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Abstract: Due to today’s technological development and information progress, an increasing number
of physical systems have become interconnected and linked together through communication net-
works, thus resulting in Cyber-Physical Systems (CPSs). Continuous manufacturing, which involves
the manufacture of products without interruption, has become increasingly important in many
industries, including the pharmaceutical and chemical industries. CPSs can be used to control and
monitor the production process, which is essential in enabling continuous manufacturing. This paper
is focused on the modeling and control of physical systems required in tablet production using dry
granulation. Tablets are a type of oral dosage form that is commonly used in the pharmaceutical
industry. They are solid, compressed forms of medication that are formulated to release the active
ingredients in a manner that allows for optimal absorption and efficacy. Thus, a model predictive
control (MPC) strategy is applied to a plant model to test the designed controller and to analyze the
obtained performances. The simulation results are compared with those obtained using other control
algorithms, linear quadratic regulator (LQR) and proportional-integral-derivative (PID), applied to
the same plant model. The results showed that the predictive control strategy performed significantly
better than the other two control strategies.

Keywords: cyber-physical system; continuous manufacturing; model predictive control;
proportional-integral-derivative controller; linear quadratic regulator

1. Introduction

Advances in data acquisition systems, information technology (IT), and networking
technologies have led to the development of Cyber-Physical Systems (CPSs). These sys-
tems are complex infrastructures that integrate digital technology into physical reality in
order to automate and digitalize physical processes [1]. Research and advances in CPS
technologies have increasingly become part of emerging trends in IT fields such as the
Internet of Things [2], Big Data [3], Cloud Computing, and Artificial Intelligence [4]. Cyber-
physical systems offer numerous benefits to technology, industries, and organizations. They
improve efficiency, productivity, and safety in manufacturing, healthcare, transportation,
and other sectors. By integrating physical devices and software systems, cyber-physical
systems enable real-time monitoring, analysis, and control of complex processes, resulting
in enhanced performance, reduced costs, and better decision-making capabilities. As a
result, cyber-physical systems have the potential to revolutionize multiple industries and
transform the way organizations operate. In the context of Industry 4.0, next-generation
technologies have propelled the development of smart manufacturing due to the many ben-
efits they offer [5]. The economic benefits are among the most important for manufacturers
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as they can reduce their production costs by reducing manpower due to process automation,
increasing production, and reducing raw material losses. Increasing production volume
and quality of the yielded products are important factors in the industry’s technological
development due to the increasing demand on the market.

Because CPSs use both hardware and software resources to integrate computing,
communication, and control processes, they are used in many fields such as automotive,
aerospace, transportation, energy, and manufacturing. Among the many applications of
CPS is the pharmaceutical industry, which needs to be upgraded due to the increasing
demand for products, highlighted during the COVID pandemic.

The first step towards the modernization of industry is the transition to continuous
production, necessary for the emergence of smart factories [6]. Continuous production is
a production flow method used to manufacture, produce, or process materials without
interruption. During continuous processing, materials are transported from one processing
unit to another in a continuous flow to produce a finished product. Regardless of the
industry in which it is applied, continuous production offers the major advantage of a
higher production rate as well as an increased standard of product quality. It also decreases
production time, the possibility of human error, and per unit costs, while production
flexibility increases and the ability to scale up is improved. This type of process is used
by companies involved in oil refining, metal smelting, power plants, sanitary wastewater
treatment, and many more. Other industries, such as pharmaceuticals, are beginning to
understand the benefits of a continuous production process, whereby products can be
manufactured in a shorter time, at the lowest possible cost, while minimizing waste [7].

At the moment, most pharmaceutical companies are focused on batch production
because it is cheaper compared to continuous manufacturing (CM) [8]. This approach
requires each batch to go through the same steps at the same time. Unlike continuous
production, where both raw material and finished product are charged/discharged con-
tinuously throughout the process, in batch production, all raw material is charged at the
start of the process and the products are discharged at once [9]. This is a disadvantage
because quality checks and inspection of products are made on samples from an already
manufactured batch, compared to continuous production where products can be inspected
in advance at each stage.

Pharmaceutical products can be found in many forms, depending on the purpose of
use and how they are administered. Thus, they can be classified into oral (pills/tablets,
capsules, syrups, solutions), cutaneous (unguents, gels, creams, solutions), and inhalation
(solution, spray) pharmaceutical forms. Depending on the classification of the products,
the method of manufacture also differs. This paper is focused on solid dosage forms,
in which case the research carried out so far on the continuous production of these types of
drugs still requires improvement [8]. In [10], the risks and economics of adopting continu-
ous production for pharmaceutical tablets compared to conventional batch production are
presented. The results of the studies demonstrate the potential of CM to make internal pro-
duction of pharmaceuticals more economically attractive than external production of these
products. A case study on the sustainability of using CM in pharmaceutical production is
also illustrated in [11]. The examples analyzed in this article show that in most situations
there are positive sustainability factors for the use of this method in the manufacturing
process of chemical compounds needed for pharmaceutical products.

The transition to continuous manufacturing of pharmaceuticals is supported by a
report of the Subcommittee on Advanced Manufacturing, Committee on Technology of the
National Science and Technology Council, US, in October 2022 [12], which recommends
“advanced continuous manufacturing, in-line process monitoring and control, integrated
AI-assisted systems, and novel cell culture techniques".

Solid dosage forms can be classified according to the manufacturing process as follows:
direct compression (DC), dry granulation (DG), or wet granulation (WG) [7]. Continuous
direct compression includes multiple loss-in-weight feeders, a blender required for mixing
active pharmaceutical ingredients (APIs) with powdered excipients, and a rotary tablet
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press. Optionally, a mill (for grounding ingredients from feeders) and a feeder lubricant
can be added before the blender. Additionally, in the case of the WG route, a twin screw
granulator is used to grind the primary powder. After that, the dryer reaches the desired
moisture level and a mill ensures that the granules are the desired size. In addition to
the processing units used in DC, a roller compactor and a mill are required in DG after
blending the ingredients. The manufacturing process should be chosen according to the
physical properties of the tablets (weight variation, thickness, hardness, diameter) and
tablet performance (disintegration and dissolution).

Propelled by market requirements and technological advancement, the pharmaceutical
industry is encouraged to adopt continuous manufacturing to increase the efficiency and
flexibility of drug production by optimizing costs and production times and enhancing
product quality. In this work, the focus is on developing and testing a novel model
predictive control strategy for such processes. The proposed algorithm is designed for
a simulator (developed in Simulink) of the continuous dry granulation manufacturing
process of pharmaceutical tablets. To better illustrate the performance of the proposed
strategy, the results obtained from the simulations are compared with those provided by
two classical control approaches: PID and LQR. Thus, it can be noticed that MPC provides
significantly improved results in terms of stability of the production process and increased
quality of the final products.

Considering all the aspects mentioned above, the main contributions of this paper,
in comparison with our previous work and the current literature, are the following:

1. A new predictive control strategy, adapted for a continuous pharmaceutical tablet
manufacturing plant using dry granulation, was developed.

2. The control performance of the algorithm was tested and analyzed by simulations
performed on a benchmark simulator designed based on the models that are available
in the literature.

3. A comparison between the results provided by the proposed predictive control strat-
egy and those obtained using PID and LQR algorithms was performed.

In this paper, a particular application, i.e., oral dosage form production in a contin-
uous fashion is used as a study case to test and evaluate the fundamental algorithms
that have been developed. The purpose of this paper is to illustrate the advantage of
modeling and control techniques in the continuous production of pharmaceuticals. The es-
tablished methods used in the manufacture of solid dosage forms are compared in Section 2,
while Section 3 details the dry granulation process model. In this paper, a predictive control
strategy is applied to a novel pilot plant of a tablet manufacturing process, which considers
system constraints at the design stage. Section 4 focuses on the control architecture of the
system and the predictive control strategy applied to the process. The method proposed in
the current paper has significant improvements, which will be illustrated and compared
with other control strategies in Section 5. The conclusions of these results and future
directions of work are presented in Section 6.

2. Direct Compression vs. Dry/Wet Granulation

Either dry granulation (DG) or wet granulation (WG), the use of a granulation method
in tablet manufacture is preferable due to the issues of poor fluidity, segregation, and con-
tent uniformity. The main advantages of DG compared to WG are the simplified operating
process and the absence of the additional energy-consuming drying step. DG is also suitable
for processing temperature-sensitive and easily hydrolyzed compounds [13].

In batch production, direct compression (DC) is considered a risky method mainly
due to the risk of segregation of the mixture. Therefore, formulations that tend to segregate
are often granulated to ensure consistent uniformity of active ingredients contained in
the final product. However, it has been observed that when production is performed in a
continuous mode, even using DC, increased homogeneity can be achieved for products
with high segregation tendencies due to the minimization of internal gaps and elimination
of semi-continuous steps [14]. The strong tendency of APIs to agglomerate is a strong
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argument for the use of granulation in batch manufacturing. This problem is completely
solved by the use of a properly designed continuous system in which the material lacks the
time and the environment to re-agglomerate [15]. Compared to DC and DG, WG is one of
the most difficult pharmaceutical processes to model due to the increased number of steps
and variables used in system design [13].

In terms of scale-up, the feasibility of direct compression is negatively influenced due
to speed-sensitive compactibility or flow limitations compared to WG. Dry granulation
based on roller compaction increases density and flow [16]. The simplicity of the DC process
compared with (dry/wet) granulation reduces the complexity, risks, and costs of processing
materials. Technically, any additional operations introduced by the granulation process
come with validation, yield, cleaning, and documentation issues, in addition to time and
effort issues in high-cost good manufacturing practice (GMP) containment facilities [15].
In addition, the heat and humidity problems that can occur in WG may be unacceptable
for labile active substances [16]. In direct compression, product quality and consistency
are essential, an advantage offered by the possibility of direct expression of input material
properties [16]. However, the simplicity of the DC process requires additional constraints on
the formulation components compared to production processes involving granulation [17].

Another aspect of the differences between the three routes of manufacture of tablets
is the coloring of the tablets. DC and DG are unable to provide the same color intensity
compared to WG [18]. In dry granulation, the powder mixture is compressed into granules
without the use of a liquid binder. Since no liquid is added to the mixture, the risk of color
variations due to moisture or reaction with the binder is minimized, but in its absence,
the resulting mixture may have an inconsistent distribution of colorants in the final tablets.
Wet granulation involves the addition of a liquid binder to the powder mixture, which
can help to distribute the colorant evenly throughout the granules. In the case of direct
compression, the homogeneity of the mixture can be more challenging to achieve, which
can result in uneven distribution of the colorant in the final tablets.

In [16], the case of sodium starch glycolate is exemplified whose insolubility property
does not exclude incompatibilities associated with sodium salts, especially in the presence
of moisture. The reaction rate of the finished product is directly proportional to the water
activity in it. In this situation, it is not recommended to use DC and DG methods because
water activity is probably inhomogeneous in the tablet matrix and local microambitates
with high water activity may exist. Another concrete example also illustrated in [16] is
for vitamin tablets for which both WG and DG are used. However, in this case, it is
recommended to use the DG method which offers a higher yield and more stable products
due to the removal of water.

A summary of the advantages/disadvantages of the three production routes for
pharmaceutical tablets is presented in Table 1.

Table 1. Comparison of Wet/Dry Granulation and Direct Compression [13–20].

Property Wet Granulation Dry Granulation Direct Compression

Compactability Harder tablets in case of hard
compactable substances.

Influenced by powder particle
size and shape.

Potential problem for high
loading of poorly compactable

API substances.

Flow

The granules formed are
slightly more spherical than

powders and have better
flowability.

There may be some issues with
powder flow.

Raw materials must have
proper flowability and mixed

with APIs, sometimes they may
need lubricants before

compression.

Particle size Greater with a longer range. Narrower with a narrower
range.
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Table 1. Cont.

Property Wet Granulation Dry Granulation Direct Compression

Content
uniformity

It ensures better uniformity of
content.

The resulting granulation
increased confidence in

uniformity.

It is at risk because it is difficult
to accurately mix a small

amount of API into a large
volume of excipients.

Mixing Prevents segregation of
components.

Segregation of components
may occur after mixing.

A high shear can reduce
particle size.

Lubrication Not so sensitive. The compression step becomes
easier and not sticky. Reduces mixing time.

Disintegration

Increased intragranular levels
are required because of the

negative impact of wet
granulation on disintegrants.

They have an improved
disintegration time because the

dry binder used has a lower
adhesive effect and therefore a

quicker disintegration.

It allows them to disintegrate
into API particles rather than

granules.

Dissolution

Providing hydrophilic
properties to the surface of

the granules can improve the
dissolution rate.

The slowness of dissolution
from granules during storage,
particularly if an intragranular

disintegrant is not used.

Difference in dissolution
speeds up the process and

allows better absorption for
API tablets that are poorly

soluble.

Cost
Higher investments costs

because of the time, labour,
energy, and equipment.

Lower equipment costs than
wet granulation.

DC has an economic advantage
over granulation as it requires

fewer resources.

Sensitivity to raw
material

variability

Raw material wetting is
influenced more by changes
in raw material properties.

The properties of the raw
material matter,

the characteristics of API
powders, and excipients are

important.

Precise selection of excipients
is needed as raw materials

must have adequate flowability
and compressibility for a

successful operation.

Stability Not suitable for use on heat or
moisture-sensitive materials.

Suitable for using on heat or
moisture-sensitive materials.

Tableting speed Higher Decreased speed if the flow is
low.

3. Process Description

In the context of Cyber-Physical Systems, the pharmaceutical industry needs to take
a new approach to the manufacturing process. Currently, the manufacturing process is
performed in batches, where the materials are stored before being sent to the next processing
stage and their quality is tested off the production line [9]. In the case of continuous
manufacturing, the products obtained in each stage are sent directly to the next processing
unit. Thus, the design of a continuous manufacturing system involves a complex control
strategy to ensure the required quality standards, as well as proper process control. All this
is then quantified in increased productivity and reduced production and manufacturing
times. Continuous production, unlike batch production, is a flow production strategy. This
means that the process never stops, and there are no breaks between the different steps of
product creation.

3.1. Process Structure

Before being released for distribution and consumption, tablets are subjected to qual-
ity tests, such as the content of active ingredient test, weight uniformity test, dissolu-
tion test, or hardness test. The most common defects in compressing table processes are
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weight variation, low hardness/low mechanical strength of tablets, poor mixing, or layered
tablet splitting [21].

For tablet manufacturing, the most common processes are wet granulation, direct
compression, or dry granulation. The first two continuous manufacturing methods are
shown in Figure 1, where, with red, the route of wet granulation is exemplified and,
with green, the route via direct compaction.

Figure 1. Continuous pharmaceutical tablet manufacturing processes via wet granulation (red) and
via direct compaction (green).

This work is focused on the dry granulation process of tablets, modeled in Matlab-
Simulink [22]. The model designed for the process considered in this paper is based
on numerical data found in the literature. The main execution elements included in
the designed model are the feeders for active pharmaceutical ingredients and excipients,
the blender and the hoppers associated with the roller compactor (RC) and tablet press
(TP). Figure 2 shows the order of the production steps and the dependencies between the
processing units. As shown in the above-mentioned figure, the feeders of dry ingredients
are connected to a continuous blender that mixes all these ingredients. This results in
a powder mixture that feeds a roller compactor that converts the powder blend into
the ribbon. A mill is integrated with the roller compactor that breaks down the ribbon
and forms granules. These granules are fed to the tablet press via a rotary feed frame.
The powder blend fills a die and is subsequently compressed to create a tablet; after
compaction, the tablets are coated [23].
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Figure 2. Continuous pharmaceutical manufacturing pilot plant.

3.2. Process Modelling

The main purpose of the unit operation of feeding is to be able to supply APIs,
excipients, and lubricants to the next unit, considering a certain constant flow rate, to match
the desired mixture composition and total material flow rate. For the considered continuous
process, the screw feeder is mostly used. It consists of a feed hopper, one (or more) bridge-
breaking systems, and a single (or twin) configuration of conveying screws through which
material is distributed out of the unit [24]. The great advantage of this type of power supply
is the ability to manage very low flow rates, providing good accuracy. In this operation,
an important parameter is the feed factor, which is defined as the amount of powder present
in a screw pitch at each rotation of the feed screw. It can be calculated as follows:

f f =
ṁ
ω

, (1)

where ṁ is the mass flow rate and ω is the screw speed.
Note that, the weight in the feeder hopper is assumed to be constant. Using Heckel’s

equation [25], the changes in density inside the feeder unit are characterized as:

ρ f eeding(W) = ρmax − (ρmax − ρmin)e
−K Wg

A f eeder , (2)

where W is the weight of the material inside the feeder, ρ f eeding is the perceived density
that is present at the inlet of the screw, ρmax is the density at which the perceived density
remains constant while more materials are being added to the feeder, qmin is the minimum
density and occurs when W → 0, meaning that the feeder is nearly empty, K is the modified
pressure decay constant, g is the gravity acceleration, and A f eeder is the cross-sectional area
of the feeder.
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Since the density is linked with the feed factor, it can be used to characterize this
as well. In [26,27], a feed factor model based on Heckel’s equation was developed and
analyzed, in the following form:

f faparent(W) = f fmax − ( f fmax − f fmin)e−βW , (3)

where f fmax corresponds to the maximum relative bulk density within the screws, and f fmin
is the minimum relative bulk density or powder compressibility within the screws. The con-
stant parameter β inside the exponential represents the rate at which the amount of powder
present in the screw pitch decreases with respect to a decrease in feeder weight [28] and is
defined as:

β =
Kg

A f eeder
. (4)

In order to capture the feed factor variability that is a consequence of the noise, a feed
factor noise term is added to Equation (3), resulting in:

f f (W) = f faparent + f fvar. (5)

A truncated cosine Fourier series is used to realize this variability and the following
equation results:

f fvar(W) =
3

∑
j=1

Aj cos(W − Pj), (6)

where Aj and Pj are constant material dependent parameters.
The blender unit guarantees uniformity of concentration and homogenization. The con-

struction of the mathematical model for a continuous blending process is based on the
population equation [29]:

∂F(x, t)
∂t

+
∂

∂x

(
F(x, t)

dx
dt

)
= R f orm(x, t)− Rdep(x, t) + Ḟin(x, t)− Ḟout(x, t), (7)

where F is the population distribution function, x is the vector of internal coordinates used
to express the particle size and t is the time. R f orm and Rdep indicate the particles that are
formed and depleted, respectively, while Ḟin and Ḟout are the rates at which the components
are fed/neglected to/by the system.

Due to the complexity of the system and the lack of numerical parameters, the blender
has been divided into several compartments. These local homogeneous compartments
are created by discretizing the mixing vessel space in both axial and radial dimensions.
Applying Equation (7) to the process under consideration results in a simple mass balance
of a compartment containing the powder flows:

∂mi,j

∂t
= Ff [mi−1,j −mi,j] + Fb[mi+1,j −mi,j] + Fr[mi,j+1 + mi,j−1 −mi,j], (8)

where mi,j is the mass holdup in the compartment and the forward (Ff ), backward (Fb),
and radial (Fr) fluxes are obtained using:

Ff = aωblender + b,

Fb = cωblender + d,

Fr = e,

(9)

in which ωblender is the speed of the blender, while constant parameters a, b (for forward flux),
c, d (for backward flux), and e (for radial flux) are estimated from experimental data, de-
pending on the type of material (API or excipient).
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Considering the following definition for the flow at the outlet of the blender:

Fblender =
Nr

∑
j=1

Ff ,APImAPI,i=Na ,j +
Nr

∑
j=1

Ff ,ExcipientmExcipient,i=Na ,j, (10)

where mAPI and mExcipient are the powder holdups of the last compartments in the axial
direction, Nr represents the number of radial discretization, and Na is the number of axial
compartments, the outlet concentration (CAPI) is resolved:

CAPI =
∑Nr

j=1 Ff ,APImAPI,i=Na ,j

Fblender
. (11)

The RC hopper and the TP hopper used in this paper are working on the same
principle. The hoppers modeled in this work consist of a conical section at the bottom and
a cylindrical section at the top. The hopper model described below will finally provide
the resulting height and mass flow rate. In steady-state, the mass flow through all units is
the same. Thus, both hoppers will operate under the same operating conditions. This fact
causes a delay in the density coming from the previous unit (blender or roller compactor).

The powder that leaves the blender comes into a hopper as well as the material that
exits the roller compactor [22]. This unit is modeled as a conical, spherical hopper-type
tank. The dynamics of the system are guided by the mass balance equation, defined as the
difference between the inlet mass flow rate that is coming from the blender (ṁin) and the
outlet mass flow rate (ṁout):

ρb
dV
dt

= ṁin − ṁout, (12)

where ρb is the density at the outlet of the hopper and V is the volume of material in
the hopper.

The dynamics of the hopper are modeled by the change in volume in the hopper,
depending on the powder’s height:

h < H1 :
dV
dt

=
1
3

π

[(
R2

H1
h
)2

+ R1

(
R2

H1
h
)
+ R2

1

]
dh
dt

,

h ≥ H1 :
dV
dt

= πR2
2

dh
dt

,

where R1 is the radius of the conic section in the bottom and R2 is the radius of the
cylindrical section at the top of the hopper, h is the height of the powder in the hopper and
H1 is the height of the considered section.

The roller compaction process involves turning a powder mixture into a ribbon using a
set of counter-rotating rolls that will compress the material. When the particles are fed to the
rolls, they are initially considered to be in the slip region of the process [30]. The nip region
is the area where the rollers are closest together. The last area, namely the release region, is
where the ribbon is already released from the rolls and transported forward. This process
is a complex one, depending on a high number of parameters and operating conditions.

An important parameter in this model is the nip angle, defined as the angular position
(θ = α), at which the material transforms from slip to non-slip conditions. It depends only
on material-related parameters and the following equation is used to calculate it:

4
(

π
2 − α− ν

)
tan δE

cot(B− µ)− cot(B + µ)
=

K
(

2 cos α− 1− h0
R

)
tan α

cos α
, (13)
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where ν is a variable calculated in relation to the effective angle of friction (δE) and the
angle of wall friction, K is the compressibility factor, h0 is half of the roll gap width, and R
is the radius of the roll. The variables B and µ are calculated as:

B =
α + µ + π

2
2

,

µ =
π

4
− δE

2
.

(14)

In the nip region, the compression behavior can be calculated using an empirical
model, σ = C1ρK, where σ is the material stress and ρ is the compact density, while C1 is
the pre-exponential coefficient of material compression.

Based on Johanson’s model [31] and mass balance equation, the roller compactor model
is computed using the compact density at the exit point (ρexit) and the inlet density (ρin):∫ θin

0
ρ(θ) cos θdθ =

∫ a

0
ρ(θ) cos θdθ︸ ︷︷ ︸
nip region

+
∫ θin

a
ρ(θ) cos θdθ︸ ︷︷ ︸

slip region

=

= ρexit

(
h0

R

){ 2
(

1 + h0
R

)
√

h0
R

(
2 + h0

R

) arctan
[√

1 +
2R
h0

tan
α

2

]
− α

}
+ ρin(cos ν− sin α).

(15)

In Equation (15), ρin is a variable equal to π/2− ν and ρ(θ) is density profile, relative to
angular position θ. Finally, the outlet mass flow rate can be calculated, ṁout = RWhWρexit,
where W is the roll width and h = 2h0.

The tableting process involves compacting powder mixtures to form a solid dosage
form. The performance of tableting processes can be assessed based on tablet active
ingredient content, content uniformity, weight variability, and physical properties such
as friability, hardness, and dissolution performance [30]. In this paper, the final goal of
the design of the tableting process model is to obtain the tablet’s hardness and the mass
flow out of the tablet. For the first requirement, the pre-compression (C_Ppre) and main
compression (C_Pmain) pressures are formulated based on the Kawakita equation [32]:

C_Ppre =
V0 −Vpre

bpre

(
V0(ε0 + 1) + Vpre

) ,

C_Pmain =
Vpre −Vtablet

bmain

(
Vpre(εmain + 1) + Vtablet

) ,
(16)

where bpre and bmain are material dependent parameters. In the following equations,
the required volumes (Vtablet for the volume of the tablet, pre-compression volume Vpre and
the feed volume V0) are defined:

Vtablet = Ltablet Atablet,

Vpre = Lpre Atablet,

V0 = Ldepth Atablet,

(17)

where Ltablet, Lpre and Ldepth are the heights of the tablet, of the powder in the die, and of
the powder after compression in the die, respectively, while Atablet represents the area of
the tablet. It is notable that, in the considered process model, the pre-compression and
main compression forces are calculated as multiplication by 106 of the associated pressures.
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Finally, the hardness of the tablet is obtained as follows:

Htablet = Hmax

(
1− e

(1−ε0)V0
Vtablet

−ρrc+log 1−(1−ε0)V0
(14−ρrc)Vtablet

)
, (18)

where maximum tablet hardness (Hmax) and critical relative density (ρrc) are known variables.
In the case of the mass flow out of the tablet press, this is determined as the product

of the production rate (Rtablet) and the mass of a single tablet (mtablet): ṁ = Rtabletmtablet,
where Rtablet = Tturretndie60, considering the speed of the turret Tturret and the number of
dies on the turret ndie.

4. Closed-Loop Control System Framework

As the manufacturing processes of tablets is a complex system, the need for ad-
vanced control systems grows increasingly important. To achieve the desired product
quality and consistency, closed-loop control systems have been widely adopted in dry
granulation processes. The use of closed-loop control systems allows for the real-time
monitoring and adjustment of process parameters to ensure the final product meets the
required specifications.

4.1. Control System Architecture

The process described in the previous section is modeled in Matlab as a plant, which
is the 8× 8 input-output system presented in Figure 3. The nominal values (Value) of these
variables and the associated constraints (lower bounds—LB and upper bounds—UB) are
given in Tables 2 and 3.

Figure 3. Schematic representation of the 8× 8 plant.

Table 2. Nomina values and constraints of inputs variables.

Input Value LB UB Unit

Screw speed excipient feeder (ωExc) 207.6 0 240 rpm

Screw speed API feeder (ωAPI) 37.4 0 240 rpm
Hydraulic pressure RC (Phydraulic) 1 1 10 MPa

Feed speed (ud) 2.017 1 5 cm/s
Angular velocity rolls RC (ωRC,rolls) 5 1 10 rpm

Turret speed TP (ωTP,turret) 45 40 50 rpm

Height tablet (Ltablet) 0.004 0.0038 0.005 m

Feed volume (Vf eed) 9.6 × 10−7 9 × 10−7 11 × 10−7 m3
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Table 3. Nominal values and constraints of outputs variables.

Output Value LB UB Unit

Mass flow rate outlet blender (ṁblender) 20 17 23 kg/h

Concentration API (CAPI) 0.15 0.10 0.20 -
Density outlet RC (ρRC) 1.057 0.8 1.2 g/cm3

Roller gap RC (h0,RC) 1.6 1 5 mm
Mass flow rate outlet RC (ṁout,RC) 20 17 23 kg/h

Mass flow rate outlet TP (ṁTP) 20 17 23 kg/h

Hardness tablet (Htablet) 5.433 4 6 MPa

Mass tablet (Mtablet) 0.4566 0.44 0.47 g

The two tables are divided into three sections, indicated by the white and gray regions.
The output of each section is influenced by the inputs it receives. These three sections are
internally connected through density, and it is essential that the mass flow rate is equal
across all three parts: ṁblender = ṁout,RC = ṁTP.

The architecture for the implementation of the predictive control strategy is resumed
in Figure 4, where the Plant block is illustrated in Figure 3 with 8 inputs (manipulated by
the MPC controller) and 8 outputs. A centralized control solution involving a single
MPC controller was used to manage all processing units involved in the continuous dry
granulation process for the manufacture of solid dosage forms.

Figure 4. Designed MPC control system in block scheme.
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4.2. Model Predictive Control Strategy

Starting from a linear discrete-time system with m states, n inputs, and p outputs
described by the state-space equation in Equation (19), the state xd ∈ <m, control input
ud ∈ <n and output yd ∈ <p vectors of the system at discrete time t are defined:

xd[t + 1] = Adxd[t] + Bdud[t],

yd[t] = Cdxd[t] + Ddud[t],
(19)

where Ad ∈ <m×m, Bd ∈ <m×n, Cd ∈ <p×m, Dd ∈ <p×n are the discretized system matrices
obtained using a specified sampling time Ts.

Supposing that the matrix pairs (Ad, Bd) and (Cd, Ad) are stabilizable and detectable,
respectively, the goal is to find a state-feedback control law, expressed based on the model
predictive control law gain KMPC, of the form:

ud[t] = KMPCx[t], (20)

so that the origin of the closed-loop system xd[t + 1] = (Ad + BdKMPC)xd[t] is globally
asymptotically stable, which implies that the matrix (Ad + BdKMPC) is stable.

Thus, the predicted state can be written in matrix form as X̂[t] = Mx[t] + CU[t] [33–35],
considering the following:

U[t] =


u[t|t]

u[t + 1|t]
...

u[t + hp− 1|t]

, (21)

with u[t + i|t], i = 0, . . . , hp − 1, represents the future control sequence with hp the
prediction horizon,

X̂[t] =


x̂[t + 1|t]
x̂[t + 2|t]

...
x̂[t + hp|t]

, (22)

where x̂[t + i|t] is the predicted value of the state vector x[t + i + 1|t] = Ad x̂[t + i|t] +
Bdu[t + i|t], i = 0, 1, 2, . . . with the initial condition described by x̂[t|t] = x[t],

M =


Ad
A2

d
...

Ahp
d

, C =


Bd 0 · · · 0

AdBd Bd · · · 0
...

...
. . .

...
Ahp−1

d Bd Ahp−2
d Bd · · · Bd

. (23)

To design an optimal predictive control law expressed as:

U∗[t] = arg min
U

JMPC[t], (24)

it is necessary to minimize a quadratic cost function of the following form:

JMPC[t] = UT
0 [t]HU0[t] + 2UT

0 [t]Fx0[t] + xT
0 [t]Gx0[t], (25)
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with

U0[t] = U[t]−Uss[t],

x0[t] = x[t]− xss[t],

H = CTQ̃MPCC + R̃MPC,

F = CTQ̃MPC M,

G = MTQ̃MPC M + QMPC,

(26)

where at discrete-time instant t, Uss[t] and xss[t] correspond to the steady-state values
determined from a given reference. The matrices Q̃MPC and R̃MPC are defined as:

Q̃MPC =


QMPC 0 · · · 0

0
. . .

...
... QMPC 0
0 · · · 0 Q̄MPC

, R̃MPC =


RMPC 0 · · · 0

0
. . .

...
... RMPC 0
0 · · · 0 RMPC

. (27)

The matrices QMPC, RMPC, and Q̄MPC are positive definite matrices, with QMPC
possibly being positive semi-definite. These matrices are utilized to weigh the states, inputs,
and terminal state appropriately.

Assuming there are no constraints, the optimization problem can be solved offline to
obtain U∗[t] = −H−1Fz[t] and in line with the receding horizon principle, only the initial
control command in U∗ is implemented on the system, as described by u[t] = u∗[t|t] =
KMPCx[t], with KMPC = −

[
Ihp 0 · · · 0

]
H−1F.

In practical applications, system variables, such as inputs, outputs, and states, are
limited by physical constraints, which can include input constraints (actuator limits) or
state/output constraints (that can be active during transients or in steady-state). Predictive
controllers offer a significant benefit in that they can determine an optimal nonlinear
control law for systems with state, input, and/or output constraints in real-time at each
sampling period.

The constraints on system variables appear usually due to physical limitations and
can be expressed as linear inequalities, which are defined as:

umin ≤ u[t] ≤ umax

xmin ≤ x[t] ≤ xmax

ymin ≤ y[t] ≤ ymax.

(28)

Given the quadratic cost function JMPC[t] defined in Equation (25) and the constraints
specified earlier, the minimization of the cost function involves solving a quadratic problem,
which is expressed as [33–35]: minU UT HU + 2xT [t]FTU, subject to the constraints that
were previously stated.

5. Simulation Results

In this section, the MPC methodology proposed for continuous manufacturing of solid
dosage forms using the dry granulation route is tested and compared by simulation with
other classical control approaches (described in Section 5.2) applied to the same simulation
setup presented in Section 5.1. The obtained illustrative results are presented in Section 5.3
and are completed by numerical analysis in Section 5.4.

5.1. Simulation Setup

The Matlab-Simulink environment was used to model and control the continuous
dry granulation tablet production process described in Section 3. A benchmark simulator
is created to evaluate the feasibility of developing control strategies that are intended to
control the real physical plant. The simulator considered in this work consists of a feeder,
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a blender, a roller compactor with an RC hopper, a co-mill, and a tablet press with a TP
hopper. The Simulink implementation of the fixed part involves a complex system where
each processing unit mentioned previously is modeled individually.

This study simulates a powder mixture consisting of API and excipient material.
The excipients and APIs feeders get the input speed of the associated screws and provide
the respective flow rates at the output. It should be noted that all parameters of the feed
factor model used in this work are material dependent. The material properties that have
an impact on the feeder performance are: conditioned bulk density, compressibility, perme-
ability, cohesion, flow function coefficient, and the angle of internal friction. The blender is
a crucial unit in the pharmaceutical industry since it guarantees concentration uniformity
and homogeneity. Several modeling techniques are being used to simulate the dynamics of
the powder in the blender. The outputs of the feeders model and the speed of the blender
are required for the blender model to provide the outlet concentration, the relative standard
deviation as well as the mass flow and the density at the outlet of the blender. In the case of
the roller compactor, the key operating variables are the feed speed, roll speed, roll pressure,
and the gap between the rolls. The gap and the roller force—the actively controlled process
parameters—are the inputs for the model, whereas the screw speed—the changing process
parameter—is neglected. The throughput can be predicted once the ribbon density is
known. The auger filling may fluctuate from one revolution to another. This fluctuation
is modeled by introducing a disturbance in the inlet bulk density. Hereafter, the co-mill
is designed based on the outlet density and the outlet mass flow rate from the RC with
the co-mill speed. This model will provide the necessary inputs to the hopper associated
with the tablet press which is modeled similarly to that of the roller compactor. Finally,
the tablet press involves a complex model where it is necessary to have the powder solid
density determined previously, turret speed, feed volume, and thickness of the tablet to
establish the tablet’s rate, hardness, and mass of the tablet.

5.2. Comparison Control Strategies

Two control strategies, Proportional-Integral-Derivative (PID) [22] and Linear Quadratic
Regulator (LQR) [36], are presented and applied to the same simulator to analyze and
compare the performance of the proposed strategy for end-to-end continuous pharmaceutical
production. PID controllers have been designed for the individual control of the process units
involved in the manufacturing process, while for the LQR-based strategy has been proposed
a unitary control strategy for the entire process, using a single controller, which is adapted to
the system requirements.

Decentralized control strategies offer an alternative to simplify the control of multiple-
input multiple-output (MIMO) processes by decomposing the complex system into a series
of single-input single-output (SISO) subsystems [37]. However, decentralized control
systems have become increasingly popular due to their ability to handle large-scale systems
with multiple loops. In such systems, each loop has its own controller, and decisions are
made independently of other loops. In [38], a novel approach to designing decentralized
controllers based on nonlinear optimization, with the aim of minimizing the impact of
disturbances in coupled loops. The proposed methodology achieves improved control
performance by taking into account the interdependence between loops and optimizing
the control gains for each individual loop.

Figure 5 illustrates the decentralized control strategy applied to the system in which
one or more PID controllers are designed for each processing unit involved in the continu-
ous tablet production process, as detailed in Section 5.2.1.

As in the case of predictive control, a centralized control strategy was also applied
in the case of LQR, as can be observed in Figure 6, where the Plant block is illustrated
in Figure 3 with 8 inputs (manipulated by the LQR controller) and 8 outputs. In addition,
an observer has been employed to estimate the system’s unknown states, thereby expanding
the control architecture, as detailed in Section 5.2.2.
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Figure 5. Designed PID control system in block scheme.

Figure 6. Designed LQR control system in block scheme.

5.2.1. Proportional-Integral-Derivative Controller

A PID controller is a control loop feedback algorithm used to automatically adjust an
output variable based on an input variable and a set point. Thus, it calculates the error as
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the difference between the desired output and the system’s response. This type of controller
is widely used in industrial control systems due to its robust performance and functional
simplicity. Several elements can degrade PID controller performance, such as process inter-
actions, process dead time, non-linearity, and process constraints [39]. The control function
is defined as the sum of the proportional (P), integral (I), andderivative (D) terms [40]:

u[t] = P[t] + I[t] + D[t], (29)

with

P[t] = Kpe[t],

I[t] = Ki

∫ t

0
e[τ]dτ,

D[t] = Kd
d
dt

e[t],

(30)

where Kp,i,d is the proportional/integral/derivative gain, e represents the tracking error at
time t and τ is the variable of integration.

Tuning the parameters means adjusting the values of the gains to achieve optimal
control system performance. In this context, two tuning methods were applied to the
simulator, specifically the Frequency Response tool (FRtool), which is a controller design
tool, and an optimization-based method (Integral of Time Absolute Error).

FRtool [41] is a program that allows a graphical design of the controller. It is able to
tackle systems with time-delays, which is not the case when using the standard Matlab
controller design tool, since it operates with frequency diagrams (Nichols charts). The dead
time present in the system is not approximated and is treated in the right way.

The Integral of Time Absolute Error (ITAE) [42] is one of the possible criteria of an
optimization tuning method. The method involves analytically calculating the gain of
the controller (Kp), integral time (Ki), and the derivative time (Kd) for PID-controlled
systems. A Matlab program is used to find the optimum values for the PID controller to
achieve the best performance to satisfy the system requirements: reducing the overshoot,
achieving a good load disturbance rejection, and maintaining a high system response.
The corresponding objective function is defined as follows:

ITAE =
∫ ∞

0
t|e[t]|dt, (31)

where t is the time and e[t] is the difference between set point and controlled variable.
Since the dry granulation route consists of three parts (feeder + blender, roller com-

pactor, and tablet press), the evaluation will also be done three ways. So, after comparing
the different control strategies and tuning methods in the first part (feeder + blender),
the best one will be taken to evaluate the second one. The same will be done for the
third part.

In the discussion of the first part, the best structure for the feedforward will be chosen
first based on the evaluation, which is used in the other parts as well. In the first part of
the granulation route, the cascade control strategy combined with a static feedforward
structure, where the PID controllers were tuned using the FRtool, performed better. It was
compared to open-loop, only cascade, and other feedforward structures. This output will
be fed into the next unit, i.e., the roller compactor (part II of the dry granulation route).
Next up is the evaluation of the control strategy for the roller compactor. In this case,
the ITAE tuning method is preferred with the feedback combined with feedforward as
control strategy. This strategy performs very well and keeps the output variables within
the control bounds. This result (part I tuned with FRtool consisting of cascade feedback
and feedforward control as a control strategy, part II tuned using the ITAE optimization
method consisting of feedback/feedforward control as control strategy) is now used to
be fed into the third and last part of the dry granulation route (i.e., the tablet press).
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The same conclusions as in part II can be drawn, specifically that the combined feedback
and feedforward (static structure) control strategy is the most effective.

5.2.2. Linear Quadratic Regulator

The LQR control algorithm [43] is based on the state-space model of the process and
can handle multiple feedback variables. This leads to a more robust control algorithm as
there is more information about the system available. The approach is based on minimizing
a quadratic cost function [44] and can be extended to Linear Quadratic Integral control
(LQI) or Linear Quadratic Gaussian regulator (LQG).

A control structure with state feedback is implemented using a mathematical model
in matrix form (19). The purpose is to find an optimal state-variable feedback control law,
which guarantees the desired closed-loop performances and is defined as:

ud[t] = −KLQRxd[t], (32)

where KLQR is the state feedback gain. Also, a quadratic cost function JLQR is defined
to quantify the controller performance and to design the optimal state-variable feedback
gain [44]:

JLQR =
∞

∑
t=0
{xT

d [t]QLQRxd[t] + uT
d [t]RLQRud[t] + 2xT

d [t]NLQRud[t]}, (33)

where the weighting parameters, QLQR and NLQR represent semi-positive definite sym-
metric matrices of dimension (m×m) and RLQR is a positive definite symmetric matrix of
dimension (n× n). To ensure efficient control of each state of the system with minimum
effort, as per the aforementioned performance index, it is necessary to select appropriate
weight matrices QLQR and RLQR, which determine the closed-loop performance.

Optimizing the performance index JLQR and solving for KLQR implies the solution
PLQR of the Discrete Algebraic Riccati Equation [45]:

PLQR =QLQR + AT
d PLQR Ad−

− (AT
d PLQRBd + NLQR)(BT

d PLQRBd + RLQR)
−1(BT

d PLQR Ad + NT
LQR).

(34)

By iteratively solving the Riccati equation of the related matrix, the optimal feedback
gain can be achieved:

KLQR = (BT
d PLQRBd + RLQR)

−1(BT
d PLQR Ad + NT

LQR). (35)

In order to achieve the best performance of feedback control, an integral feedback con-
trol strategy is used to account for disturbances and noises from the external environment.
This is achieved by designing a Linear Quadratic Regulator with Integral action (LQI),
which provides zero steady-state error using an integrator. Thus, the Linear Quadratic
Regulator with Integral action [46] is designed to provide zero steady-state error using
an integrator, added as an additional state (xi) to the state vector (xd). This represents
the integral of the error between the desired output r, and the actual output yd. Thus,
the extended state vector is given as:

xe =

[
xd
xi

]
, (36)

where xi[t + 1] = xi[t] + Ts(r[t]− yd[t]), with sampling time Ts.
The optimal gain matrix KLQI required to determine the control law given by

ui[t] = −KLQI xe is obtained similarly to the method presented above.
When the full state variable xd[t] cannot be measured in the implementation of a

controller, an observer is typically used. The Luenberger observer [47] employs a correction
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term based on the measured output yd and its estimate ŷd to model the current system.
Assuming observability of the pair (Ad, Cd) in the discretized system from Euqation (19),
a full-order observer can be expressed using the following equation [35]:

x̂d[t + 1] = Ad x̂d[t] + Bdud[t] + Kobs(yd[t]− ŷd[t])

ŷd = Cd x̂d,
(37)

where Kobs is the constant observer gain matrix. A conventional method used to model the
observer is pole assignment, whereby the selection of gain matrix Kobs can result in various
states for the system (Ad, Cd). If Kobs is chosen to place the eigenvalues of Ad − KobsCd at
any desired locations in the plane, then the system can be fully observed. The observer is
designed with the goal of estimating the actual state xd[t]. Based on the definition of the
estimation error:

ed[t] = xd[t]− x̂d[t], (38)

the observer dynamics lead to the following equation for the estimation error:

ed[t + 1] = xd[t + 1]− x̂d[t + 1] = (Ad − KobsCd)ed[t]. (39)

5.3. Illustrative Results

This section will review the performance of the controlled tablet manufacturing process
using a predictive control strategy, which was implemented using the Model Predictive
Control Toolbox for Matlab/Simulink, in comparison to the results obtained in [22] using
PID, as well as those based on LQR in [36]. Both the performance of disturbance rejection
and set-point tracking are analyzed and discussed. The comparative results obtained from
the simulations are shown in Figures 7–16. The time interval [0, 500] s is considered the
time until the system sets up and reaches a normal operating mode. Thus, the variations of
the signal occurring in this interval do not impact the performance of the proposed strategy.

Defining specific boundaries is essential to assess the efficacy of the control strategy.
To evaluate the performance of the controller, upper and lower limits are established for
the controlled variables, according to the numerical values presented in Table 3. These
values are plotted on the graphs in Figures 7–9, 11 and 13–16 with red dashed lines. If the
controlled variable remains within these predetermined boundaries, it can be concluded
that the controller is performing well, the yielded control law, i.e., the manipulated variable,
being feasible.

The control inputs of the associated outputs were represented in order to evaluate the
performance of the proposed control strategy. The speed of the excipient feeder (Figure 7)
is paired with the mass flow rate at the outlet of the blender (Figure 8). The speed of the
API feeder (Figure 9) required to provide the concentration at the outlet of the blender
(Figures 11–12) can be observed in detail in Figure 10. The hardness of the tablet (Figure 14)
is determined by the height of the tablet (Figure 13) and the mass of the tablet (Figure 16) is
paired with the feed volume (Figure 15) at the inlet side.

Two kinds of disturbances are introduced into the system, namely on the one hand
structural disturbances that represent the inherent feed rate variability and on the other
hand measurement errors (or disturbances) which represent measurement noise coming
for example from the equipment.
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Figure 7. In1—Screw speed Exc [rpm] control input.
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Figure 8. Out1—Closed-loop performance, setpoint tracking, and disturbance rejection, in case of
blender mass flowrate [kg/h].
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Figure 9. In2—Screw speed API [rpm] control input.
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Figure 10. Zoomed-in view of In2.
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Figure 11. Out2—Closed-loop performance, setpoint tracking, and disturbance rejection, in case of
API concentration.
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Figure 12. Zoomed-in view of Out2.
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Figure 13. In7—Tablet height [mm] control input.
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Figure 14. Out7—Closed-loop performance, setpoint tracking, and disturbance rejection, in case of
tablet hardness [MPa].
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Figure 15. In8—Feed volume [cm3] control input.
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Figure 16. Out8—Closed-loop performance, setpoint tracking, and disturbance rejection, in case of
tablet mass [g].

Some minor random disturbances have been added to certain variables to account
for unknown disturbances in the plant that can relate to the measurements and feeds.
Their influence is more visible in Figures 11 and 16, where the controllers are not able to
completely reject the introduced disturbances. The mass of the tablet, plotted in Figure 16,
is controlled considerably well around its reference with the disturbance not as intense as
before for the PID controller. The step disturbance added at time T = 1400 s affects the
output, regardless of the used control strategy.

5.4. Numerical Analysis

A numerical analysis was also made considering the performance of the three control
methods applied to a continuous pharmaceutical tablet production system. Normalized
integral-square-error (NISE) is a performance metric that is commonly used to evaluate the
accuracy of a control system. It is a variant of the integral-square-error (ISE) [42] metric
that takes into account the magnitude of the input signal, as well as the magnitude of the
error signal.

The ISE is the integral of the square of the error signal over the time interval of interest.
This measures the cumulative deviation of the system output from the set point over time.
The NISE metric then normalizes the ISE by dividing it by the integral of the square of the
input signal over the same time interval. This takes into account the fact that a larger input
signal will result in a larger error signal, and therefore a larger ISE. By normalizing the ISE,
the NISE metric provides a more meaningful measure of the system’s accuracy. A lower
NISE value indicates better performance of the control system.

The results are illustrated in Table 4. It can be noticed that the predictive solution
proposed in the current work gives the best results. As it could be observed in the results
illustrated in the previous section, the PID control strategy presents significantly degraded
performance, leading to the manufacturing of out-of-specification products.

Table 4. Normalized integral-square-error (NISE).

Out1 (10−3) Out2 (10−7) Out7 (10−3) Out8 (10−6)

MPC 3.519 6.263 2.655 2.361

LQR 4.279 7.223 2.717 3.158

PID 168 14,612 1021 175
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6. Conclusions

In the context of cyber physical systems, continuous production can be considered a
necessity because this technology can offer a lot of benefits for companies as well as for the
whole economy. First of all, continuous manufacturing allows companies to produce higher
quality products more efficiently and at lower cost. This is because CM is a continuous,
automated process that eliminates the necessity to stop and restart the production process
and reduces the time and costs associated with it. In addition, continuous production
allows companies to produce more products in the same period of time, which can lead
to increased productivity and profitability. Also, by eliminating the risk of human error,
continuous production can increase product quality and reduce the costs associated with
eliminating damaged products. The cyber-physical system can also be configured and
controlled remotely, which offers increased flexibility and agility in production. Through
continuous monitoring and data analysis, companies can identify and eliminate problems
before they have a negative impact on the production process.

In this study, an advanced control strategy, i.e., MPC, was implemented to control a
multiple-input multiple-output (MIMO) system that represents a continuous pharmaceuti-
cal plant. The results obtained from the experiments performed on a simulator modeled
in Simulink were compared with those resulting from the application of two classical
control methods, PID and LQR. The performance of each strategy in terms of stability
of the production process and the achievement of high-quality products was analysed.
MPC demonstrated better performances in terms of the continuous production process of
solid dosage forms by dry granulation because it is a control strategy based on complex
mathematical models, which can be adapted to different system operating conditions. This
predictive capability makes MPC more effective in situations where quick decisions need
to be made and the production process adjusted in real-time.

However, in the case of continuous production in the pharmaceutical industry, there is
still potential for improvement and future research directions in this area. One of these is the
development of hybrid control strategies that combine several types of control techniques
to achieve even better performance. Further research is also needed to assess the impact
of variations in material quality and environmental conditions on the performance of
cyber-physical continuous manufacturing systems.
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API Active Pharmaceutical Ingredient
CM Continuous Manufacturing
CPS Cyber-Physical System
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DC Direct Compression
DG Dry Granulation
FRtool Frequency Response tool
GMP Good Manufacturing Practice
ISE Integral-Square-Error
IT Information Technology
ITAE Integral of Time Absolute Error
LB Lower Bounds
LQG Linear Quadratic Gaussian
LQI Linear Quadratic Integral
LQR Linear Quadratic Regulator
MIMO Multiple-Input Multiple-Output
MPC Model Predictive Control
NISE Normalized Integral-Square-Error
PID Proportional-Integral-Derivative
RC Roller Compactor
SISO Single-Input Single-Output
TP Tablet Press
UB Upper Bounds
WG Wet Granulation
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