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Abstract: The petrochemical industry is a pillar industry for the development of the national economy
affecting people’s daily living standards. Crude distillation process is the core and leading unit of
the petrochemical industry. Its energy consumption accounts for more than 20% of the total energy
consumption of the whole plant, which is the highest energy consumption link. A model based
on the long short-term memory network (LSTM) is proposed in this paper to predict and analyze
energy efficiency. This model extracts the complex relationship between many process variables and
predicts the energy efficiency of the crude distillation process. Firstly, the process simulation of crude
distillation is carried out. By adding random disturbance, the data set in different working conditions
is obtained, and the difference between the working conditions is expressed with the distance-coded
heat map. Secondly, the Savitzky–Golay (SG) filter is used to smooth the data, which preserves the
original characteristics of the data and improves the prediction effect. Finally, the LSTM model is
used to predict and analyze the energy efficiency of products under different working conditions.
The MAE, MSE, and MAPE results of the LSTM model under different working conditions in the
test set are lower than 1.3872%, 0.0307%, and 0.2555%, respectively. Therefore, the LSTM model
can be considered a perfect model for the test set, and the prediction results have high reliability to
accurately predict the energy efficiency of the crude distillation process.

Keywords: energy consumption prediction; long short-term memory; crude distillation process;
energy efficiency

1. Introduction

The petrochemical industry is the embodiment of comprehensive national strength
and plays an important role in social development. The process of crude distillation is the
link with the highest energy consumption in chemical plants and is the core and leading
unit of the oil refining industry. This process is the first stage of crude oil processing to
provide raw materials for the subsequent secondary processing. At present, the crude oil
distillation process is more efficient and productive but still has the problem of high energy
consumption. Based on the proposed national energy-saving policy and the economic costs
associated with high energy consumption, the question of how to reduce energy consump-
tion while maintaining production has become a top priority for factories. However, energy
consumption cannot be predicted and analyzed over real time, resulting in operators being
unable to monitor the change trend in energy efficiency timely.

The energy consumption of crude distillation is affected by numerous factors, such
as the nature of crude oil, plant load, equipment operation, and production cycle. The
reduction of energy consumption can improve the economic benefit of enterprises and make
rational use of petroleum resources. Common energy saving and consumption reduction
are carried out on the basis of existing equipment conditions. By changing some control
parameters, such as feed temperature, feed flow rate, tower bottom temperature, and reflux
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ratio, the process operation conditions can be optimized to reduce energy consumption.
Optimizing the energy integration of the crude distillation system and heat exchanger
system can reduce energy consumption [1], the optimization of operating conditions can
improve economic benefits [2], and a genetic algorithm is used to improve the production to
achieve the balance between profit and energy consumption by multi-objective optimization
problems [3]. Yang et al. [4] proposed an optimal operation strategy to improve the
energy efficiency of a crude oil distillation unit without any structural transformation. The
detailed process operation was expressed as a complex nonlinear programming model and
then solved with the double-loop algorithm. It can help engineers easily adjust the key
parameters of the process. Yao et al. [5] optimized the operational variables of the simulated
atmospheric distillation column by designing experimental techniques and support vector
regression models. Li et al. [6] introduced a knowledge-based operational optimization
strategy to mitigate uncertainties in the properties of the materials. It combines neural
network and fuzzy logic technology to provide instructions to adapt to different material
properties. Ochoa Estopier et al. [7] proposed a framework for thermally integrated
crude oil distillation systems and developed an artificial neural network model and a heat
exchanger network modification model. The above methods cannot achieve the prediction
of energy efficiency and need to establish a complex mechanism model. Deep learning is a
novel prediction method that can accurately predict energy efficiency.

With the advent of the era of big data, deep learning and artificial neural networks
have been increasingly used in the chemical industry with their self-learning, self-adaptive,
and self-organizing characteristics. It has improved the identification and diagnosis ability
of abnormal energy consumption of chemical enterprises with a new solution for the energy
saving of chemical companies [8]. Accurate prediction of energy consumption of crude
distillation is the basis of energy management and control and can be used by managers to
optimize decisions [9,10]. Energy-efficiency prediction models can promote the efficient use
of energy and low consumption of raw materials. Convolutional neural networks (CNNs)
are the most effective deep learning networks for modeling complex processes. Qi et al. [11]
proposed a multi-operation mode-adaptive time-window convolutional neural network
(MOM-ATWCNN) for energy consumption prediction, which shows its superiority in
various performance indicators. The improvement of the algorithm is beneficial to reducing
energy consumption and achieving economic goals. Navid Fekri et al. [12] proposed an
online adaptive recurrent neural networks (RNNs) model for power load prediction. By
emphasizing newly arrived data and adaptive load changes, the prediction accuracy is
improved and superior to several other models. Zhang et al. [13] proved the effectiveness
of CNNs in the power generation prediction. Although the key features are affected by
multiple factors, the method can express these features more accurately and completely.

The data of the crude distillation process are characterized by multi-dimension and
uncertainty. Energy consumption prediction for crude distillation is helpful in solving the
problem of energy consumption target setting and scheduling optimization. The predicted
results and optimized values are of great significance for reducing energy consumption,
guiding crude oil production, and improving energy efficiency [14]. RNNs have problems
such as gradient disappearance or gradient explosion and can only learn short-term influ-
ence relationships. The long short-term memory network (LSTM), as a variant of the cyclic
neural network, can effectively solve the above problems. In addition, much time-domain
correlation data exist in the field of the chemical industry, so LSTM has great advantages for
prediction. Han et al. [15] proposed a fault diagnosis method for chemical processes based
on optimized LSTM to determine the optimal number of hidden layer nodes under different
fault conditions and improve the accuracy of fault diagnosis. Xu et al. [16] proposed a
prediction method for pipeline leakage of heat exchangers based on generative adversarial
networks (GANs) and LSTM. The data enhancement method of GAN is used to solve the
problem of data imbalance, a classifier based on LSTM is used to solve the problem of
time dependence of process data, and the pipeline state is classified to predict leakage.
Han et al. [17] proposed an attentional mechanism-based production capacity analysis and
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energy-saving model of LSTM, established a production prediction model with LSTM, and
applied the model to predict the production capacity, providing theoretical guidance for
improving production capacity. Zhu et al. [18] used LSTM to predict the operating profit of
the natural gas–liquid recovery device so as to optimize the operating conditions of the
process and improve the profit rate of the device.

In this paper, an energy-efficiency prediction method that combines mechanistic
modeling and artificial intelligence is proposed. There is a close relationship between
the energy efficiency of the crude distillation and the process parameters, and the real-
time changes in parameters affect the energy-efficiency level of the product. By adding
disturbance, the data of four typical operating conditions of the crude distillation units are
simulated, and the distance-coded heat map is introduced to realize the visualization of
the differences in operating conditions. The Savitzky–Golay filter is used to smooth the
data and establish the sample set. The trained LSTM model is used to predict the energy
efficiency of atmospheric two-line products and vacuum two-line products. The predicted
energy-efficiency value can serve as a guide in the production process. Based on the input
operating parameters, the LSTM model outputs predicted energy-efficiency values that can
guide operators in making decisions to optimize operating parameters, energy-efficiency
diagnostics, and applying optimal production strategies to improve energy-efficiency.

The rest of this paper is organized as follows. The second section introduces the pro-
posed method and its theoretical basis. The third section introduces the process simulation
of crude distillation. The fourth part predicts and analyzes the energy efficiency of the
crude distillation. The last part summarizes the work of this paper.

2. Methodology and Theoretical Basis
2.1. Proposed Method

As shown in Figure 1, the method consists of three parts: (1) construction of mechanism
model of crude distillation process; (2) process data processing; and (3) energy-efficiency
prediction based on LSTM.
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In the part of mechanism modeling, based on the software characteristics of Aspen
HysysV10, the steady-state model is first established to obtain the dynamic model. The
ideal value obtained by steady-state simulation is used as a reference to evaluate the
dynamic fluctuation degree of parameters.

In the data processing part, real-time changes in parameters affect the energy efficiency
of the product. By adding random disturbance to the operating parameters, the data sets
under four operating conditions are obtained, and the differences between operating
conditions are demonstrated by using distance-coded heat maps. Savitzky–Golay filtering
(SG) is used to reduce the noise of data and improve the prediction effect while preserving
the original characteristics of data.

In the part of energy-efficiency prediction, the data after noise reduction are divided
into a train set and a test set in a ratio of 8:2. The training set is used to train the model, and
the test set is used to predict the energy efficiency. Under different working conditions, the
LSTM model can predict accurately.

2.2. Process Simulation

Aspen Hysys has comprehensive thermodynamic data libraries for energy optimiza-
tion and cost estimation. Compared with Aspen Plus and Aspen Dynamics, it allows
for the conversion between steady-state and dynamic simulations in the program instead
of switching between different programs [19,20]. By using Aspen Hysys to build the
mechanism model, accurate simulation results can be obtained, and engineering efficiency
can be improved [21]. Therefore, the mechanism model used in this study is obtained
through Aspen Hysys, and simulation results are then obtained to analyze and improve
energy efficiency.

The steady-state model is built by using the loading data of the chemical process. The
simulation results of the steady-state simulation are consistent with the actual production
state. However, the actual chemical process is in an unstable state, and the problems in
the process can not be solved by the steady-state simulation method. After building a
reasonable steady-state model, dynamic import is carried out. The real operating state of
the device is simulated, and the real-time data of the operating parameters are collected.

2.3. LSTM Model

Energy-efficiency prediction and analysis work is based on in-depth analysis of histor-
ical data, which are collected and analyzed. Artificial intelligence algorithm is used to learn
the rules and internal information of the data. Compared with traditional data processing
algorithm methods, the LSTM model has a better prediction effect on the time-series data.
As a result, the prediction results with high accuracy will help people to make efficient
decisions in time.

Recurrent neural networks (RNNs) are self-connected neural networks in the field of
deep learning. Using neurons with self-feedback functions, it can process time sequence
data of any length. RNNs with multiple hidden layers are composed of an input unit,
output unit, and hidden unit, as shown in Figure 2. xt is the input at time t, and the input set
is marked as {x0,x1, . . . ,xt,xt+1, . . . }; ot is the output at time t, and the output set is labeled
{y0,y1, . . . ,yt,yt+1, . . . }; St is the hidden state at time t, and the hidden unit is marked as
{S0,S1, . . . ,St,St+1, . . . }. The above can be expressed as:

St = f (Uxt + Wst − 1) (1)

where f is a nonlinear activation function, such as tanh, sigmoid, and ReLU.
RNNs can achieve short-term memory of time-series data. When the output informa-

tion is close to node information, the model can make suitable use of historical information.
However, it is difficult for the RNN model to make full use of the effective information for
the long-time node case. In addition, RNNs have problems such as gradient vanishing or
gradient explosion, which makes it impossible to learn the long-term influence relation-
ship [22]. LSTM, as one of the most successful variants of recurrent neural networks, can
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effectively solve the problem of continuous data input without preservation [17]. The cell
structure is shown in Figure 3.
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Compared to RNNs, LSTM has a forgetting gate, input gate, and output gate. The
input gate controls the amount of information flowing into the storage unit; the forgetting
gate controls the proportion of information accumulated in the unit from the previous
moment to the current moment; and the output gate controls the proportion of hidden state
information [23]. LSTM has the advantage of adding a forgetting mechanism as follows.
When there are new input samples, the model will judge which historical information
needs to be deleted. When the model inputs new samples, it will automatically determine
whether to use and save the features and control the transfer state by the gating mechanism
to maintain a certain gradient, then show suitable performance. The calculation formulas
are as follows.
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where if(t)(vτ) is the input gate of the LSTM unit, gf
(t)(vτ) is the forgetting gate of the LSTM

unit, of
(t)(vτ) is the output gate of the LSTM unit, and σ is the activation function.

2.4. Savitzky–Golay Filter

Savitzky and Golay proposed the Savitzky–Golay filter in 1964, which is a filter method
that can be fitted in the time domain based on the local polynomial least square method [24].
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This method can remove noise while keeping the width and shape of the signal unchanged.
When the SG filter reduces noise at a point, it needs to fit and calculate the surrounding
points so there are not enough data points when processing the first and last data. In order
to overcome the phenomenon of suppressing high frequency and artifacts, we remove the
front-end and back-end data points and keep the data that have enough data points to fit.

The variables of crude distillation have the characteristics of high coupling and non-
linearity, which are easily affected by operating parameters and the external environment.
When random disturbance is added, there will be noise in the collected data center. Noise
will affect the prediction accuracy of the LSTM model, so data noise reduction is a prerequi-
site for the accurate prediction of energy efficiency [25]. The SG filter can directly smooth
the data from the time domain without the traditional filter between the frequency domain
and time conversion, so the filter is widely used for data smoothing and denoising [24].

2.5. Distance-Coded Heat Map

Euclidean distance [26,27] is an intuitive distance measurement method used to
measure the absolute distance between two points in space. The formula is shown in
Equation (5).

d = ∑n
k=1

√
(x1 − x2)

2 (5)

Euclidean distance can be used to determine the degree of similarity between data.
The smaller the calculated value, the higher the degree of similarity between individuals.
This paper introduces the method to calculate the difference of operating parameters in
different working conditions. The similarity between operating parameters can be reflected
according to the Euclidean distance value.

A heat map is a matrix that reflects data through color changes, which can show the
correlation between different indicators and different data. Data can be visually displayed
through the heat map, enhancing readability and visualization. In this paper, a distance-
coded heat map is introduced to calculate the values between different working conditions
by using Euclidean distance, and the differences between the data of different working
conditions are reflected in the way of a heat map.

3. Process Simulation of Crude Distillation
3.1. Process Description

Crude oil is mainly composed of C, H, S, N, O, and other elements. In addition, there
are trace metal elements and other non-metallic elements. In refineries, crude oil is usually
cut into several fractions and evaluated using crude distillation curves. A true boiling point
distillation curve (TBP) can well represent the relationship between oil temperature and
composition. Under the condition of a mass reflux ratio of 5:1, a separation distillation
column with a theoretical plate number of 14–18 was used to separate the light and heavy
fractions. A temperature interval of 10 ◦C or a mass fraction of 3% is generally used as a
narrow fraction to calculate the total yield or the yield per component. The real boiling
point distillation curve of crude oil is shown in Figure 4, where the vertical axis is the
percentage of distillate, and the horizontal axis is the distillation temperature. This curve
can reflect the true boiling point of each component in the distillate.

The crude distillation device is mainly composed of an electric desalting device, pre-
flash column, heating furnace, atmospheric column, vacuum column, and so on. After the
flash treatment, the flash top gas enters the atmospheric column, and the flash bottom oil
enters the atmospheric tower after being heated by the atmospheric furnace. The process of
vaporizing, separating, and cooling crude oil runs under atmospheric operating conditions.
In order to effectively utilize the heat of the steam and regulate the gas phase load in the
tower, three steam lift towers and three mid-pumparound refluxes are set up.
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In atmospheric distillation, product fractions with different boiling points can be
separated by controlling the temperature at the top of the tower, the extraction temperature
at each sideline, the amount of stripping steam, and the flow of reflux in each middle
section. Kerosene and diesel oil are obtained on the sideline, and fuel gas is obtained on the
top of the tower. The residue obtained at the bottom of the tower is heated by a vacuum
furnace and then enters the vacuum column.

If the heavy oil is distilled at atmospheric pressure, the colloid, asphaltene, and some
unstable groups in the heavy oil will trigger cracking and a condensation reaction, resulting
in product quality reduction and cooking equipment. The components simulated in this
study are mostly organic compounds, and the Antoine equation is usually used to calculate
the relationship between the temperature and vapor pressure of organic compounds. As
shown in Equation (6), the Antoine equation considers the relationship between vapor
pressure and molecular weight, chemical structure, system temperature, and other factors.
Compared with other complex equations, the calculation accuracy of the Antoine equation
is accurate with simple steps.

lnP = A− B/(T + C) (6)

where P is the vapor pressure of the component, T is the system temperature, and A, B, C is
the physical property constant of the component.

In order to further treat atmospheric residual oil, it is necessary to reduce the external
pressure to reduce the boiling point of the substance. The vacuum column is set up by three
middle refluxes, and the bottom of the tower concentrates most of the gum, asphaltene,
and a very high boiling point of the oil. The simulation diagram of the crude distillation
device is shown in Figure 5.
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3.2. Crude Distillation Simulation Parameter

Aspen Hysys is used to establish the steady-state model of crude distillation. The
parameters of the model are state parameters of the chemical process. MAE is introduced
to reflect the fluctuation range of dynamic values to prove the representativeness and
reliability of steady-state operating parameters. As a result, the dynamic behaviors of
parameters fluctuate around the steady-state value, and the MAE value is less than 0.5. The
parameters of the steady-state simulation are set as follows.

In the process simulation, the atmospheric column adopts a plat tower, the plate
number is 50, the top temperature is 142 ◦C, the top pressure is 150 kPa, and the total tower
pressure drop is 125 kPa. A condenser is set at the top of the tower, and its temperature is
set at 71 ◦C. The temperature and flow parameters of lateral oil are shown in Table 1.

Table 1. The basic parameters of side line products of the atmospheric column.

Oil Product Name of Parameter Data

Temperature ◦C 71.26
Naphtha Flow t/h 90

Temperature ◦C 181.2
One-line products Flow t/h 20

Temperature ◦C 174.4
Two-line products Flow t/h 20

Temperature ◦C 195.9
Three-line products Flow t/h 20

Temperature ◦C 354.1
Residue Flow t/h 454.8

In the atmospheric tower, we set up three mid-pumparounds. The circulation reflux
takes heat from the high temperature and returns it to the tower from the upper part. The
relevant parameters of mid-pumparounds are shown in Table 2.

Table 2. Circulating parameters of the atmospheric column in the middle section.

Mid-Pumparound
Extraction

Plate
Position

Return Plate
Position Flow t/h Heat Duty

kJ/h

One-line mid-pumparound 4 1 200 4.362 × 107

Two-line mid-pumparound 20 17 142.3 3.014 × 107

Three-line mid-pumparound 32 28 357.2 3.572 × 107

As shown in Table 3, the feed temperature of the atmospheric column is 350 ◦C, the
feed flow rate is 568.8 t/h, and the feed pressure is 267.3 kPa. The temperature at the top
of the tower is 142 ◦C, and the temperature at the bottom is 357 ◦C. The top pressure is
150 kPa, and the tower pressure drop is 125 kPa.

Table 3. Basic parameters of the atmospheric column.

Parameter Value

Feed temperature ◦C 350
Feed flow t/h 568.8

Feed pressure kPa 267.3
Top temperature ◦C 142

Bottom temperature ◦C 357
Top pressure kPa 150

Bottom pressure kPa 275



Processes 2023, 11, 1257 9 of 21

The atmospheric residual oil enters the vacuum column after being heated by the
heating furnace. The number of vacuum column plates is 44 layers. The temperature of the
tower top is 209.8 ◦C, the pressure of the tower top is 4 kPa, and the pressure drop of the
whole tower is 25.61 kPa. Vapor extraction steam is set at the bottom of the tower to reduce
the partial pressure of oil and gas and to improve the gasification rate of the feed material.
The temperature and flow parameters of lateral oil are shown in Table 4.

Table 4. The basic parameters of sideline products of the vacuum column.

Oil Product Name of Parameter Data

Temperature ◦C 238.9
One-line products Flow t/h 18.98

Temperature ◦C 263.5
Two-line products Flow t/h 18.76

Temperature ◦C 190
Three-line products Flow t/h 20.12

Temperature ◦C 284.5
Four-line products Flow t/h 18.82

Residue
Temperature ◦C 373.6

Flow t/h 264.4

In the vacuum tower, we also take the way of mid-pumparounds to take the heat,
the gas–liquid load in the tower is evenly distributed, and energy is saved. The relevant
parameters of mid-pumparounds are shown in Table 5.

Table 5. Circulating parameters of vacuum column in the middle section.

Mid-Pumparound
Extraction

Plate
Position

Return Plate
Position Flow t/h Heat Duty

kJ/h KJ/h

One-line mid-pumparound 10 1 74.63 1.52 × 107

Two-line mid-pumparound 20 11 131.1 2.347 × 107

Three-line mid-pumparound 30 21 72.19 1.59 × 107

As shown in Table 6, the feed temperature of the vacuum tower is 326.2 ◦C, the feed
flow rate is 454.8 t/h, and the feed pressure is 22.52 kPa. The temperature at the top of the
tower is 209.8 ◦C, and the temperature at the bottom is 382.1 ◦C. The top pressure is 4 kPa,
and the tower pressure drop is 25.61 kPa.

Table 6. Basic parameters of vacuum column.

Parameter Value

Feed temperature ◦C 326.2
Feed flow t/h 454.8

Feed pressure kPa 22.52
Top temperature ◦C 209.8

Bottom temperature ◦C 382.1
Top pressure kPa 4

Bottom pressure kPa 29.61

Steady-state processes are generally temporary and relative. The actual production
process is always subject to various fluctuations, disturbances, and changes in conditions.
Therefore, after building a steady-state model, controllers and control loops are added to
realize the dynamic simulation of the device.



Processes 2023, 11, 1257 10 of 21

3.3. Energy-Efficiency Analysis

The energy consumption of crude distillation is affected by many factors, such as the
nature of crude oil, plant load, equipment operation, and production cycle. Predicting
and improving operating conditions is also an important way to save energy and reduce
consumption. At present, the energy saving of crude distillation is mainly focused on
reducing the consumption of fuel gas, electricity, steam, and water. Fuel consumption
accounts for a large proportion of the total energy consumption, mainly consumed in the
heating furnace, so it is very necessary to analyze the fuel consumption of equipment.
Stripping steam is needed in the process of crude distillation, and stripping steam is mainly
used at the bottom of atmospheric and vacuum towers, as well as stripping towers. The
cost of stripping steam is high, and the demand is great. Therefore, it is necessary to
monitor the steam pressure at each site and analyze the relevant energy consumption. The
main consumption of water is interrupted by circulation water and condenser water. The
main power consumption equipment is the machine pump, which is responsible for the
transportation and compression of materials.

It is necessary to establish a set of indexes to evaluate the energy efficiency according
to the energy consumption characteristics of crude distillation in order to guide enterprises
to improve energy-saving schemes and improve the level of energy efficiency. Energy
consumption is the sum of fuel energy consumption, steam energy consumption, cooling
water energy consumption, and electricity energy consumption. Energy efficiency is a
comprehensive index that combines production input and output [28]. Its definition is as
follows:

Energy efficiency =
energy consumption

product output
(7)

where product output is the production of crude distillation, and the unit is kg/h. Energy
consumption is the sum of all the energy consumed, and the unit is kW. By definition, the
higher the level of energy efficiency, the better the enterprise’s energy use and the greater
the economic benefits.

The operating parameters of the process are characterized by high coupling and
nonlinearity. Different operating parameters will affect the energy efficiency of the unit.
The fluctuation of energy consumption and output is caused by the change in operating
conditions, such as the amount of crude oil feed, temperature, and steam at the bottom
of the tower during production. The single working condition is not able to reasonably
evaluate the energy-efficiency level and better train the LSTM energy-efficiency prediction
model. Therefore, when predicting and analyzing the energy efficiency of crude distillation,
the division of working conditions is required.

4. Energy Consumption Prediction and Analysis
4.1. Mathematical Case

In mathematical cases, the relationship between five input variables, X1, X2, X3, X4,
and X5, and one output variable, Y, is simulated. The relationship between Y and X is
expressed as:

X1 = 3sint + 1 (8)

X2 = 6cost + 3 (9)

X3 = 3sin2t (10)

X4 = 4sin3t + 5 (11)

X5 = cos9t (12)



Processes 2023, 11, 1257 11 of 21

Y = 2X1 + 3X2 + 4X3 − X4 + X5 (13)

where t is time, X is the input variable of the model, and Y is the output variable of
the model.

A total of 1000 time sequence data are generated, and the ratio of the training set to
the test set is 8:2, namely 800 training sets and 200 test sets. LSTM is trained, and the Y
value can be predicted according to the relationship between X and Y. The predicted results
are shown in Figure 6.
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In Figure 6, the horizontal axis is the sample point, and the vertical axis is the Y value.
The green line shows the true Y value, and the red line shows the predicted Y value. It can
be seen that the red line and green line have a suitable fitting degree, and the model has a
high accuracy and suitable applicability in forecasting.

4.2. Data Preprocessing

In order to better train the LSTM model for energy-efficient prediction, disturbances
are added randomly, and four working conditions are divided. The energy efficiency
of the atmospheric two-line products and vacuum two-line products are predicted for
each working condition. Each set of working conditions consists of 2400 time-series data,
where the ratio of the training set and test set is divided according to 8:2; that is, 1920 for
the training set and 480 for the test set. The operational variables of the four operating
conditions data are used as inputs to the LSTM model, and the energy efficiency of the
product is used as the output. The randomly added disturbances are visualized using
distance-coded heat maps that show the differences between operating conditions.

Energy efficiency is closely related to operating parameters. Real-time changes in
parameters can have an impact on energy efficiency. Thirteen operational parameters
related to the energy efficiency of products are selected, disturbances are added, and data
sets are generated to predict the energy efficiency of the atmospheric two-line products. We
select 11 operational parameters related to the energy-efficiency products, add disturbances,
and generate a data set to predict the energy efficiency of vacuum atmospheric two-line
products.

The influence of selected operating parameters on the energy-efficiency level is ex-
pounded. The outlet temperature of the heating furnace is related to the mass flow rate
of the fuel, and the increase in outlet temperature can improve the gas rate of the crude
oil, thus increasing the quality of the sideline product. Top pressure and temperature will
also affect the vaporization rate of oil. The lower the top pressure is, the boiling point will
decrease correspondingly, and the vaporization rate in the tower will increase. Stripping
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steam can reduce the partial pressure of oil and gas in the tower, reduce the boiling point
of components, and increase the production of sideline products. Mid-pumparound can
recover the heat at high temperatures, increase the processing capacity, and then affect
energy consumption. Tables 7 and 8 show the selected operating parameters. Tables 9
and 10 show the dataset size.

Table 7. Prediction parameters of atmospheric two-line energy efficiency.

Variable
No. Variable Description Variable

No. Variable Description

1 Crude oil mass flow 8 Amount of condensate
2 Temperature of crude oil 9 One-line mid-pumparound
3 Tower bottom steam flow 10 Two-line mid-pumparound
4 One-line steam mass flow 11 Three-line mid-pumparound
5 Three-line steam mass flow 12 Top pressure
6 Fuel flow 13 Top temperature
7 Furnace outlet temperature

Table 8. Prediction parameters of vacuum two-line energy efficiency.

Variable
No. Variable Description Variable

No. Variable Description

1 Crude oil mass flow 7 One-line mid-pumparound
2 Temperature of crude oil 8 Two-line mid-pumparound
3 Tower bottom steam flow 9 Three-line mid-pumparound
4 Fuel flow 10 Top pressure
5 Fuel flow 11 Top temperature
6 Amount of condensate

Table 9. Specification of atmospheric two-line data sets.

Samples Attributes

Training Testing Inputs Output
1920 480 13 1

Table 10. Specification of vacuum two-line data sets.

Samples Attributes

Training Testing Inputs Output
1920 480 11 1

In order to show the difference between normal conditions and randomly disturbed
conditions, a sliding window was introduced to select the data of different conditions. The
Euclidian distance formula was used to calculate the dynamic distance between conditions
so as to generate the distance-coded heat map. As shown in Figures 7–10, the vertical axis
of the heat map represents all parameters that affect product energy efficiency, and the
horizontal axis represents the time step of the sliding window. The selected sliding window
is 100, and sliding sampling is carried out between different data. A total of 2400 data are
selected for each working condition, so the time step of the sliding window is 24. The axis
on the right of the heat map represents the Euclidean distance between normal conditions
and randomly disturbed conditions, and the depth of the color represents the degree of
difference between conditions. The brighter the color, the greater the random disturbances
added by the parameter. The darker the color, the less significant the disturbances of the
working parameters. With the distance-coded heat map, the data differences between
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working conditions can be displayed visually and clearly to visualize the differences in
working conditions.
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4.3. LSTM Model Prediction
4.3.1. Data Normalization and Evaluation Criterion

In data processing, different indicators have different dimensions and units. In order
to ensure the accuracy and comparability of data analysis results, the data need to be
normalized. After normalization processing, each index is in the same order of magnitude,
and the result is between [0, 1]. In this case, a comprehensive evaluation of data can be
carried out. Normalization can improve the accuracy and convergence speed of the model,
and its calculation formula is as follows:

X* =
x−min

max−min
(14)

where min is the minimum value of the data sample; max indicates the maximum value of
the data sample.

As shown in Equation (15), mean absolute error (MAE) is the average absolute error
between real values and predicted values. Moreover, the smaller value of MSE indicates
the higher accuracy of the model prediction.

MAE =
1
n∑n

i=1|yi − ŷi| (15)

where yi is the true value and ŷi is predicted value.
Mean Square Error (MSE), as shown in Equation (16), is the average value of the

squared sum of errors between real values and predicted values and can be explained as
follows: the smaller value of MSE, the higher accuracy of the model prediction.

MSE =
1
n∑n

i=1(yi − ŷi)
2 (16)

As shown in Equation (17), mean absolute percentage error (MAPE) is also calculated
not only to represent the absolute error between real values and predicted values but also
to characterize the error ratio to real values.

MAPE =
1
n∑n

i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣ (17)

4.3.2. LSTM Hyperparameters Optimization

The orthogonal experimental method is an experimental method to study multiple
factors and multiple levels based on the principles of orthogonality and homogeneity.
Partial experiments instead of comprehensive experiments can accurately find the opti-
mal parameter combination and optimize multiple hyperparameters at the same time.
Compared with the non-orthogonal test, it has the advantages of high precision and high
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efficiency. Hyperparameters affect the accuracy of the LSTM energy-efficiency prediction
model. The orthogonal experiment method can optimize the hyperparameters and improve
the accuracy of the model.

The predictive effect of LSTM is related to the activation function, batch size, and
number of network layer nodes. The number of network layer nodes determines the
generalization ability and learning ability of the network. However, too complex a network
structure will bring about the overfitting problem, and the increase in the number of
network layer nodes will also lead to an increase in training costs. Common activation
functions are sigmoid, relu, and tanh. Different activation functions will affect the predictive
performance of the model. The sigmoid is a smooth step function that can be used for
binary classification. The tanh activation function outputs values between [−1, 1], which
mitigates the gradient disappearance problem. The relu activation function keeps only
positive elements and zeroes out negative elements. Batch size is the number of samples
in the model at each training, and its size affects the degree and speed of optimization
of the model. A suitable number of batches can reduce the number of iterations during
network training, improve the training speed, and make the gradient descent direction
more accurate.

To improve the accuracy of the model prediction, three levels of three factors is set
up to find the superiority of the hyperparameters. The parameters are set as a: batch size
(50, 100, 150), b: activation function (relu, sigmoid, tanh), and c: number of network layer
nodes (64, 32, 128). The details of the orthogonal test hyperparameters are listed in Table 11,
and the predicted results are shown in Figure 11.

Table 11. The scheme of orthogonal experiment.

Plan
Number

Horizontal
Combination

Optimization
Parameter

Number of Network
Layer Nodes

Activation
Function Batch Size

A a1b1c1 50 relu 64
B a1b2c2 50 sigmoid 32
C a1b3c3 50 tanh 128
D a2b1c2 100 relu 32
E a2b2c3 100 sigmoid 64
F a2b3c1 100 tanh 128
G a3b1c3 150 relu 128
H a3b2c1 150 sigmoid 64
I a3b3c2 150 tanh 32

In Figure 11, the horizontal axis represents the number of sample points in the test
set, and the vertical axis represents the energy efficiency of the crude distillation process.
Moreover, the black line represents the real energy efficiency, and the red line shows the
energy efficiency predicted by the LSTM model. The figure can be explained below: the
better the two lines fit, the more accurate the model prediction results. It can also be seen
from Figure 10 that the prediction of the model differs with different hyperparameters.
Plan (B) and (I) have a suitable fitting effect on the data in the early stage, but the error
between predicted values and real values in the late stage is large. Plan (E) has the best
fitting effect and the smallest error between real and predicted values.

As can be seen from Table 12, MAE, MSE, and MAPE values of Plan (E) under different
hyperparameters are 0.3729%, 0.0024%, and 0.0669%, respectively. It indicates that Plan (E)
has the smallest error and the best prediction effect. Therefore, the model parameters with
an activation function of the sigmoid, a batch size of 100, and the number of nodes in the
network layer of 64 are determined.
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Table 12. The evaluation criterion of the orthogonal test.

Plan
Number A B C D E F G H I

MSE(%) 0.0112 0.0529 0.0159 0.0094 0.0024 0.0382 0.0229 0.0631 0.0356
MAE(%) 0.8045 1.5836 0.9254 0.7487 0.3729 1.3125 1.1527 1.7222 1.2970

MAPE(%) 0.1443 0.2840 0.1660 0.1343 0.0669 0.2354 0.2068 0.3088 0.2327
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4.4. Prediction Result Analysis

The relationship between the operating parameters and energy efficiency is highly
coupled and nonlinear. On the basis of establishing the mechanism model, the LSTM model
is trained as the agent model. The model can predict the energy efficiency of products in real
time according to the changes in operating parameters and estimate the energy-efficiency
trend in advance. The hyperparameter-optimized LSTM network is used for prediction, the
input parameters of the model are shown in Tables 7 and 8, and the output parameters are
the product energy efficiency. Based on the relationship between operating parameters and
energy consumption and combined with deep learning, the product energy efficiency can be
predicted in real time. By adding disturbances to the operating parameters, it is possible to
ensure that the model developed has suitable predictions for different operating conditions.

In the prediction result of LSTM, the horizontal axis is the number of samples in the
test set, and the vertical axis indicates the product energy efficiency. The blue line indicates
the real energy efficiency of the sideline product, and the red line indicates the predicted
energy-efficiency value. To clearly reflect the difference between the predicted value and
the real value, subtract the predicted value from the true value, and the difference is shown
in the black line. As shown in Figures 12–15, the LSTM model has a high accuracy of energy
efficiency under different working conditions and a suitable degree of data fitting, which
can obtain relatively accurate energy-efficiency predicted value. This model is of great
significance for dynamic monitoring and evaluation of energy efficiency.
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Figure 14. Product energy-efficiency prediction of working condition 3. (a) Prediction of energy
efficiency of atmospheric two-line products. (b) Prediction of energy efficiency of vacuum two-
line products.
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Figure 15. Product energy-efficiency prediction of working condition 4. (a) Prediction of energy
efficiency of atmospheric two-line products. (b) Prediction of energy efficiency of vacuum two-
line products.

In order to better evaluate the prediction accuracy of the LSTM model, MAPE, MAE,
and MSE of the LSTM model under different working conditions are calculated and shown
in Table 13. It can be seen that the values of MAE, MSE, and MAPE are lower than
1.3872%, 0.0307%, and 0.2555%, which proves the high accuracy of prediction results of
energy efficiency.

Table 13. The evaluation criterion of the LSTM model.

Evaluation
Criterion

Condition 1 Condition 2 Condition 3 Condition 4
(a) (b) (a) (b) (a) (b) (a) (b)

MSE (%) 0.0024 0.0039 0.0002 0.0002 0.0307 0.0024 0.0003 0.0003
MAE (%) 0.3729 0.4635 0.1296 0.1135 1.3872 0.3846 0.1440 0.1501

MAPE (%) 0.0669 0.1453 0.0220 0.0312 0.2555 0.1177 0.0272 0.0421

At the same time, the model can also provide a reference for the energy efficiency of
the plant. The reference value of energy efficiency can be obtained by bringing the existing
data of the plant into the LSTM model. It generates an energy-efficiency diagnostic report
for the plant based on the deviation between the reference and actual values. If the actual
value of product energy efficiency is lower than the reference value, it can indicate that the
energy utilization of the plant is low at that stage. If the actual value of product energy
consumption is higher than the reference value of the model or close to the reference value,
it can indicate that the energy utilization of the plant is high at that stage. The data where
the true value of energy efficiency is greater than the reference value provides a database for
improving the energy efficiency of the plant. The operation parameters with high energy
efficiency can be used for optimal operation parameters. According to the actual situation
of the device and the setting of operating conditions to optimize the operating parameters,
the energy efficiency of the unit achieves the optimal state.

5. Conclusions

An energy-efficiency prediction method based on mechanism modeling and artificial
intelligence is proposed for the crude distillation process to accurately predict and evaluate
energy efficiency. The study can be summarized as follows. Firstly, four working condi-
tions of crude distillation are simulated to obtain sample sets for subsequent prediction
of energy efficiency. Secondly, the distance-encoded heat map is introduced to visualize
specific process parameter changes under abnormal operating conditions to demonstrate
the variability in different working conditions. Thirdly, sample sets obtained from each con-
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dition are smoothed through SG filters with the aim of reducing data noise while retaining
the original features. Finally, the energy-efficiency values predicted by the deep learning
LSTM model are compared with real values to assess the reasonableness of the production
parameters. The results show that MAE, MSE, and MAPE predicted by the LSTM model
are lower than 1.3872%, 0.0307%, and 0.2555% under different working conditions.

This study shows that the LSTM model has high reliability and suitable reference
in energy-efficiency prediction in guiding operators to make decisions for operating pa-
rameters optimization, energy-efficiency diagnoses, and optimal production strategies
design. However, the method proposed belongs to supervised learning. How to carry out
unsupervised learning in process data will be the focus of future research. Therefore, we
will further study the application of unsupervised learning in energy-efficiency prediction.
In addition, we will study and integrate other methods to study the early warning problem
of energy efficiency and optimize the operating parameters of the device.
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