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Abstract: The traditional circuit breaker fault diagnosis method suffers from insufficient feature
information extraction and is easily affected by abnormal signal acquisition. To address this, this
paper introduces the phase space reconstruction algorithm to reconstruct the current signal for fault
diagnosis based on phase trajectory features. The proposed method uses a first-order forward differ-
encing method and mutual information method to process abnormal data and select the parameters
of the reconstruction, then extract overall and local inflection point features to construct a fault feature
set. The support vector machine algorithm-based model is trained and tested using actual samples,
and the results show that the proposed method can adaptively sample anomalous signals, exhibit
strong robustness, and significantly improve the accuracy of fault classification.

Keywords: circuit breaker; breaking coil current signal; phase space reconstruction; first-order
forward differencing; phase trajectory

1. Introduction

The circuit breaker is a critical device that plays a vital role in controlling and protecting
the power system. During its operation, the current timing signal of the breaking coil reflects
the operating characteristics of the electromagnetic coil and contains rich information about
the operating mechanism, thus characterizing the operating status of the circuit breaker
operating mechanism [1,2], extracting the relevant characteristics of the current signal and
analyzing and judging it can timely evaluate the operating status of the circuit breaker
operating structure and accurately identify the type of fault, providing a technical basis for
realizing condition maintenance and improving the stability and reliability of the power
system [3,4].

The effectiveness of fault feature extraction for the circuit breaker is critical to the
performance of the fault classification model. At present, scholars at home and abroad
have conducted a lot of research on the fault feature extraction of high-voltage circuit
breaker coil current signals, mainly focusing on signal time-frequency domain analysis. In
Reference [5], a time-domain model based on spline interpolation combined with multiscale
linear fitting was used to extract features from circuit breaker breaking coil currents,
which provided a basis for subsequent circuit breaker fault state analysis. References [6,7]
optimized the extraction of multiple feature vectors in the coil current time domain by
principal component analysis and relief optimization methods to achieve accurate fault
state assessment and improve the diagnosis efficiency. Reference [8] proposed the use of
ensemble empirical modal decomposition and wavelet analysis to filter the current signal,
combined with the time-domain polarization method for waveform feature extraction,
which can effectively improve the feature extraction accuracy and fault diagnosis accuracy.

The time-frequency domain methods mentioned above are based on the linear char-
acteristics of the signal system for analysis. Since the coil current signal generated by
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the circuit breaker has nonlinear and non-smooth characteristics, only partial and limited
information can be obtained from the perspective of this single variable with low accuracy,
so the above linear analysis methods have their limitations, and it is difficult to accurately
portray the nonlinear characteristics of the coil current signal. Therefore, for the single-
variable time series of the circuit breaker coil current signal, another method needs to be
introduced that can obtain more information from the high-dimensional space containing
dynamic changes.

Currently, the technical method of extracting characteristic parameters in chaotic sys-
tems for evaluation and analysis of time-varying nonlinear and nonstationary systems is
gaining more and more attention from scholars and is widely used in the field of fault
diagnosis. For example, the phase space reconstruction technique is applied for signal
characterization. In Reference [9], the phase space reconstruction method is applied for
voltage gap detection and feature parameter localization identification, and the accurate
detection of gaps can be performed even when the voltage signal is disturbed. Refer-
ence [10] transforms the sampling points in the one-dimensional time-series segments to
the two-dimensional phase space based on the phase space reconstruction technique and
calculates the similarity degree between the time-series segments based on the distribution
of discrete points in the obtained two-dimensional phase space, which effectively realizes
the real-time diagnosis of the signal fault state. Reference [11] used the phase space recon-
struction technique to process the arc current signal, extracted the geometric features and
attribute features of the phase plane attractor as the features to discriminate the arc fault,
and characterized the change law of randomness and chaos before and after the occurrence
of the arc fault. In References [12–14], phase space reconstruction was performed on the
mechanical vibration signal of a high-voltage circuit breaker. The morphological features,
attribute features, and image edge features of phase space trajectory were extracted as
feature covariates for fault diagnosis, and good diagnostic results were achieved.

In the phase space reconstruction, the above literature did not consider the phe-
nomenon of abnormal sampling points in the process of monitoring signal acquisition,
resulting in the phase space reconstruction may occur at the sampling abnormalities, which
cannot correctly describe the original signal structure dynamic state; at the same time, the
above literature mainly focuses on the overall characteristics of the phase space trajectory,
ignoring the differences in the local characteristics of different fault phase trajectories,
which makes it difficult to ensure the diagnosis accuracy of different fault. It is difficult to
ensure the accuracy of diagnosis for different fault types.

Therefore, this paper adopts phase space reconstruction technology to study the
feature extraction of high-voltage circuit breaker coil current signal, study the influence
of signal abnormal data on the phase space reconstruction effect, introduce the abnormal
data processing method based on the first-order forward difference algorithm for signal
processing, and then determine the reconstruction parameter delay time τ based on the
two-dimensional phase space, and carry out phase space reconstruction to obtain the
corresponding phase trajectory; secondly, in order to realize the full utilization of phase
trajectory, in order to make full use of the phase trajectory information and enhance the
differentiation of fault types, the overall features and local features of the phase trajectory
are extracted to build a comprehensive fault feature set, which is used to establish a support
vector machine fault classification model to achieve accurate diagnosis of different faults
in circuit breakers. The experimental results demonstrate that the proposed method for
fault diagnosis, which extracts phase trajectory features from signals with abnormal data,
achieves an error rate of less than 1.1%. Furthermore, the average error in different fault
feature extractions is less than 1.368% even under high noise levels. The accuracy rate for
diagnosing different faults using this approach reaches 98.67%, representing a significant
improvement over other diagnostic algorithms.
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2. Coil Current Temporal Sequence Phase Space Reconstruction and Reconstruction
Parameter Determination

In this section, the chaotic characteristics of circuit breaker coil currents are explored,
and a novel approach based on phase space reconstruction and adaptive parameter determi-
nation is proposed. Specifically, the first-order forward difference method is introduced to
determine appropriate adaptive reconstruction parameters for phase space reconstruction,
and the resulting trajectories of coil currents in two-dimensional phase space effectively
capture the system’s nonlinear dynamic behavior.

2.1. Chaotic Characteristics of Breaker Coil Current Signal

In this paper, the HP550B2 high-voltage circuit breaker is used as the research object,
as shown in Figure 1a for its solenoid mechanism to split-close the solenoid structure model.
In the process of splitting and closing, the current applied to the coil causes the core of the
solenoid to move upward, the spring is released to drive the mechanical parts to move after
triggering the closing the button, and any abnormality in the process will affect the change
of current in the coil. The equivalent circuit of the solenoid coil is shown in Figure 1b,
where US is the circuit power supply, RS is the power supply internal resistance, RL is the
coil and wiring equivalent resistance, and the circuit inductance L varies with the position
of the closing the button. The coil is energized when the coil circuit receives a break-open
command, where the variable inductance L is related to the air gap of the solenoid core.
The closing coil current waveform is shown in Figure 1c. From the above analysis, it can
be seen that during the closing process of the circuit breaker, the core mechanism, the
closing decoupling close, the closing coil body, and other changes, which subsequently
cause changes in the coil current time T1, T3, and T5 and the corresponding current I1,
I3, and I5, which provides information for identification of faults in the circuit breaker
operating mechanism such as core jamming and coil short circuit between turns.

Figure 1. Model of HP550B2 breaking solenoid with coil equivalent circuit diagram and its closing
current waveform: (a) split-close solenoid model; (b) coil solenoid equivalent circuit diagram; (c) coil
current waveform.

The phase space reconstruction technique used in this paper is to reconstruct the
one-dimensional chaotic time series into the high-dimensional phase space to extract and
recover the original laws of the dynamical system. Therefore, prior to the application of this
method, it is necessary to ascertain whether the high-voltage circuit breaker coil current
signal exhibits chaotic characteristics. Only if this is the case can we analyze the signal
using the phase space reconstruction technique.

According to chaos theory, a positive maximum Lyapunov exponent [15] can indicate
that the signal has chaotic properties [16]. In this paper, we use the wolf method [17] to
calculate the maximum Lyapunov exponent of the normal state during the closing process,
where the initial point X(t0) is taken in the reconstruction space, and its distance from the
nearest neighbor X0(t0) is set to L0. The time evolution of these two points is tracked until
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their spacing exceeds a specified value ε > 0 at the moment t1, L′ = |X(t1)−X0(t1)| > ε, Keep
X(t1) and find another point X1(t1) adjacent to X(t1) such that L1 = |X(t1)-X1(t1)| < ε and
the angle with it is as small as possible. Continue the above process until X(t) reaches the
end of the time series, at which time the total number of iterations of the tracking evolution
process is M. The maximum Lyapunov exponent is:

λi =
1

tM − t0

M

∑
i=0

ln
L′ i
Li

(1)

where t0 and tM are the initial and end moments; L′i = |X(ti)–X(ti–1)|; Li = |X(ti)–Xi(ti)|.
In order to better analyze the chaotic characteristics of the circuit breaker coil current,

take the same operating state of the continuous action test cycle for combined analysis,
such as Figure 2a for the normal state of 10 cycles of successive current signals. Among
them, Figure 2b shows the Lyapunov exponent spectrum in the normal state, and the
maximum Lyapunov calculated by the mean value using the Wolf method is 1.2507 > 0.
The calculation results of the current signals in five states are shown in Table 1, and the
maximum Lyapunov exponent is greater than 0, indicating that the circuit breaker coil
current signal has chaotic characteristics, and the phase space reconstruction technique can
be used for subsequent analysis.

Figure 2. Normal state multi-cycle current signal with corresponding Lyapunov exponential spec-
trum: (a) multi-cycle current signal; (b) Lyapunov index spectrum.

Table 1. Maximum Lyapunov index for different fault states.

Failure Status Normal Core Jamming Large Empty Travel
of Iron Core

Short Circuit
between Turns

Supply Voltage
Too Low

Maximum
Lyapunov index 1.2507 1.206 1.129 1.371 1.119

2.2. Phase Space Reconstruction of Coil Current Signal

According to Takens’ theorem [18], for a given current time series of length N with
x(t) = {x1, x2, x3, . . . , xN}, with delay time τ and embedding dimension m, the recon-
structed phase space can be expressed as:

X =


X1
X2
...

XK

 =


x1 x1+τ · · · x1+(m−1)τ
x2 x2+τ · · · x2+(m−1)τ
...

...
. . .

...
xK xK+τ · · · xK+(m−1)τ

 (2)

where K = n− (m− 1)τ. These K points in the phase space together constitute the current
signal time-series phase trajectory.
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From Takens’ theorem, it is clear that the choice of τ and m in phase space recon-
struction determines whether the reconstructed phase space can accurately reflect the
characteristic information of the time series.

Figures 3 and 4 show the variation of the phase trajectory diagram of the coil current
time series with different delay time variations when the embedding dimension m = 2,
where the variable x(t) is the horizontal axis, and the delay variable x(t + τ) with x(t) is the
vertical axis. Figure 3 shows the phase space reconstruction trajectory of the current signal
time series in the normal state at the delay time τ = 9. At this time, there is an obvious
correspondence between the key points of the time-domain waveform of the coil current
signal and the characteristic points of the phase space reconstruction trajectory: the T1 and
T3 key points correspond to the trajectory inlet point A, and the T5 key point corresponds
to the prominent point B at the top right of the trajectory; as in Figure 4a,b, respectively,
the delay time τ = 3 and 15 of the phase space reconstruction trajectories with delay time
τ = 3 and 15, respectively. As can be seen from the figure, when the delay time τ is too
small, the phase trajectory transformation point A is compressed on the inner trap closed
trajectory, and the phase trajectory transformation point B is compressed around the right
vertex of the trajectory curve transformation complex; the delay time τ is too large, which
will lead to the phase trajectory dispersion and make the component of the phase trajectory
feature point A is stretched. Therefore, too large or too small a time delay will result in
the current signal in the phase space not being obvious, making the subsequent feature
extraction analysis difficult, and a suitable delay time needs to be selected to reconstruct a
phase space that can correctly restore the initial signal dynamics information.

Figure 3. Phase trajectory at delay time τ = 9 with the characteristics corresponding to the critical
point of the current signal.

Figure 4. Phase trajectory with delay time τ = 3, 15: (a) τ = 3; (b) τ = 15.
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In addition, since the current signal collected during the actual circuit breaker breaking
and closing process has abnormal sampling points in addition to noise, it will likewise have
an impact on the selection of reconstruction parameters and subsequent feature extraction.

The acquisition process of the circuit breaker coil current signal is highly susceptible
to the actual working conditions, and the acquired signal often appears abnormal. The
abnormal data of the signal without considering noise are divided into two categories:
one is missing data, and the other is data fluctuation over the limit. The abnormal signal
with missing data cannot be reconstructed in phase space and thus cannot obtain the
phase trajectory; the current signal with abnormal data fluctuation is shown in Figure 5a.
Anomalous fluctuations in data points occurred in the T1–T3 segment of Cycles 3, 4, and
7 and in the vicinity of the T5 characteristic point of Cycles 5 and 6, and the abnormal
acquisition in actual working condition basically occurs near the more complex T1–T3
section and T5 time-domain feature points, which is manifested as abnormal fluctuation
in itself or the nearby data points, according to which the reconstructed phase trajectory
is shown in Figure 5b, corresponding to T1, T3, and T5. The trajectory features of key
points are mingled around the phase trajectory corresponding to the abnormal data, which
directly affects the extraction accuracy of the subsequent phase trajectory feature points.

Figure 5. Current signals containing data fluctuation anomalies and corresponding reconstructed
phase trajectory: (a) current signal; (b) reconstructed phase trajectory.

2.3. Adaptive Determination of Phase Space Reconfiguration Parameters

To solve the above problems, this paper proposes an adaptive processing method for
the current signal based on the first-order forward differencing algorithm for anomalous
data, and then uses the mutual information method to select a suitable delay time τ, so as
to realize the adaptive determination of the phase space reconstruction parameters and lay
the foundation for the subsequent feature extraction based on the phase trajectory.

2.3.1. Signal Anomaly Data Processing Based on First-Order Forward Differencing

For the lack of current signal data, it is only necessary to check whether the sampling
point data are continuous and complete the data; for the signal abnormality in which the
signal data fluctuation exceeds the limit described in Section 2.2, the continuous action of
the current signal is to collect the abnormal fluctuation exceeding the limit. The differential
value of the current signal time series reflects the fluctuation of the signal, and the frequency
histogram distribution of the first-order positive differential absolute value of the current
signal measuring point containing abnormal fluctuation data is analyzed, as shown in
Figure 6.

From the figure, it is found that the frequency of the absolute value of the difference
in the interval of 0~0.2 is close to 800, while the frequency of the place where the absolute
value of the difference is after 1.0 is low, so the data corresponding to the part of the
absolute value of the difference are relatively large and more likely to be abnormal overrun



Processes 2023, 11, 1241 7 of 18

data. Therefore, based on the above analysis, the first-order forward differencing method is
introduced for abnormal data processing of the current signal.

Figure 6. Frequency histogram distribution of the absolute value of the first-order forward difference.

For the anomalous data of the current signal, the specific process of filling in the
missing data and rejecting the anomalous fluctuation data based on the first-order forward
differencing method is as follows.

(1) Firstly, detecting the anomalous missing values of the signal and completing them by
linear interpolation.

(2) Secondly, detection of abnormal overrun values based on the first-order forward
difference algorithm: the first-order forward difference {xi} is calculated sequentially
for the current signal time series ∆xi, where ∆xi = xi+1 − xi, i = 1, 2, . . . , N − 1. Then,
the threshold λ for judging abnormal overrun data is determined according to the fre-
quency distribution of the absolute value of the difference, and the maximum number
of signal abnormal segment data is recorded as n. The number of adjacent consecutive
abnormal points in front of xi + 1 is recorded as ei, and k is cycled sequentially from 1
to N − 1. The initial situation ei = 0, i = 0, 1, . . . , N − 1, and the rules for judging the
abnormal overrun data are shown in Figure 7.

(3) Finally, remove the detected abnormal out-of-range points and perform linear inter-
polation to complete them.

2.3.2. Determination of Delay Time

Since too small a τ will lead to the compression of the reconstructed phase space
signal features and too large a τ will lead to the dispersion of the reconstructed phase space
signal where no effective features can be obtained, a suitable value of τ must be selected
to allow the features to be expressed more effectively. For the circuit breaker coil current
signal time series in this paper, the mutual information method [19] is selected to obtain
the delay time. The time series of the current signal is x(t), and the time series x(t + τ) via
the delay time τ. The mutual information method for selecting the delay time τ is the time
corresponding to the first minimal value point of the mutual information function of the
general dependence between successive points of the time series as the delay time, where
the mutual information function is calculated as:

MI(x(t), x(t + τ)) =
N

∑
i=1

Nτ

∑
j=1

P(i, j)lg(
P(i, j)

P(i)P(j)
) (3)

where Nτ is the length of the time series after the delay, P(i) is the probability that the
value of x(t) is i, P(j) is the probability that the value of x(t + τ) is j, and P(i, j) is the joint
probability that the value of x(t) is i and the value of x(t + τ) is j.
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Figure 7. Abnormal overrun data detection.

Take the time series of the circuit breaker coil current with normal signal acquisition
as x(t), the time series of the coil current with abnormal acquisition (with abnormal data)
as x′(t), and the time series of the coil current after abnormal data processing as x′′(t) to
calculate the mutual information function of the three, and the correlation change curve
between mutual information function and τ is shown in Figure 8.

Figure 8. Mutual information function curve: (a) normal; (b) contains abnormal data; (c) after
abnormal data processing.

According to the delay time selection principle of the mutual information method,
when the signal is normal without abnormal data, the first local minima of the mutual
information function is the point of τ = 8; when the signal has abnormal data, the first local
minima of mutual information function is the point of τ = 13; when the signal has abnormal
data but after the process of Section 2.3.1, the first local minima of mutual information
function is the point of τ = 8. It can be seen that after the signal anomaly data processing
based on the first-order forward difference, the first local minima of the current timing
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mutual information function originally affected by the anomaly data are the same as when
the signal is normal without the anomaly data, and the optimal delay time τ is chosen to be
the same.

Based on the optimal delay time selected by the above mutual information method
and the selected embedding dimension m = 2, the phase trajectories in two-dimensional
phase space are shown in Figure 9.

Figure 9. Phase trajectory comparison chart: (a) normal; (b) contains abnormal data; (c) after abnormal
data processing.

The phase trajectories in Figure 9a have an obvious distribution of phase trajectory
points A and B in the trapped angle and the right vertex, and the trajectories are uniformly
distributed in the phase space as a whole; in Figure 9b, the trajectory trajectories have
expanded in the trapped angle, the phase trajectory feature points A are mixed around
the phase trajectories corresponding to the anomalous data and the feature components
are stretched, and the overall state is diffuse; in Figure 9c, the overall shape of the phase
trajectories and the distribution of local trajectory transformation points are basically the
same as in Figure 9a.

It can be seen that the presence of anomalous data affects the selection of delay time
for phase space reconstruction, resulting in large differences in the overall and local mor-
phology of the reconstructed phase trajectory between the signal with normal acquisition
and the signal with anomalous data, which further makes the subsequent phase trajectory
analysis and feature extraction difficult, while the introduction of the first-order forward
difference-based anomalous data processing method can adapt to the anomalous changes
of the signal, and the reconstructed phase trajectory can still maintain stable morphological
features when the signal contains anomalous data, thus avoiding the impact of the signal
anomalous data on the subsequent signal analysis.

3. Extraction of Feature Parameters for Current Timing Phase Trajectories

The previously proposed phase space reconstruction method is utilized to extract
the phase space trajectories of circuit breaker coil currents in different fault states, and
their global and local characteristics are obtained. The global features consist of attribute
features, such as association dimension D, and morphological features, including origin
moments E. Meanwhile, the local features are represented by the amplitudes M1, M3, and
M5 of T1, T3, and T5 in the phase space. Analysis of feature distribution reveals that the
overall trajectory features cannot fully capture the differences among different fault types.
Therefore, combining both global and local features is necessary to achieve a more precise
fault diagnosis.

3.1. Phase Space Trajectory of Current Signal

According to the phase space reconstruction method described above, the 10-cycle
current time series x(t) of normal and four different faults are taken for phase space
reconstruction analysis to obtain the phase trajectory plane diagram. Among them, the
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single-cycle current signals in different states and the corresponding multi-cycle phase
trajectory plots are shown in Figure 10a–f.

Figure 10. Current signals in different states and corresponding multi-period phase planes: (a) com-
parison of time-domain waveforms of current signals under different states; (b) normal state phase
trajectory; (c) core card astringent phase track; (d) core empty travel large phase trajectory; (e) inter-
turn short-circuit phase trajectory; (f) supply voltage too low phase track.

Combined with Figure 10a–d, the overall difference between current signal waveforms
of core jamming and the large core air travel fault state compared with the normal state is
small, while the amplitude and time in local T1 and T3 key points have different degrees of
rise and delay, which is reflected in the consistency of the overall shape of the corresponding
phase trajectory and the offset of local trajectory shift point A in the direction of origin. The
diagram of the core empty travel large fault around A point shows that the trajectories are
compressed together, making them more susceptible to abnormal data. Combined with
Figure 10a,b,e,f, the inter-turn short-circuit supply voltage is too low a fault state compared
to the normal state of the overall difference in the current signal waveform, while in the
local T1, T3, and T5, the key points have obvious amplitude changes, corresponding to the
difference in the overall shape of the corresponding phase trajectory and local key points A
and B in the direction of the origin of the obvious offset.

The attractor phase trajectories of the fault current signals in the above figures after
phase space reconstruction have different degrees of differences in the overall and local
characteristics, and the overall and local characteristics of the phase trajectories can be
used to quantitatively characterize their trajectory characteristics and more intuitively and
effectively analyze the potential differences before and after the occurrence of the fault.

3.2. Overall Characteristics and Distribution of Attractor Trajectories in Phase Space

(1) Property characteristics of phase trajectories

The correlation dimension reflects the sensitivity to the inhomogeneity of the system
attractor and can quantitatively characterize the complexity of the dynamic structure of
the attractor [20]. The correlation dimension is used to analyze the attribute of the system
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attractor, extract the correlation dimension of the attractor trajectory in normal and different
fault states, and analyze the change law of the attribute characteristic quantity, so as to
better characterize the system chaotic characteristics of the coil current when different states
occur. The calculation process of the correlation dimension is as follows:

Calculate the Euclidean distance dij of any two phase points in phase space:

dij =
∥∥Xi − Xj

∥∥ (4)

The critical distance variable d is set, and the associated integral Nm(d) is defined as
the proportion of all vectors less than d:

Nm(d) =
1

K(K− 1)

K

∑
i,j=1

θ(d− dij) (5)

where K is the number of state points constituting the phase space trajectory, i 6= j,

θ(d− dij) =

{
0, d− dij ≥ 0
1, d− dij < 0

.

Determine the association dimension D:

D = lim
d→0

ln Nm(d)
ln d

(6)

(2) Morphological characteristics of phase trajectories

From the above phase plane diagram, it can be seen that the trajectory of the current
signal phase plane attractor as a whole deviates from the origin. In the fault state, the
attractor distribution changes, and it is close to or deviates from the origin, so the distance
and each state point in the phase plane to the origin is extracted. This is called the origin
moment, which can reflect the distribution characteristics of the phase point in the phase
space to some extent. The specific expressions are:

E =
K

∑
i=1

√
x2

i + x2
i+τ (7)

where (xi, xi+τ) are the coordinates of the two-dimensional phase plane state points.
Figure 11 shows the distribution of the overall characteristic correlation dimension

D and the origin moment E of the phase trajectory for each of the 10 cycles of the current
signal in the normal state and the four fault states: the correlation dimension for the
normal state fluctuates in the range of 0.48, while the correlation dimension for all four
fault states exceeds 0.51, i.e., it is more than 6.25% higher than the normal state, which
indicates that the unevenness of the system itself increases after the occurrence of a fault
increases, and among them, the correlation dimensions of core jamming, large core air
travel, and short circuit between turns, and low supply voltage all fluctuate in the range
around 0.52 and 0.56, respectively, which indicates that different fault types will have
similar unevenness changes. The normal state origin moment characteristics are distributed
in the range of 870~880, while the characteristics of core jamming and large core air travel
are all distributed between 880 and 900, with less than 2% change from the normal state
and insignificant or even no difference in distribution, but the inter-turn short-circuit and
low supply voltage origin moment characteristics are distributed between 910~920 and
790~800, respectively, with a 5% increase and a decrease of about 9%. The analysis of the
above results shows that the different types of faults determine the degree of difference of
the overall phase trajectory morphology distribution compared with the normal state, and
the indicators of core jamming and large core air travel fault states are relatively close to
each other, indicating that the phase trajectory morphology of some fault types is similar.
Therefore, only the overall phase trajectory characteristics cannot effectively classify and
identify each fault state.
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Figure 11. Overall characteristics of different fault phase trajectories D, E distribution: (a) association
dimension D; (b) origin moment E.

3.3. Local Characteristics and Distribution of Attractor Trajectories in Phase Space

Under the premise that the overall characteristics of the phase plane attractor are
analyzed in the previous section, further local characteristics of the system attractor are
further analyzed in order to improve the variability of the trajectory characteristics of
the faulty phase. As the trajectory transition point shown in Figure 3 of Section 2.2, the
state coordinates of the two trajectory transition points of the attractor in the normal and
fault states are extracted, which are the state coordinates xi and xi + τ of the trajectory
transition inlet point A and the state coordinates xi of the trajectory transition protrusion
point B, which are noted as the amplitudes M1, M3, and M5 of T1, T3, and T5 in the phase
space, respectively.

Figure 12 shows the distribution of the phase trajectory local characteristics M1, M3,
and M5 for each of the 10 cycles of the current signal in the normal state and the four fault
states; the amplitude M1 under the T1 phase space in the normal state fluctuates in the range
of 5.5~5.75, while the M1 of the four fault states has different degrees of change relative
to this range, in which the M1 of core jamming, large core empty travel, and inter-turn
short circuit, respectively. The T1 value of low supply voltage is reduced by about 11%,
while the M1 indexes of core jamming and large core empty travel faults are relatively
close to each other; the amplitude of M3 under the T3 phase space in the normal state is
distributed between 5.15 and 5.3, and the M3 value distribution of large core empty travel
faults has no obvious change relative to the normal state, while other faults have more
obvious changes. Meanwhile, the M3 value distribution of core jamming and inter-turn
short circuit are 5.8~6.3 and 6.1~6.4, respectively, with overlapping parts; the M5 value
distribution under T5 phase space in the normal state is around 8.1~8.15, and the M5 values
of core jamming and inter-turn short circuit are in 8.0~8.1 and 8.5~8.6, respectively, with
more obvious differences.

From the above data analysis, it can be concluded that the local features indexes have
different degrees of change when different faults occur, which is corresponding to the
change of key points of the time-domain model, and the differentiation of fault states can
be improved by combining the three local features. Therefore, since the overall features of
the trajectory have the defect of incomplete description in the differentiation of fault types,
combining these local features with the overall features mentioned above can maximize the
differentiation of different fault type features, which can effectively improve the accuracy
of subsequent fault identification.
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Figure 12. Distribution of local features M1, M3 and M5 for different fault phase trajectories: (a) am-
plitude M1 under T1 phase space; (b) amplitude M3 under T3 phase space; (c) amplitude M5 under
T5 phase space.

4. Circuit Breaker Fault Diagnosis Process Based on Current Timing Phase Trajectory
Feature and Support Vector Machine

The support vector machine [21] (SVM) can use the kernel function to map the feature
vectors of the samples to the high-dimensional space and construct the hyperplane in the
high-dimensional space to classify the sample feature vectors, which is more suitable for the
small sample classification application of coil current signal phase trajectory characteristics.
The key to the performance of the SVM model is to select the appropriate penalty parameter
C and kernel function parameter g [22,23], to train with the feature parameters of the
training samples and the corresponding fault labels, to find the optimal parameters C and
g, and then to obtain the optimal classification model.

As shown in Figure 13, the process of circuit breaker fault identification based on
current timing phase trajectory characteristics and support vector machine in this paper is
as follows:

(1) Use the anomaly data processing method based on the first-order forward difference
algorithm to process the coil current signal with anomaly data, determine the optimal
phase space reconstruction parameters on the basis of the processed signal, and carry
out phase space reconstruction with these parameters.

(2) Obtain the phase space trajectories of the coil current signals under different fault
states, extract the overall features and local features of each phase trajectory, and
constitute the sample set of phase trajectory fault features [D,E,M1,M3,M5].

(3) The fault feature sample set is configured as the training set and the test set, the
training set is input to the support vector machine model for training, and the model
parameters are optimized to establish the fault diagnosis model based on phase
trajectory fault feature-SVM. Finally, the test set is used to test the adaptive fault
diagnosis performance of this model.
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Figure 13. Overall fault identification process.

5. Test Results and Analysis

In this paper, the HP550B2 high-voltage circuit breaker is used for testing experiments,
simulating five states of normal closing, core jamming, large core air travel, and low power
supply voltage for inter-turn short circuit in the closing process; 40 groups of each of the
above five state current signals are collected using current sensors, 25 groups are taken
as training samples, and the remaining 15 groups are used as test samples. Firstly, the
adaptiveness and robustness of the diagnostic model in fault feature extraction are verified
and analyzed by introducing abnormal data and noise, and then the diagnostic performance
of the model based on different algorithms and different feature indicators are compared.

5.1. Adaptation Analysis of Phase Trajectory Feature Extraction

To analyze the adaptability of feature extraction in the case of acquisition signal with
abnormal data, the signal without abnormal data in the acquisition process is noted as I,
the signal with abnormal data introduced is Ierror, and the average error is:

1
n

n

∑
i=1

|Xi Ierror − Xi I |
Xi I

× 100% (8)

where XiI is the i-th fault feature indicator of the signal without abnormal data, XiIerror
is the i-th fault feature indicator of the signal with abnormal data, n is the number of
phase trajectory feature indicators, and the same feature indicators of different fault states
have been normalized. Table 2 describes some of the results of extracting phase trajectory
feature indicators for signals with and without abnormal data in each fault state of the
circuit breaker. Based on the table of results, it is apparent that the average error range for
extracting all state trajectory features falls between 0.702% and 1.064%. Furthermore, even
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for the core air travel large fault feature extraction, which is highly susceptible to abnormal
data, the average error rate is just 1.064%. These findings demonstrate that the proposed
method of phase space reconstruction based on the first-order forward difference algorithm
can effectively extract phase trajectory features from signals containing abnormal data,
with an error rate of less than 1.1%, and the feature indicator values of signals containing
abnormal data are obtained more accurately, indicating that the method can be adaptive
to the extraction of signal features containing abnormal data. It shows that the method is
adaptive to the extraction of signal features of anomalous data.

Table 2. Selected results of extracted phase trajectory characteristic indexes.

Failure Status Signal
Phase Trajectory Characteristic Index Xi Average

Error %D E M1 M3 M5

Normal
I 0.819 0.938 0.841 0.820 0.938

1.047Ierror 0.832 0.947 0.828 0.825 0.943

Core jamming I 0.978 0.965 0.915 0.938 0.925
0.938Ierror 0.975 0.971 0.922 0.957 0.934

Large empty travel of iron core I 0.985 0.965 0.863 0.815 0.955
1.064Ierror 0.994 0.960 0.886 0.819 0.948

Short circuit between turns
I 0.891 0.981 0.990 0.993 1

0.702Ierror 0.897 0.997 0.993 1 0.998

Supply voltage too low I 0.917 0.873 0.735 0.745 0.867
1.040Ierror 0.909 0.865 0.744 0.757 0.862

5.2. Robustness Analysis of Phase Trajectory Feature Extraction under Noise

However, the signals collected in real operating situations are usually accompanied
by noise in addition to the anomalous data mentioned in this paper, which affects the
performance of the diagnostic model. For example, Figure 14 shows different state current
waveforms with 40 dB noise, and the algorithm model needs more stable feature extraction
capability in the case that the current waveforms contain different levels of noise. Therefore,
to test the robustness of the algorithm model proposed in this paper, different proportions
of noise are added to the initial coil current signal with signal-to-noise ratios of 40 dB, 35 dB,
30 dB, 25 dB, and 20 dB, respectively, and further tested at the phase trajectory feature
extraction based on different fault state current signals, and the test results are shown in
Table 3, where the average error is calculated as described in Section 5.1 (where XiIerror is
the noise containing signal).

Figure 14. Current waveform with noise.
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Table 3. Average error of phase trajectory feature extraction under different levels of noise.

Failure Status
Signal-to-Noise Ratio/dB

40 35 30 25 20

Normal 1.085 1.098 1.126 1.143 1.245
Core jamming 0.942 0.997 1.054 1.108 1.238

Large empty travel of iron core 1.075 1.104 1.118 1.134 1.368
Short circuit between turns 0.756 0.802 0.992 1.022 1.101

Supply voltage too low 1.062 1.078 1.093 1.125 1.340

From the data in the table, it can be seen that the average error of phase trajectory
feature extraction increases with the increase in noise severity (i.e., the signal-to-noise ratio
decreases) for the current signals of different fault states, but the range of change is small,
and even in the case of only a 20 dB signal-to-noise ratio, the highest average error in each
state is 1.101% to 1.368%, which shows the good robustness of phase trajectory feature
extraction of the method in this paper under different degrees of noise environment.

5.3. Comparison of Different Algorithmic Models

The fault feature set [D,E,M1,M3,M5] is constructed after the phase trajectory fault
features of the circuit breaker current signal are extracted; the training set is input to the
SVM model for training; the cross-validation method is used to obtain the model parameters
C = 3.24 and g = 1.52, respectively; and the test set is input to the constructed SVM model
for fault diagnosis test, and the accuracy of fault diagnosis is 98.67%.

In order to further verify the superiority of the algorithm model of this paper, the
algorithm of this paper is compared with other commonly used machine learning classi-
fication algorithms, and the input features are compared with the time-domain current
signal features and the phase trajectory features proposed in this paper for fault identifica-
tion accuracy comparison. The algorithm aspect compares the performance of k-nearest
neighbor [24] (KNN) and back propagation neural network [25] (BPNN, using the network
seeking method to determine neurons and genetic algorithm to determine weights and
bias parameters [26]) to identify faults under the same training samples and test sam-
ples, respectively. When the time-domain current signal features are set to the feature set
[T1,T3,T5,I1,I3,I5] constructed from the time-domain features in Section 2.1, the training
and test sample configurations are the same as the phase trajectory feature samples. The
test comparison results are shown in Table 4.

Table 4. Accuracy of different classification models and input features.

Classifier Input Features Accuracy Rate/%

KNN
Time-domain current signal characteristics 73.33

Phase trajectory characteristics 78.66

BPNN
Time-domain current signal characteristics 88.00

Phase trajectory characteristics 93.33

SVM
Time-domain current signal characteristics 94.67

Phase trajectory characteristics 98.67

From the analysis of the results in the above table, when phase trajectory features are
used as input instead of time-domain current signal features, the diagnostic accuracy of
the three classifiers is improved by 5.33%, 5.33%, and 4%, respectively. Therefore, using
phase trajectory features as input can improve the accuracy of identifying circuit breaker
faults. The accuracy rates of the three classifiers are 78.66%, 93.33%, and 98.67% when
using phase trajectory features as input, with SVM having significantly higher accuracy
rates than other algorithms.
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6. Conclusions

This paper studies the distribution trajectory of the circuit breaker opening and closing
coil current signal in the phase space, and establishes a circuit breaker fault diagnosis
model based on coil current phase trajectory characteristics-SVM. Five different fault states
of high-voltage circuit breakers were simulated for diagnostic testing, and the following
conclusions were drawn:

(1) The preprocessing method employed, based on the first-order forward difference
method, can adaptively eliminate anomalous data, resulting in an accurate reconstruc-
tion of phase trajectory characteristics of the coil current signal.

(2) Incorporating local phase trajectory characteristics enables maximum differentiation
of different fault states, effectively solving the challenge of classifying similar phase
trajectory patterns between certain faults, such as core jamming and large core air
travel.

(3) Experimental verification confirms that the proposed fault diagnosis model has strong
robustness in feature extraction against interference, with an average error of ap-
proximately 1% when the signal-to-noise ratio of noise is between 20 and 40 dB.
Furthermore, utilizing phase trajectory features and SVM algorithm models results
in significantly improved fault identification accuracy compared to the traditional
diagnosis model based on time-frequency domain feature classification algorithms.

However, due to the large number of models of circuit breakers and their operating
mechanisms and various types of faults, this study was conducted under common faults
that can be simulated. For some faults that are difficult to simulate and cause irreversible
damage to the circuit breakers, this method needs to be further validated due to the lack of
sample data.
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