatically perform the aforementioned tasks. In this regard, a
study [49] was conducted using a conveyor-belt-based machine vision system to detect
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fish and determine their length and species. In addition, a further study identified three
types of fish [50] from images acquired under controlled lighting using manually annotated
shape and texture features and linear discriminant analysis.

Subsequent research [51] has used image processing techniques to evaluate the BL of
fish in images acquired with a white background, and [52] used machine vision techniques
to track fish and study their counts in laboratory-acquired underwater images. In [53],
moving averages and feature-matching algorithms were used to detect, track, and count
fish in coral reef videos collected with high-contrast backgrounds. A study has also been
conducted to detect feeder fish in static containers using image processing techniques [54].

Recently, Convolutional Neural Networks (CNNs) have been applied to solve complex
machine vision problems [55–58]. CNNs utilize spatial convolution operations in networks.
Once trained, CNNs can extract features from input images with few pre-processing re-
quirements [59] and can achieve remarkable performance in machine vision tasks. Perhaps
we could use a CNN approach to solve the fish detection and recognition problem.

In [60], CNN and the nearest-neighbor algorithm were used to detect and count dis-
carded harvested fish in fishing trawler videos. The study [61] used a faster Region-based
Convolutional Neural Network (R-CNN) [62] to detect fish and identify fish species in un-
derwater videos. In another study [63], fish were recognized in underwater videos through
a CNN matrix decomposition and support vector machine. In [64], three fish recognition
tasks were completed in coral reef videos using a CNN with single-shot multibox detector
architecture. There is also a study using CNNs with VGG architecture to identify eight
common species and types of harvested tuna and billfish [65].

Research in papers [66,67] succeeded in detecting fish in unconstrained underwater
videos using a CNN with a one-time architecture [68]. Studies in [69] used a two-step graph-
based approach and a CNN model to track the movements of several fish in a stream in an
underwater video. Further research in [70] also used a region-based modeling approach and
deep CNN to detect fish from images acquired from ships and to recognize species of fish.
In [71], we measured fish BL using a CNN on images acquired from ships. Another paper [72]
detected fish images and estimated the length of the fish using three R-CNNs.

However, it is true that EMS images or videos acquired from ships have many prob-
lems, such as image quality and obscuration of angles due to moisture; consequently,
accurate recognition is still a challenge.

3. Proposed Electronic Monitoring System

The focus of EM is to be able to collect a high-quality image and to be able to transmit
these data in real time from the ship. Due to the long voyage time of ordinary deep-sea
fishing vessels and national flag vessels, data collection, learning, and estimation may not
be smooth. Therefore, the system presented in this study transmits a 4 k video over land in
real time, it learns based on the transmitted data, and finally, it performs the estimation. In
addition, the currently required conditions are the presence or absence of illegal catches
and the total amount of the catch in the video taken during operation.

3.1. An Overview of Hardware System

The hardware structure is shown in Figure 1.
In Figure 1, the learning server, prediction server, network, and reporting device

are operated on land, and the image collector client is installed on the ship. Images are
recorded in the image collector client and transmitted to the land in units of 1000 frames. A
real-time video is produced, but limitations in the satellite communication environment
cannot be avoided. Therefore, transmission is limited to 5 to 10 FPS. The learning server
extracts images from collected images and uses them as data for learning. The prediction
server identifies illegal catches from the collected images, estimates and calculates the total
number of catches, and creates and provides a report for each ship.
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3.2. Software Structure

The learning server and prediction server must have analysis and estimation functions,
and they are configured with YOLO4. The image collector client transmits the collected
images to the ftp server, and the ftp server is built on the prediction server. The overall
configuration is shown in Figure 2.
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Figure 2. The EM system structure.

Figure 2 shows the design details for each piece of equipment shown in the overview.
The image collector collects images from ships and transmits the collected data to the
prediction server. The prediction server uses a blob determinant to determine the size of
the image. Here, the meaning of determining an image is to solve problems in the existing
studies, as well as being a key element in this study. When learning in most image detection
systems, labeling must be performed in advance to build the training data. However,
labeling requires a person to mark the object directly, and thus has the problem of not being
able to detect when a large number of objects appear in one image. This part is explained
in more detail in Section 4 below. When the size of the image is determined, the yield
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is estimated using the image, and the estimation of the fish species is performed. The
resulting values and labeling information are delivered to the learning server. Based on the
delivered learning data, the learning server proceeds with learning, and if there is a change,
it delivers weights to the prediction server.

4. Experiments on Electronic Monitoring Systems

This section provides an explanation of the proposed system and the simple experi-
mental contents of the transmission module, as well as the experimental contents of the
Image Segmentation Manager. The reason why the Image Segmentation Manager was
applied to this study is the same as the problem of determining the limited size of blobs
mentioned in Section 3. As for the limited size of the blob, there is no problem when
the size of the image to be estimated matches the width and height, such as the existing
320 × 320, 412 × 412, and 832 × 832 images. However, image sensors in real environments
are diverse, and thus the size is delivered in various ways. That is, the aspect ratio of the
image received from the image sensor is generally 4:3; therefore, the horizontal and vertical
sizes are not the same. However, most of the images used in the object detection have the
same horizontal and vertical images.

Learning is also undertaken in the same situation as the horizontal and vertical, and
the blob size is fixed. Figure 3 shows the state in which the blob is cropped and the state
in which it is not. In other words, cropped means that other images around it are lost.
However, if it remains uncropped, it is evident that the aspect ratio is estimated at 1:1.
Figure 4a shows the estimation of a person in a cropped state, and Figure 4b shows the
estimation of a person in an uncropped state. Figure 4c,d show cropped and uncropped
images for a fish, respectively.
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Figure 4. A comparison of predicted images after setting up the cropped and uncropped images:
(a) cropped image for a person; (b) uncropped image for a person; (c) cropped image for a fish;
(d) uncropped image for a fish.

There is a problem of showing errors in estimation, but there is also a problem that the
box does not accurately represent the object. In particular, when estimating in (c) and (d), the
weights [73] provided by previous studies were used. It is evident that most of the weights
are trained appropriately for the image or video presented in each study. Additionally, a
merged weight that combines the weights of deepfish and ozfish [73] is proposed, but if
the environment does not match, it is evident that there is an error in the estimation.

Figure 5 is a conceptual diagram of the image segmentation estimation technique. In
the image collector, a real-time video is continuously recorded and transmitted in units
of 1000. The network distributor and image decomposer in the prediction server proceed
when the image arrives.
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The network distributor opens as many port numbers as the number of images. The
image decomposer divides the image by the size confirmed in the decision and performs
object detection through each communication port. The reason why ports are used is to
classify and manage image information by port number without losing image information
in the process of delivering images of various sizes.

Therefore, in a method to solve this problem, an image segmentation estimation technique
is proposed. The image segmentation estimation technique is shown in Figures 5 and 6.
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As shown in Figure 6, the image collected in real time is divided into four parts to
perform object detection. It can be seen that an object that was not previously detected is
detected. Additional results are shown in Figure 7.
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Figure 8 is the result of four divisions once more. However, there is a problem that the
pixel resolution is lowered, and boxing does not accurately mark the object. In addition,
the overall selection problem and object recognition accuracy are low.
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If it results in added learning about the object, an estimation suitable for the current
situation will be possible. However, in the situation at the ship site, there are problems
such as angle position and shaking of the camera, and the influence of the weather is also
considered to act as an obstacle to the accurate identification of fish species.

The final image is completed by stitching 80% of the 1/4 quadrant and 80% of the 2/4
quadrant to obtain the final result for user efficiency. Figure 9 shows the result of this, and it
was found that it was impossible to estimate the result for the exact image from the existing
image. Therefore, it was confirmed that the entire image can be estimated by segmenting
and estimating the original image and finally stitching [74–77] it again using the stitching
technique.
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Figure 9. An example of combining image collections using stitching: (a) 80% of the 1/4 quadrant;
(b) 80% of the 2/4 quadrant; and (c) results of the stitching technique.

Experiments for Inferencing Harvest

Regarding the harvesting of fish species, this can be divided into the long-line fishing
method and the purse-seine fishing method. In the case of the long-line method, various
studies [61–65] have been conducted, but discussion on the fishing net method is insufficient.
The experiment in this study was carried out on the yield in the purse-seine fishing method.
The test vessel was a 22-ton class vessel, and the specifications related to the study are
shown in Table 2.

Table 2. A specification of the test ship.

Classification Ship Specification

Ship name Seonrin
Gross tonnage 22 ton
Length over all 18.6 m

Beam 5.2 m
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Based on the ship specifications, the area where the catch is placed can be calculated,
as shown in Figure 10.
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Figure 10. Representation for the size of the place where the caught fish are located.

Therefore, it can be seen that the area where the fish is placed in the vessel is 47.84 (5.2 m
× 9.2 m) m2. If segmentation [78–80] is performed, as shown in (a) in Figure 11, the area may
be excluded by a person, and the entire segmentation will be performed, as shown in (b).

−
a =

1
n∑n

i=1

(
pi
pt

)
× at (1)
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Figure 11. Labeling regarding segmentation: (a) is considering the person and others in labeling;
(b) is not considering other objects.

A simple average formula can be calculated, as shown in Equation (1), where n is
the number of frames, pt is the total number of pixels in the frame, pi is the number of
pixels for which the fishing range is designated, and at is the area where the actual catch
is expected to be placed on the ship. However, the index dependent on the actual pixel
value is strenuous to use as a standard index for various ships. Therefore, it is described
as a random sampling probability model defined in inferential statistics. This is because,
in general, a sample obtained through random sampling can be regarded as a random
variable that follows the probability distribution of the population, as shown in Figure 12.
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Figure 12. Mean distribution estimation through interval distribution: (a) interval distribution
of all pixel values; (b) mean distribution through sampling average (100,000 samples performed
100,000 times).

In Figure 12, (a) shows the distribution of the actual number of pixels calculated in
8691 frames via Equation (1), and (b) shows the interval distribution for 100,000 values
obtained by randomly extracting 10,000 pixels from the actual number of pixels and
obtaining the average. Calculations related to catches are shown in Table 3.

Table 3. Example of calculating estimated size per fish.

Category Pixel (Mean) Area (m2)
After Applying

Weights 1
After Applying

Weights 2
Length (m)

(Piece of Fish)

Real data 445,938 22.62942 452.5884 0.075431 0.274648
Inferential Statistics 424,721 22.04715 440.943 0.07349 0.271091

Weights 1: crane movement index; weights 2: catch index for the last 5 years.

In Table 3, the calculation was carried out with reference to Equation (1), and the length
per fish was estimated and calculated by applying only weights of crane movement value
and weights of catch value for the last 5 year. The fostering port performs sampling on
TAC-applied fish species, and at this time, the length of the sampled fish species is reported.
By comparing the difference between the reported length and the estimated calculated
length, it is possible to estimate whether more than the catch amount was harvested. That
is, as shown in Table 3, the estimated calculation is 27.4 cm, and if the inspector reports
more than 27.4 cm, it can be determined that more than the yield has been caught.
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5. Discussion

In this review, based on the contents currently being studied, we discussed whether
these can be applied at sea, and a review was conducted on whether they can be learned
while minimizing indiscriminate labeling.

Regarding species identification, automatic labeling was performed by applying
existing weights, and images and location information necessary for additional learning
were collected from a total of 8691 frames. Using the collected learning images and location
information, additional learning was conducted, and manual labeling was not performed.
As shown in Figure 13, the picture due to misrecognition was deleted.
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Figure 13. Example of automatic labeling using existing weights: (a) image with box recorded for
review; (b) images and location information documents without box marks for learning.

The overall learning result is shown in Figure 14, and the maximum learning effect
was observed to be 0.157193; the average accuracy was low at 73.68%, considering the
accuracy of the experimental image for the boxed image in the existing weight, but it
showed a significantly improved recognition rate, as shown in Figure 15. The fact that
some errors are shown in species recognition, such as the red box mark, is also a problem
and needs to be improved.
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CNN, CNN, and R-CNN, are applied.  

However, for direct applications in industry, many difficult challenges must be 
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bring about many unexpected situations in detection. As most studies learn and make 

inferences based on related images, good results will not be obtained as expected if the 
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learning. Although the same weight is used, the image transmitted in real time is divided 
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Figure 15. Example of detection result through additional learning.

In addition, the results related to segmentation are shown in Figure 16. In the case of
(a), the number of red pixels is 320,617, and the calculation result of (b) is 475,977. Based on
this, the size per fish was calculated to estimate the catch.
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Figure 16. Example of pixel calculation for fish: (a) area—320617, total—921600, fish_area (%)—
34.789171006944447; (b) area—475977, total—921600, fish_area (%)—51.64680989583333.

6. Conclusions

There are numerous ships in the sea, and it is inevitable that resource depletion will
occur, which must be prepared for. Continuing on the current path and deferring to
observers without aid will not be enough to ensure the future of the ocean. With the
introduction of EM to support observers on ships, many studies are being conducted on
analyzing images.

In particular, YOLO and SSD are represented in relation to learning and estimation
centered on object detection, and various networks for image learning, such as Mask
R-CNN, CNN, and R-CNN, are applied.

However, for direct applications in industry, many difficult challenges must be solved.
Directly introducing and using the weight produced by existing learning will bring about
many unexpected situations in detection. As most studies learn and make inferences based
on related images, good results will not be obtained as expected if the same data are not
used. Therefore, an image segmentation estimation technique was introduced here as a
method for maximizing estimation while reducing the intensity of learning. Although
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the same weight is used, the image transmitted in real time is divided into four parts
to enable estimation, and estimation is attempted in each image. It was confirmed that
fish that were not detected before division were detected after division. However, an
unclear phenomenon in which the accuracy of object recognition is reduced was also found.
The current image was extracted from a 1024 × 720 30 FPS image, and as a result of the
experiment, up to four divisions three times, the size of the image fell to 45 × 80, and
detection was not performed at the expected level by estimation. However, if the technique
presented in the video is applied, such as a 3840 × 2160 4 k image and a 7680 × 4320 8 k
image, it is expected to show high estimation accuracy while minimizing manual labeling
work. However, there is a limit where a high-specification system is required in such an
experiment.

Using image detection, segmentation, and stitching, which are representative of the
current study, we conceived an EM system that can be supported by ships, and we reviewed
the problems in implementation through experiments. In particular, we reviewed the parts
that can be automated regarding image quality, which is closely related to the accuracy of
detecting and the part that utilizes the weights learned in the existing detection. The part
that uses the segmentation technique to perform this was explained. In this review, it was
found that weights are learned differently depending on the environment, and as a result,
it was found that there are many problems in the actual use of the technique. A method
for conducting learning was presented, and in the case of measuring the total catch in a
purse-seine fishing boat, there is a problem in that it is difficult to estimate the exact catch.
Although the technique for estimating the amount of catch was explained, it is thought that
consultation with the institution should be prioritized in actual application.

In future research, we intend to increase the recognition rate through image segmen-
tation detection and additional learning targeting 4 k images; additionally, we plan to
conduct research on a large number of clustered objects.
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