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Abstract: The state variables in a biodigester are predicted using an unstructured model, and this
study offers an analytical design of a Non-Linear Logistic Observer (NLLO), subsequently comparing
its performance to that of other prominent state estimators. Because of variables such as temperature,
pH, high pressure, volumetric organic load (VOC), and hydraulic retention time (HRT), among
others, biodigester samples can be affected by the use of physical sensors, which are not always
practical owing to their sensitivity to the type of sampling and external disturbances. The use of
virtual sensors represents one approach to solving this issue. In this work, we suggest experimentally
validating a mathematical model, then analytically designing a novel NLLO observer, and finally
comparing the results to those obtained using a sliding-mode estimator and a Luenberger observer.
By including online CH4 and CO2 measurements as inputs to the proposed observer, the local
observability analysis demonstrated that all state variables were recoverable. After showing how
well the suggested observer performs in numerical experiments, a proof based on the Lyapunov
theory is offered. The primary innovation of this study is the incorporation of a novel algorithm that
has been empirically validated and has output resilience to input parametric perturbations.

Keywords: observers; bioreactor; virtual sensors

1. Introduction

Anaerobic digestion (AD) is a natural fermentation process that takes place in the absence
of oxygen. Microorganisms (biomass) turn biodegradable material (substrate) into a mixture of
gases (usually methane and carbon dioxide) called biogas [1]. In addition, the degradation of
organic matter offers a nutrient-rich energy source for microorganisms, generating compounds,
such as biogas and biofertilizer, that are suitable for use in a biorefinery system. The rising
need for fossil fuels has prompted the exploration of renewable energy sources, with the
AD process emerging as a frontrunner due to the lower initial investment required to put
increasingly into practice compared to other renewable energy sources such as wind, solar, and
hydro [2]. Wastewater, sewage sludge, organic waste from the agro-food sector, and concrete
urban debris can all be treated using this method [3]. Biogas is a flexible renewable energy
source since methane and hydrogen may be utilized as a raw material in energy production.
This means it can be used to generate electricity, heat buildings, and power vehicles [4].

Multiple methods, such as state estimators, are utilized to monitor and maintain the
smooth operation of AD processes. Refs. [5,6], combined state estimator and physical sensors
to monitor vital process variables constituting what are referred to as “virtual sensors” [5].
Superior automation and control systems in tandem with cutting-edge measuring equipment
are necessary for implementing novel control schemes that will ensure the optimal and stable
stabilization of AD operations [7–9]. Existing monitoring equipment for AD process essential
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factors is costly and requires frequent maintenance. These variables include, but are not
limited to, fatty acid concentrations, the central bacterial population, and the measurement of
gases generated [10,11]. Few variables, including pH, temperature, biomass, and the ratio of
select gases, are often available for online monitoring at a reasonable cost in an AD process.
The use of so-called state observers (software sensors) that have demonstrated the ability
to reconstruct state variables represents an exciting alternative that takes advantage of the
mathematical model in conjunction with a limited number of measures in line, that can
provide an estimate of the evolution over time of the state of the bioprocess [12]. Over the
last few decades, the design and application of state observers in bioprocesses has been an
area of interest [13]. Specifically for AD processes, in the literature, we can find different state
estimation schemes from classic Kalman filters and adaptive to observer schemes asymptotic
and interval [14]. There is currently no solution in the literature for the challenging issue
regarding the online estimatation of critical variables in processes AD when only the biogas
output flow rate is available for mediation. There are limited examples of AD estimating
systems for tracking biogas production in the published literature; to estimate these processes,
we employ observers of state with the following features:

1. Exponential observers: These are based on the process model and use some mea-
surements from a hardware sensor; the main disadvantage of these observers is that
they depend heavily on the process model quality [15]. The extended Luenberger
observer [16], the receding horizon observer, and the high-gain observers [17] are
exponential observers.

2. Asymptotic observers: Unlike exponential observers, the Asymptotic observers are
open-loop state estimators, which use only a part of the model, replacing the missing
piece of a model by a variable measure [18,19].

3. Hybrid observers: The basic idea behind hybrid observers is to combine the advan-
tages of exponential and asymptotic observers [20].

Other important observers include the so-called continuous discrete observers, which
have shown to be extremely adaptable and resilient when the output signals are in discrete
mode as robots or quadrotors [21]. Our main real contribution in the observer is the ability
to estimate state variables that are usually not measurable, estimated via the signals that
are on line; this is an excellent contribution for colleagues who are committed to the control
and study of fermentation processes in bioreactors and biodigesters; by programming
this observer in real-time or off-line tasks, they will be able to have a better follow-up of
the dynamics of the various states of interest. A continuous NLLO observer is presented
in this paper for use with an analog output sensor; however, its discrete extension for
discrete sensors may be explored in future work. It can be difficult and costly to equip an
organization for AD procedures with the appropriate instrumentation [7,22].

Research on the design of estimators across their many classes is highly relevant to the
estimate of immeasurable variables in fermenters and biodigesters, and hence informs this
study [23–27]. As a result, it strives to do away with the prohibitive monetary expense of
installing such machinery in AD facilities. Some system state variables can be reconstructed
by means of a virtual sensor (Soft-sensing) utilizing data from a real sensor. Because of
this, it can be studied and applied to lessen the financial burden of biodigester substrate,
biogas, and biomass sampling. Industrial plants need for accurate readings in a biodigester
makes it crucial to choose which estimator has a sufficient performance. In this research, we
offer a new Non-Linear Logistic Observer based nonlinear of type functions; this observer
provides feedback on the nonlinear error. The Sliding Mode Observer and Luenberger
Observer, two linear observers, are also contrasted. The proposed observer is further
supported by a proof based on Lyapunov Stability. At last, a simulated input disturbance
and quantifiable signal noise are used to prove the robustness of the observer.
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2. Mathematical Model an Statement Problem

Anaerobic digesters are capable of treating insoluble waste and wastewater soluble.
HRT of at least 10–20 days are typical for high-strength residues. High-speed anaerobic
digesters are used for the treatment of soluble wastewater. A biodigester is hermetically
sealed and waterproof, inside which organic matter such as manure and vegetable waste is
deposited (being careful with the mixing of the substrates due to the substrate acidification).
In a biodigester, the organic matter is fermented with a certain amount of water, producing
methane gas and organic fertilizers rich in phosphorus, potassium, and nitrogen. This sys-
tem can also include a loading chamber, a device to capture and store biogas, and hydraulic
pumping, and posttreatment chambers (decanters, filter and stones, algae, drying, among
others) at the outlet of the reactor. The gas produced by digestion is known as biogas. It has
a composition of approximately 40–70% methane gas (CH4) and 29–59% carbon dioxide
(CO2) with negligible traces of oxygen and hydrogen sulfide (H2S), which gives it a very
distinctive smell, which is beneficial in identifying leaks in the system.

dS
dt

= −
(

µmax(XT , S)
Ysx

)
+ D(S0 − S) (1)

dXT
dt

=

(
µmax(XT , S)

Yxs

)
− FdXT − DXT (2)

dCO2

dt
= µmax(XT , S)ΥτYxco2 COα

2 − DCO2 (3)

dCH4

dt
= µmax(XT , S)ΥωYxch4 CHβ

4 − DCH4 (4)

where:

µmax(XT , S) = Growth rate

Ysx = Substrate− Biomass yield

Yxs = Biomass− Substrate yield

CO2 = Carbon dioxide

D = Dilution rate

(5)Fd = Death cell dynamics rate

β = Orderparameter

α = Orderparameter

Υ = conversion f actor

Based on the matter balance, for a continuous rector to simulate the behaviour of the
substrate, biomass and gases, in addition, it uses the chemical reactions that occur within
the biodigester as shown in the equation:

DQO + H2O + XT −→ H2O + CH4 + CO2 + H2S + XT (6)

Considerations for Equations (1)–(4):

(i) The Anaerobic Digestion Model No.1 (ADM1) is a generalized mathematical model
for the AD process that describes the biochemical and physicochemical processes
that occur in a biodigester. To carry out the mathematical modeling, it is necessary
to start from the basis that the AD process is composed of sub-processes: hydrolysis,
acidogenesis, acetogenesis, and methanogenesis. In this work, we propose the use
of a simplified mathematical model of ADM1 considering the following biochemical
reactions for engineering, optimization and process control purposes.

(ii)
Complex− process −→ simpli f ied− reaction− scheme (7)



Processes 2023, 11, 1234 4 of 16

(iii) Acidogenesis process

S1 + H2O −→ H2O + CO2 + X1 (8)

(iv) Methanisation process

S2 −→ CH4 + CO2 + X2 + H2S (9)

hence

• Organic matter: S1
• Acidogenic bacteria: X1
• Fatty volatile acids: S2
• Methanogenic bacteria: X2
• XT : f (X1X2)
• S : f (S1S2)

Based on publications such as [5], we offer a mathematical model in which the biomass
variable represents the total of the whole consortium of acidogenic and methanogenic
bacteria. For the construction of the reaction kinetics, modified Haldane structure was
taken as a basis [28], which describes a state variable’s change within the biodigester.
Therefore, µmax(S, X) is defined above and the general model is described below:

µmax(S, XT) =

[
Kmax

S
Ks + S + Ki

XT

]φ

(10)

The Haldane equation is a mathematical model of inhibition widely used in biotech-
nology and describes microorganisms growth in an aqueous environment, which is limited
by the substrate and some other metabolite [29,30]. Where:

Kmax = Substrate constant degradation
Ks = Mass coefficient in the substrate aqueous medium
Ki = Inhibition factor

The proposed mathematical model proposed in this work maintains far fewer pa-
rameters and various other parts of it, hence it is easier to implement the state estimators
for complex variables such as the concentration of methane, biomass, or substrate (see
Figures 1 and 2).

AD processes can be referred to as wet and dry digestion, depending on the feeding
substrate’s total solids concentration. AD is defined as a wet process if the substrate’s
total solids concentration is less than 15%, and as a dry process if the concentration lies
within the 20–40% range. In wet processes, the solid waste must be conditioned to the
appropriate solids concentration by adding process water either by re-circulation of the
liquid effluent fraction or by digestion with more liquid waste. The latter is a desirable
method for combining various waste streams such as sewage sludge or manure and the
organic fraction of municipal solid waste [31]. The reactors used in wet AD processes are
generally called continuous stirred tank reactors (CSTR), applying mechanical mixers or a
combination of automatic mixing and biogas injection [32]. The application of a wet AD
process offers several advantages, such as diluting substances using the process water and
the need for less sophisticated mechanical equipment. However, disadvantages such as
complicated pretreatment, high-water and -energy consumption for heating, and reducing
the working volume due to sedimentation of inert materials must be considered [33].
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Figure 1. Real data (symbol) and predicted dynamics (continuous line) of substrate-biomass.

Figure 2. Real data (symbol) and predicted dynamics (continuous line) of CH4-CO2.

3. Observer Design and Observability Analysis

The state observer provides indirect measurements (which, by themselves, are not as
easy to measure online physically) under real conditions by combining data detected from
a group of heterogeneous physical sensors (inline). Signals from the individual sensors can
be used in calculations within a single-variable estimator state of reconstruction, in addition
to deviations between the trajectories of a real system and the predictions of a mathematical
model. A virtual sensor is constructed from a state observer comprising a simulation or
measurement of an online sensor (real-time) of the system or plant coupled to the plant
model, driven by a correction term derived from the difference between the system’s
actual output and the expected output derived from the observer. Therefore, it introduces
an alternative state observer, who can converge to the states simulated with satisfactory
performance. To this end, the following structure represents the proposed observers and
their corresponding convergence analysis. The condensing of (1–4) as single-input and
single-output (SISO) system is proposed as follows for u = D and Rn:
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ẋ = f (x, u) + δ(u, x)︸ ︷︷ ︸
δ(·)

(11)

x(0) = x0

y = h(x) = Cx

C = [1 0 0 . . . 0] (12)

where xT = [x1, x2, . . . xn]T ∈ Rn, y ∈ R, C ∈ R1xn, u(t) ∈ R. The disturbance δ(·) is the
unknown disturbance function. On the stated dynamics δ(·), parameter changes and their
consequences on system dynamics may be represented and found.

Assumtions 1. It is proposed that there is a vector called estimated x̂, such that there are arithmeti-
cal differences such that ε = x̂− x

Therefore, the functions f (x, u) and f (x̂, u) are a Lipschitz function such that:∥∥∥∥∥∥∥ f (x, u)− f (x̂, u)︸ ︷︷ ︸
φ(·)

∥∥∥∥∥∥∥ ≤ l1‖ε‖

where ε ∈ Rn = x− x̂ is the estimating error vector, while Cε = e0 ∈ R with e0 as Output Signal
Error (OSE).

Assumtions 2. There is a constant k2 > 0 and OSE such that the system following condition is
fulfilled for (11): ∣∣∣∣ k2e0

1 + e0

∣∣∣∣ ≤ 1

with the above, the following proposal proposes a non-linear logistics estimator.

Assumtions 3. The nonlinear unknown function δ(·) is a bounded function such that:

‖δ(·)‖ < k (13)

∀k > 0

Note 1 It is highly typical in biological systems for this type of system to contain
uncertainties, especially concerning possible changes in the control input. This is because
in this type of system, the u(t) modifies the operating parameters in the stationary phase.
As a result, the delta perturbation might be asked to be minimum constrained. A preferable
case would be for this distortion to be Lipschitz to the OSE, which would result in:

‖δ(·)‖ ≤ l2e0

∀l2 > 0

The above would be an ideal case since it gives us more information about the pertur-
bation δ(·). However, it is often difficult to carry this out, even the calculation of the l2 is
not trivial. Therefore, in this work we propose to work with the only known fact that the
perturbation is bounded as in Equation (13).

Theorem 1. Let system (11) be an SISO system that complies with the assumptions. Then, the
following NLLO observer is proposed:

·
x̂ = f (x̂, u) + K1e0

p(
k2e0

1 + e0
) + δ(·) (14)

where k1 > 0 is a vector gain. Therefore, the dynamics error ε = x− x̂ is said to be stable and to
converge to a final level. For the vector gains K1 > 0 and the scalar k2 >> p + 1 and p >> 2

Proof. Let us consider the dynamics of the estimation error.
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ε̇ = ẋ−
·
x̂

ε̇ = f (x, u)

− [ f (x̂, u) + K1(Cx− Cx)P(
k2(Cx− Cx)

1 + |Cx− Cx| )] + δ(·)

ε̇ = f (x, u)− f (x̂, u)︸ ︷︷ ︸
φ(·)

− K1ep
0 (

k2e0

1 + e0
) + δ(·)

ε̇ = φ(·)− K1ep
0 (

k2e0

1 + e0
) + δ(·)

It is proposed that a Lyapunov function and its derivate

V =
1
2

εTΓε (15)

V̇ = ε̇TΓε + εTΓε̇

V̇ = (φT(·)− KT
1 ep

0 (
k2e0

1 + e0
) + δ(·))TΓε

+εTΓ(φ(·)− K1ep
0 (

k2e0

1 + e0
) + δ(·))

where Γ > 0 symmetric matrix. Therefore, it is majored:

V̇ ≤ 2‖φ(·)‖T‖Γ‖‖ε‖ − 2KT
1 ep

0

∣∣∣∣ k2e0

1 + e0

∣∣∣∣‖Γ‖‖ε‖
+2‖δ‖T(·)‖Γ‖‖ε‖ (16)

where ‖Γ‖ = λmax{Γ} = a1

‖φ(·)‖T = ‖φ(·)‖ = l1‖ε‖
‖δ‖T = ‖δ‖ = k (17)

‖K‖T
1 k2 = a2 (18)

Therefore:

V̇ ≤ 2a1‖ε‖2 − a1a2ep
0

∣∣∣∣ k2e0

1 + e0

∣∣∣∣︸ ︷︷ ︸
≤ep

0

‖ε‖+ 2a1k‖ε‖

V̇ ≤ 2a1‖ε‖2 − a1a2

∥∥∥∥∥∥ Cε︸︷︷︸
eo

∥∥∥∥∥∥
p

+ 2a1k‖ε‖

Via Cauchy–Schwartz inequality, the above term can be maximised in the following way:

V̇ ≤ 2a1‖ε‖2 − 2a1a2‖C‖p‖ε‖p + 2a1k‖ε‖
V̇ ≤ 2a1‖ε‖2 − 2a1a2‖C‖p︸ ︷︷ ︸

≤1

‖ε‖p + 2a1k‖ε‖

V̇
2a1

≤ ‖ε‖(‖ε‖+ k− a2‖ε‖p−1)

It is easy to observe that for a2 > k and p >> 2, it has a2‖ε‖p−1 > ‖ε‖+ k. Therefore:

V ≤ −2a1β(ε, p, a2, k)

where
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(2a1)
−1β(ε, p, a2, k) =

3−1‖ε‖3 + 0.5k‖ε‖2 − a2(p + 1)−1‖ε‖p+1

Hence, since the β(ε, p, a2, k) is an unknown function but increases in error infinitely,
and is also a smooth polynomial function that depends on the degree p, value of k and a2 ,
the system is hence stable.

Note 2 The influence of the parametric change owing to the system’s parameters,
especially biological conditions, is within the convergence of the observer’s system, as in
cases where the unknown value k of Equation (13) would change, denoting a change in the
conditions of the function β(ε, p, a2, k) as previously defined. Given the robustness qualities,
it may be concluded that the observer will be resilient in the presence of parametric change.

4. Biodigester Numerical Results and Observability Analysis

Asymptotic observer and observability analysis, as mentioned above, cannot be built
without first evaluating the mathematical model using experimental data from [34,35].
Biomass production, biogas release, and substrate use were all confirmed to occur at the
projected rates revealing the estimated timeframe within which the estimator can function.
To analyze which sensors will be most effective during the state-estimation phase, we
will use the results of the simulated experiments to select a stationary data set and then
compute the linear matrices A, B, and C required to determine the local observability at this
equilibrium point and verify the observability concerning each of the four state variables
(see Figures 3–6) (Table 1).

Table 1. Simulation parameters obtained from the literature [34,35].

Parameters Value Range

Ks 150 g/L ± 15 g/L 50–246 g/L
Ki 50 g/L ± 15 g/L 192
Fd 0.009 d−1 ± 0.0019 d−1 0.0005–0.0124 d−1

S0 30 g/L 5.057 g/L
Ysx 0.426 ± 0.21 0.2–0.80
Yxs 0.333 ± 0.11 0.3–0.90
D 0.001 d−1 0.015 d−1

α 0.29 ± 0.18 0.1–1.9
β 0.20 ± 0.09 0.1–1

Yxco2 0.67 0.1–1
Yxch4

0.78 0.1–1
µmax 0.23 g/Ld 0.1–1.5 d−1

Υ 1.2 mL*(L/g) 0.1–1.5
φ 1.9 mL*(L/g) 0.1–2.5

Experimental values from [34,35] were used to verify the results of the numerical
simulations in order to obtain a rough idea of the biomass, biogas production, and substrate
consumption that can be expected in the real world and thus what sort of range the estimator
can be expected to work in. Due to the lengthy nature of AD operations, the simulation ran
over a 70-day period. When biogas output is constant, the system stabilizes after around
60 days. The linearization process described below will begin with these steady-state values.
Similar comparisons were performed between the substrate and biomass variables depicted
in the figure. A variety of Grammy matrices with local observability can be analyzed via
equilibrium points using the linearization analysis of Jacobian matrices. Initial conditions
for a time-dependent analysis: substrate 30 g/L, 1 g/L Biomass, 1.1 g/L Carbon Dioxide,
and 1.7 g/L Methane, to D = 0.001d−1.

ẋlin = Axlin + Bulin

y = Clinxlin
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Therefore, the rank > n is as follows:

Olin =


Clin

Clin Alin
...

Clin An−1
lin


The system and this steady state are observable for different outputs for C = Clin, such

that it shows:

• C =
[
1 0 0 0

]
If the substrate is measured (S)

• C =
[
0 1 0 0

]
If the biomass is measured (XT)

• C =
[
0 0 1 0

]
If the carbon dioxide is measured (CO2)

• C =
[
0 0 0 1

]
If the methane is measured (CH4)

• C =
[
0 0 1 1

]
If the biogas is measured (CH4 y CO2)

Table 2 demonstrates how the observability of a system can be indicated by the impact
of employing a particular sensor. Biogas sensors (CO2 and CH4) make it straightforward
to estimate factors such as biomass and substrate that are notoriously difficult to measure
with analog or digital sensors. As a result, this observer-based sensor software (with CO2
sensors) offers a novel and practical solution to the issue of actual biodigester monitoring.
This is based on the linearized model’s local observability data close to the dilution cup’s
equilibrium point. The design of a state estimation robust to changes in the dilution rate
is crucial for achieving a strong adequate state estimator, as a change in the dilution rate
affects all equilibrium and estimation conditions. The authors propose measuring CO2 as
a sensor that already exists on the market and using it to estimate local variables such as
biomass, substrates (nutrients), and methane. Estimated adversaries are x̂ = [43 4.1 2.1 5]T ,
and the initial conditions are x0 = [30 1 1.7 .1]T . The performance of the proposed observer
(refobserver) was compared to that of a Luenberger observer and a sliding mode (See,
Figures 3–6).

Table 2. Comparative analysis of estimable variables [36].

Online Estimations

Case Variable S XT CO2 CH4
[1 0 0 0] S • ◦ • ◦
[0 1 0 0] XT ◦ • • •
[0 0 1 0] CO2 • • • •
[0 0 0 1] CH4 • • • •
[0 0 1 1] CO2, CH4 • • • •
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Figure 3. Simulation and comparison of the continuous-time observers, proposed observer vs. real
system: Dynamics of the substrate.

Figure 4. Simulation and comparison of the continuous-time observers, proposed observer vs. real
system: Dynamics of the biomass.

Figure 5. Simulation and comparison of the continuous-time observers, proposed observer vs. real
system: Dynamics of the CH4.
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Figure 6. Simulation and comparison of the continuous-time observers, proposed observer vs. real
system: Dynamics of the CO2.

4.1. Analysis of Results

To begin, the suggested estimator outperforms the sliding mode estimator, which has
an Integral Absolute Error (IAE) of 695, and the classical Luenberger observer, which has
an IAE of 300, when measured with IAE index. ITAE (Time-weighted Absolute Error) is
displayed after the comparison is made. Similarly, the proposed estimator outperforms the
rest, and is therefore chosen as the ideal solution for this case study, which also shows that
the more time that passes, the better the solution is.The proposed estimator outperforms
the alternatives, and is hence chosen as the optimal solution. There is a correlation between
performance level and time spent on stage. The sliding mode observer (ITAE = 550), the
Luenberger observer (ITAE = 35), and the best-recommended observer (ITAE = 5) all have
significantly larger ITAE calculations than the others. Accordingly, the proposed observer
will be used in the experiment’s follow-up phase, where it will be emulated in advance of
changes to the operating parameters by proposing dilution rate perturbations.

4.2. Robustness Disturbance Parameters Input Signals

The input paramters can be measured and quantified; however, it is impossible
to empirically establish whether the internal metabolic parameters have changed. A
simulation study is provided on the basis of the identical analytical circumstances as in
the preceding section, except for suggesting a dynamic disturbance in the dilution rate
signal to illustrate the system resistance to these types of input parameter changes, which
are typical in biological systems. In order to show the performance of the observer under
output disturbances, it was assumed that the reactor was operated in semi-batch mode,
with the dilution rates varying within a range D = (0.01 to 0.05) d−1, as shown in Figure 7.
The proposed observer provides a good estimation of unknown states (Figures 8 and 9).
The following diagrams show the perturbation dynamics. For application purposes, the
CO2 concentration was considered as the measured output of the observers; this is justified
because this concentration is one of the easier to measure of the biodigester variables via a
low-cost senspr, and also because of the observability analysis results (See, Table 3).
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Table 3. Comparison of estimation methods applied in AD processes [37–44].

State Estimator Available Variables
(Online)

Reconstructed
Variables Advantages Disadvantages

Sliding- mode
estimators CH4

Volatile fatty acid (VFA)
concentration

Rrobustness to
disturbances and

unmodeled dynamics
Steady-state error

Neural networks Biomass Substrate
You need no prior
knowledge about

kinetic growth rate

You need experimental
data to properly train

the neural network

Kalman filtering
algorithm Biomass Substrate

It strongly depends on
the precision of the
model, numerical

problems and difficulty
of convergence

High computational
cost

Adaptive observer Specific growth rate
and cell concentration Substrate
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The observer input is
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Depends on the model
It is not robust against

modeling errors

Figure 7. Parametric change on the proposed parameter D.

To study the performance of an observer and its robustness, it is necessary to put it in
the presence of abrupt perturbations as shown in Figure 8.
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Figure 8. The CO2 and methane dynamics in the presence of abrupt disturbance to 60 days on process.

Figure 9. Dynamics of the biomass and nutrients in presence of abrupt disturbance to 60 days on process.

Finally, it is important to take into account that the AD system may have external
disturbances, since these can occur naturally in this type of application, the above may
be due to a damaged sensor, poor connections or interference in sampling, for which the
simulation was carried out for the case in which the disturbance occurs in the CO2 sensor,
as can be seen in Figure 10 and described by Equation (19):

dCO2

dt
= µmax(XT , S)ΥτYxco2 COα

2 (19)

+CO2sin(0.20π) + 20cos(10.9π)− DCO2

Given the rather sluggish dynamics after 60 days, we suggest a modification illustrated
in Figure 10 that must be corrected by the estimator in order to get a fine and robust
estimation of the states recorded with the soft sensor proposed by the NLLO observer.
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Figure 10. Simulation of disturbances considering noise in the CO2 sensor.

5. Conclusions

In this paper, a kinetic model was created to offer an experimental prediction for ranges
in biogas production reported in the literature in continuous operations. Additionally, a
local observability analysis was conducted, in which multiple combinations of output
measures were used to indicate the dimensions of the associated observable subspaces
using the observability matrix criteria. The state estimator is built on the understanding
of a single measurable variable in the line of sight. The state estimator is based on the
knowledge of a single measurable quantity, online, CO2 concentration, which can be used
to estimate substrate, biomass, and methane concentrations. A combination of substrate,
biomass, and methane numerical simulation is used to verify the stability and asymptotic
convergence. Numerical simulation using a performance index verifies the stability and
asymptotic convergence. Finally, it is clear that this method allows for rapid calculation
of a mathematical description of continuous fermentation processes that can be utilized
for optimization and control. This work may be expanded to situations with mismatched
parameters and dispersed delays, and advanced controllers can be built, such as Finite-
Time Control of Dual-Switching Poisson, as in [45,46], offering a unique application for
chemical–biological systems; however, these avenues remain yet unexplored.
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