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Abstract: This work proposes a new multi-objective optimization technique for concurrent diminu-
tion of torque ripple with the regulation of the speed of a 75 Kilowatt, 8/6, 4-phase SRM based
on a double close loop, modified whale algorithm optimized fractional order proportional integral
(MWAO FO-PI) control with a commutation angle controller. The system is analyzed and designed in
MATLAB/SIMULINK environment. First, the performance of MWAO is tested on 30-dimensional
standard benchmark functions. It is found that MWAO performance is better when examined on
30-dimensional standard benchmark functions, compared with WOA, and another six recently pro-
posed state-of-art functions. Then, a double loop control based on the MWAQO FO-PI controller is
designed and implemented for concurrent diminution of torque ripple with the regulation of the
speed of a 75 Kilowatt, 8/6, 4-phase SRM with a commutation angle controller. It was found that the
percentage improvement achieved in the combined objective optimization function with the MWAO
FO-PI controller was 10.044% in comparison with the MWAO PI controller, and 9.0597% compared
with the WOA PI controller. It is also proved that MWAQO FO-PI-based double close loop control
of SRM provides less torque ripple, better tracking of speed with a reference value of speed and a
better current profile in comparison with the MWAO PI controller and WOA PI controller. From all
the above analysis, the conclusion is reached that the MWAO FO-PI controller provides very good
overall system operational performance compared with MWAO PI and WOA PI controllers. The
conclusion is reached based on simulation analysis and experimental validation is lacking.

Keywords: switched reluctance motor (SRM); torque ripple; speed tracking; cosine adapted modified
whale algorithm optimized fractional order proportional integral (MWAQO FO-PI) control

1. Introduction

Cost arbitrariness and non-availableness of rare earth elements led researchers to
look for motor drives for electric vehicle(EV) applications, that are free from magnet
configurations. The magnet-free drive configurations are maintenance-free, high-power
density, and rugged [1-3]. But when used in EV drive applications, SRM is assisted with
high torque ripple and acoustic noise. As SRM is governed by the non-linear relationship
of the torque current profile with the rotor position [4]. This causes SRM to be assisted with
acoustic noise and high torque pulsation [1-3] in EV drive applications. To overcome this

gloomy area of SRM many improvements are suggested by researchers [5]. The saliency
in the construction of stator and rotor and nonlinear characteristics cause it’s difficult
to control SRM [6]. Progressive development in power electronic devices, leads to the
designing of a proper controller. With the advent of such controller, the minimization of
torque pulsation and speed control of SRM is possible.

Thus, a control system could be designed keeping in mind its nonlinear magnetic char-
acteristics, and intelligent selection of switching angle, current, and voltage values [5,7-9].
40/). It is reported that controlling the current profile can also decrease the torque ripple. Many
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methods have been used for controlling SRM’s stator current profile and hence reducing
torque ripple. Many methods [10,11] such as fuzzy logic and artificial neural networks
can be used for current profile control so that it lessens the torque ripple. Whereas, im-
plementing such intelligent techniques requires expert depth of knowledge. In spite of
the unavailability of a formal model concept/theory and again having high mathematical
complications, such systems are suitable for implementing such approaches. Optimization
methods bring in the use of huge amounts of system information for addressing system
problems with deep-seated models. Thus, they have strong workability. Contemporary
heuristic optimization methods are very suitable for the designing and formulation of
controllers [12]. Metaheuristic optimization techniques [12] are reported to be of high
computational efficiency. These techniques are extensively classified [13] into evolutionary
methods, swarm methods, and trajectory methods.

The whale optimization algorithm (WOA) [14] imitates the hunting style of humpback
whales with the bubble net hunting technique. The differential search algorithm (DSA) [15]
is encouraged by a Brownian-type random walk motion adopted by organisms for migra-
tion. The lightning search algorithm (LSA) [16] is developed on the natural occurrence of
lightning and with the system of step leader action. To address the projectile transition,
three types of projectiles were developed, step leader population, space projectile, and
lead projectile. The harmonic search algorithm (HSA) [17] is inspired by musicians and
used for producing perfect harmony. In the backtracking search algorithm (BSA) [18],
adaptive control parameters depending on global and local knowledge of the swarm in the
present iteration is adopted to adapt the individual search length. This brings a balance
between exploitation and exploration ability. Particle swarm optimization (PSO) [19] uses
the intelligence and propagation skill of a swarm. This technique solves a problem by
using the social interaction skill of a swarm. It uses a number of searching agents moving
around in searching for the best solution. The firefly algorithm (FFA) [20] implements
global communication skills between various swarming agents.

Optimization algorithms [17,21] are efficient methods to find solutions to many non-
linear real-world problems. As NFL (No Free Lunch) theory explains, one single optimiza-
tion algorithm cannot provide satisfactory results to all types of problems. Thus, there is
always an opportunity for the discovery and advancement of new optimization techniques
to suit that concerned problem. This causes motivation for the present research work.

Optimization techniques are nature inspired and broadly categorized into three types.
These are the evolutionary method, trajectory method, and swarm method [15,22]. Re-
searchers all over the world suggest that [23] these three methods can lead to improvement in
optimization techniques. These are (i) putting forward new optimization techniques, (ii) im-
proving present techniques, and (iii) hybridization of optimization techniques. The third one,
hybridization of optimization techniques [23], is one of the popular and efficient methods.

Problem-solving with a multi-objective optimization process has many advantages in
comparison with solving problems with single-objective problem formulation [24]. It is
reported in [24] that multi-objective optimization can deal with many objectives at a time.
Multi-objective optimization-solving scheme outputs better results when the objectives are
correlated to each other as compared with single-objective optimization problem-solving
methods. Again, single objective optimization problem-solving method takes more time
and is also a cumbersome process for finding the parameters. Whereas a multi-objective
optimization problem takes less time but is difficult to frame and requires the depth of
optimization knowledge.

Mirjalili et al. [14] introduced a whale optimization algorithm (WOA). It emulates the
hunting proficiency of humpback whales. WOA has a propensity to get trapped in local
optima [25,26]. As there is an expansion in the search space dimension, it tends to have low
convergence. This increases the chance of making changes in the technique for performance
enhancement. One of the well-known controllers is the PI controller, favorable to industrial
personnel as it is simple and easy to handle. However, the FO-PI [27,28] controller has
some more variables to tune as compared with the PI controller. This gives some additional
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degree of freedom to enable advancement in execution. Podlubny et al. [27] explain the
workings of the FO-PI controller. FO-PI can be simply explained by, where y represents
the integrator order. Ghoudelbourk [29] discusses the application of FO-PI control in the
application of SRM as an electric vehicle using a fuzzy logic controller.

In the present work, performance assessment and comparison of the cosine adapted
modified whale algorithm optimized fractional order proportional integral (MWAO FO-
PI) controller and MWAO PI controller is executed for concurrent diminution of torque
ripple with regulation of speed of a 75 KW, 8/6, 4-phase SRM based on double close
loop control. The controllers are designed depending on a modified whale optimization
algorithm (MWAO) and WOA optimization scheme. In the modified whale algorithm of
the optimization method, WOA is remodeled by incorporating the following changes to
bring MWAO into existence. The first one is implementing a cosine function for drooping
the control parameter and the second one is imbibing amendment factors for upgrading
the position of search agents.

In the present work, the efficacy of MWAO is analyzed for 30-dimensional benchmark
functions. Adding to it, a multiobjective optimization real world engineering problem for
SRM'’s control based on MWAO is also devised using a fractional order proportional integral
(FO-PI) controller. Mathematical modeling of SRM is provided in Section 2. The control of
SRM is focused in Section 3. Section 4 discusses the MWAO technique. Section 5 justifies
the correction factors selection. Section 6 analyses the outcomes derived by executing the
MWAO method. Section 7 discusses the control of SRM by implementing MWAO-based
fractional order controller and formulating a problem for multiobjective optimization.

2. Analytical Modeling and Analysis of an SRM Drive System

A switched reluctance motor is characterized by double saliency. Windings are only
present in the stator and no windings are present in the rotor. The rotor is constructed
of laminated silicon steel. With the supply of electric power to the stator, the rotor tries
to attend a minimum reluctance position, and hence it experiences a reluctance torque to
move. When an electric supply is provided in the proper sequence to stator windings,
the rotor experiences a continuous rotating torque. Analytical modeling of four phases,
8/6,75 KW, and SRM is detailed below. The input voltage is applied across each phase
of winding. For simplicity of analysis, the effect of mutual inductances between phases is
ignored. As the stator and rotor have saliency, the stator flux exhibits a nonlinear correlation
with the rotor position (0) and stator current (7).

The input phase voltage is applied to the stator winding of SRM. For simplicity of
analysis, the coupled mutual inductance among the different phases of the stator is not
taken into account.

The saliency of the rotor and stator structure is derived for nonlinear correlation [11,12]
of stator flux linkage with the rotor position () and stator current (i). The flux linkage ¥ ()
is expressed as:

¥o(F) = ¥ (i, 0) M)

The stator’s phase voltage is obtained by the below equation:

t
¥o(t) = [ (Vs-Rsls)at @)

In the above equation, Rgs symbolizes resistances of the stator winding. The flux
linkage is ¥s(t). The stator phase voltage is Vs. The rotor position is 6. The stator current is
I, obtained out of magnetic characteristics. The flux linkage (¥s(t)) exhibits a non-linear
relationship to I and 6. The mathematical equation for stator current i('¥, ) is derived out
of magnetization characteristics. ¥;(t), Vs, and Is are vector quantities. The magnetization
characteristics of the concerned machine is shown in Figure 1.
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Figure 1. Magnetization characteristics of 75 KW, 8/6, 4 phase SRM at different rotor positions.

In Equation (3), T.(i,0) is the electromagnetic torque and is extracted from the ma-
chine’s coenergy:

ow'(i,0)
T ®)

The term w’'(i, 0) is coenergy and is obtained below:

T,(i,0) =

W' (i,0) = /Oi‘{’(i,e) @)

The sum total of all phase torque is the total electromagnetic torque (T,) produced by
the machine.
dwy,

ot

Here, wy, is the angular velocity of the motor, | represents moment of inertia, load
torque is T;, and the coefficient of friction is B.

T, =] + Bwy, + T, ()

3. Switched Reluctance Motor Control

Figure 2 demonstrates a multi-objective optimization scheme of concurrent diminution
of torque ripple with tracking of speed and reduction of current error using a double close

loop MWAOQ optimized FO-PI controller. This control shown in Figure 2 accomplishes the
following goals.

1.  Torque ripple diminution,
2. Tracking of reference speed,
3. Reducing current error.

The task is accomplished by formulating a multi-objective optimization problem for a
double close loop cosine adapted modified whale optimized fractional order proportional
integral (MWAOQO FO-PI) speed controller, MWAO FO-PI current controller, and commuta-
tion angle controller. Rotor position feedback information is provided to the commutation
angle controller. The commutation angle controller takes the decision of providing a pos-
itive current pulse during the stator’s rising inductance profile. Thus, command for the
turn-on angle (6on) and turn-off angle (6opr) for electrical switches is provided by the
commutation angle controller.

The current hysteresis controller regulates the stator current.
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Figure 2. Multiobjective optimized double close loop MWAO FO-PI controller for control of SRM.

3.1. FO-PI Controller

In the present work, the MWAQO FO-PI controller for SRM control is implemented. The
usage of the FO-PI controller for governing SRM is the most efficient method of control
in comparison to a simple PI controller. The classical PI controller is a particular case
of fractional PI* controller (FO-PI controller), where A represents the integrator order.
As shown, the fractional PI* has one more variable to tune as compared with the PI
controller. This gives some additional degree of freedom for performance advancement of
the system [6]. Podlubny et al. [27] explain the working of the FO-PI controller.

3.2. FO-PI Speed Controller

An MWAO FO-PI controller is proposed for implementation of the speed controller.
The error speed between the actual speed and reference speed act as input to the controller
whereas the output signal obtained from the speed controller becomes the input to the
current controller. The transfer function of the MWAQO FO-PI speed controller in the Laplace
domain is explained below.

Ts(S) = Kp_s + —3> (6)

Here, Kp s and Kj g are the proportional and integral gain constant, having an inte-
grator of order A.

3.3. MWAO FO-PI Current Controller
The MWAOQO FO-PI current controller transfer function is explained below:

_ Kic
Te(S) = Kpc+ on @)
The Kp ¢ and K] ¢ are proportional and integral gain constant of FO-PI current con-
troller, having an integrator order of y.

3.4. Commutation Angle Controller

Rotor positions are sensed and accordingly current pulses are supplied to each phase
of SRM. This function is performed by the commutation angle controller. SRM’s operation
during the saturation condition is avoided [7,8]. A positive current pulse [7] is applied
when the stator sees a rising inductance profile. The stator inductance profile with reference
to the rotor position is shown in Figure 3. For this, it is required that the flux should decay
earlier than the rotor enters in the region of negative torque. This causes selection of the
turn-off angle with the turn-on angle, a crucial process. The turn-off time is chosen in the
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vicinity of maximum inductance location. The parameters of the FO-PI speed controller,
FO-PI current controller and the turn-on with turn-off angle controller are tuned by MWAO
and WOA techniques.

0.025

0.02

0.015

0.01

Inductance Profile of Stator

0.005

0 10 20 30 40 50 &0
Rotor Position in Degree

Figure 3. Stator inductance in accordance to rotor position.

4. Modified Whale Algorithm Optimization (MWAO)

In the modified whale optimization technique, improvement is incorporated by two
steps. In the first step, correction factors are introduced to decrease the search step size
during stance upgradation of the search particle. This causes a fine forage.

In the second step of amendment, the cosine trigonometrical function is implemented
for decaying of the control parameter (d) of the whale optimization algorithm in the course
of iteration. Incorporation of the cosine function in WOA leads to a balance between the
exploitation and exploration property during the search process, which again helps in
arriving at the exact estimated global optima.

The cyclic motif leads to the solution to reposition around over other solutions. This
leads to good exploitation of the forage area among the two solutions. During the ex-
ploration forage, searching is conducted over the search region and also between respec-
tive goals.

The present best fit solution is taken as prey krill. All remaining search agents update
their situation in conformity to the set target as given by (8).

‘cﬁ%n—nﬁﬁ
Y= @ ®)
ﬁa+n=nW”_A” ©)

— —
n*(t) represents the ongoing best solution, ¢ represents the ongoing iteration and m(t)
- =
is the position vector. Vector coefficients C & A are deduced from Equations (10) and (11)
as shown below.

— N
C=2% (10)

-, =
A=2dF-d (11)

R — —
Here ¥ is a random lying in the range of 0 and 1. A and C are the adjustment vectors,
which are implemented to attain varying place surrounding the best particle.
—

In WOA, the parameter d decreases linearly starting from 2 to 0, for ensuring the
shrinking nature of the encircling prey. MWAO uses a Cosine trigonometrical function to
the decay control parameter ‘d” in the iteration process, explained in (12).

(12)

d=1+0.5x% Cosine( ITER )

"ITER yiax
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Here in ITERp4x the utmost iterations happened.

4.1. Attacking by Bubble Net Tactic (i.e., Exploitation Phase)

The bubble net attacking tactic brings two strategies into action. These are mentioned
below. In MWAO, the cosine trigonometrical function is incorporated as explained in

—

Equations (11) and (12). It causes A to become any random number between [—d, d].
—

Appointing A in the range of [—1, 1], the search agent’s place is ensured between the

original and present best place of the search particle.

4.2. Spiral Updating Position

Separation between the whale position (m, n) and prey position (m’, n") is assessed.
The humpback whales moved in a helix-shaped path, defined by the equation below.

. (;’_ebl.COS(ZTCZ) + m?(t))
m(t+1) = [ v
L mre - m?f)‘
o (14)
01

In Equation (13), 7/ symbolizes the separation between the i'" and best solution
reached at present. The symbol ‘b’ is a constant and it determines the shape of the spiral
path. ‘I is a random value selected between [—1, 1].

The swimming habit of humpback whales is configured by assuming a probability of
50 percent, each for the shrinking encircling and spiral path for updating whales’ position
in the process of optimization, which is explained below:
mOAY i p < 05
?.ebl.cos(an)—&-m*_Et))

G2

m(t+1) = (15)

m(tj— 1) = (

ifp>05
where p is any random value selected between 0 and 1.

4.3. Foraging for Locating Prey (Exploration Phase)

—
Here, search agents are fetched up randomly. Here, A is any random value that is
—

more than 1 and less than —1. The parameter A causes search particles to run away from
the reference search particle. The searching agent’s place is updated in accordance with

—

the randomly chosen forage agent in lieu of the best search entity found. Vector A acts

like a global optimizer. The exploitation process is encouraged in the case of |A| <1 and
—

exploration is encouraged when |A| > 1. The particle search position is updated with
the random chosen search particle. This leads to the random movement of whales. In the
mentioned MWAO technique, correction factors {; & (, are incorporated for the position
upgrading of the whale, understood by the equation below.

(16)

(17)
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- . . :
Here, m,,,,4 is a random search agent picked up from the present population.
In this process, the rest of the solutions are updated corresponding to the best solutions

5
achieved. Whereas A decreases the size of change adapted in the solution. This process
guarantees convergence. The convergence takes place in proportion to the computed iteration.

5. Correction Factors Selection for MWAO

Accurate selection of correction factors ({1 and {7) is a cumbersome process. Different
values were assigned to {7 and { for testing on 23 benchmark functions. Fifty search agents
were selected during the implementation of MWAO. The algorithm was run 50 times with
500 iterations. The standard deviation and average value of the objective function obtained
during 50 runs were agglomerated. During the first group of testing, {; is kept fixed at 1.0
and (> is changed from 0.5 to 3.0 incrementing by 0.5. During the Group 1 testing, {5 is
fixed at 2.5 and (; is allowed to change from 1.0 to 3.5 incrementing by 0.5. These results
are provided by Appendix A (Tables A1l and A2). It is deduced from Table Al that with
13 out of 23 functions, i.e., p2(y), pa(y), p5(y), pz(v), po(y), Pr0(¥), P11(Y), P15(¥), P16(Y),
p17(v), P19(y), P20(y), p21(v), p23(y), the best results were reached with correction factors
{1 and {, assigned the value of 1.0 and 2.5, respectively, in comparison to other values
in the test. The second best values are provided for functions p1(v), p3(v), rs(v), r11(y),
p12(y) and ranked at the third position for functions pes(v), p13(y), p14(y) with correction
factors ¢ and {, assigned the value 1.0 and 2.5, respectively.

From Table A2, it is deduced that for 17 out of 23 functions, i.e., p5(v), ps(v), rs(v),
po(y), pr1(), p2(y), p13(v), P1ay), p1s(y), Pre(y), p17(y), P1s(v), pr9(y), p20(y), P21(y),
p2(y), p23(y), the best outcomes are deduced with correction factors ¢; and (; assigned
the values 1.0 and 2.5, respectively, in comparison with other values during the test. It is
concluded that for maximum cases, the best or 2nd best outcomes were found with ¢; = 1.0
and (, = 2.5. For the above case in this work, these values for correction factorsi.e., (; = 1.0
and (p = 2.5, are employed for execution of the MWAO algorithm.

6. Performance Assessment of MWAO Technique

Metaheuristic algorithms are stochastic by nature. The starting population is con-
structed by random selection. The evolution of the algorithm depends on the selection of
the starting population. Thus, various runs were suggested for the metaheuristic algorithm.
The efficacy of MWAO was analyzed by testing it on 23 benchmark functions [19,20,30,31].
These benchmark functions included fixed dimensional functions, unimodal functions to
test exploitation capability, and multimodal functions and fixed dimensional multimodal
functions for checking exploration capability.

Unimodal functions have no local optima whereas unimodal functions have unique
global optima. Multimodal and fixed dimensional multimodal functions have many local
and unique global optima. To prove the efficacy of CamAO, it is again compared with
recent metaheuristics algorithms including the WOA [14], differential search algorithm
(DSA) [15], lightning search algorithm (LSA) [16], harmonic search algorithm (HSA) [17],
backtracking search algorithm (BSA) [18], particle swarm optimization (PSO) [19], and
firefly algorithm (FFA) [20], as depicted in [16]. The performance of any optimization
algorithm depends on control parameters, which are presented in Appendix A, Table A4,
to provide a fair comparison among all the mentioned optimization maximum algorithms.

The maximum count of the generation and population size was fixed as the same
as the common parameters for all mentioned techniques. The total number of iterations
was kept fixed at 500 and total number of search agents was 50. Each of the mentioned
techniques was run 50 times for every benchmark function. In the subsequent subsection,
the analysis results are presented. It is also tested on a challenging engineering issue
to prove its practical applicability. All these analyses were carried out on a Windows 7
Professional on Intel(R) Core(TM) i7 M640 2.8 GHz processor with 8GB RAM used. The
system designing and analysis were done on a MATLAB/SIMULINK platform.
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6.1. Analysis of Exploitation Quality (p1(y) — p7(y))

Table 1 enlists 30-dimensional unimodal functions (p; — py). The statistical outcome
of MWAO and WOA obtained after 50 runs on the mentioned unimodal functions and
outcomes of other state-of-the-art functions mentioned in [16] are tabulated in Table 2.
From the analysis of Table 2, it is inferred that MWAOQ is capable of surpassing all other
optimization techniques for 4 unimodal functions, and these are p3(y), pa(v), ps(y), p7(v)
out of seven unimodal functions. For two functions p;(y) and p»(y), MWAO provides
competitive results by producing second-best results. For function pg(y), MWAO occupies
the second-best result.

Table 1. Unimodal benchmark function.

Functions Dimension Range Fonin

r1(y) = 5 y? 30 [—100, 100]%° 0

i=1

n n 30 30 O
p2(y) = Zl\yil + H1 vi [—10, 10]

1= 1=

. 2 30

pay) = T (T ) 30 (100, 100] 0
paly) = maxi{|y;|,1 <i<n} 30 [—100, 100]* 0

n—1 > 30
ps(y) = L [100(yi1 —92)" + (v = 1] 30 (30, 30] 0

1=
po(y) = Ty ([yi +05))° 30 [~100, 100]*° 0
pr(y) = Ly iy} + random[0,1) 30 [~1.28, 1.28] 0

Table 2. Statistical outcomes of algorithms obtained from 30-dimensional unimodal functions after

50 runs.
MWAO WOA LSA DSA

Function

Av. St.Dev Av. St.Dev Av. St.Dev Av. St.Dev
p1(y) 1.1593 x 10~% 4.877 x 1075? 3.0063 x 10772 1.6466 x 10771 4.81067 x 1078 3.4013 x 107 11.58475 6.93844
p2(y) 25745 x 10733 2.8745 x 1073%  1.1189 x 10~ 2.8691 x 105! 0.0368065 0.1562330 1.00603663  0.35791079
p3(y) 1.6209 x 10756 6.0977 x 1056 42289.253 14705.725 43.240804 29.921944 20,888.9331  6907.30897
ra(y) 62449 x 10732 2.8174 x 103 49.2251 29.2213 1.4932757 1.3028270 27.8103282  7.07708310
s (y) 26.3645 0.353131 28.1028 0.489595 64.281603 43.755761 1108.18071  572.420941
6 (y) 0.1047 0.046469 0.44119 0.28478 3.3400000 2.0860078 15.74000000  11.29531240
p7(y) 0.0001146 0.0001284 0.0037228 0.0048686 0.0240797 0.0057262 0.123075150  0.065346271

BSA FFA PSO HSA
Function

Av. St.Dev Av. St.Dev Av. St.Dev Av. St.Dev
() 9.9673617 9.8122468 0.0116106 0.0042959 276284 x 107> 43213 x 1075 24.7111807 6.671103
p2(y) 1.1971508 0.5285104 0.3733268 0.1014310 0.0049233 0.0033347 1.457490046  0.268102707
3 (y) 2720.3105 1182.1965 1808.8064 659.65397 27.863965 9.5794981 6878.658480  1943.088569
pa(y) 9.8347514 22732874 0.0766947 0.0146061 0.6102370 0.1460184 9.385431891  1.226512199
ps(y) 471.54854 231.14198 128.28961 278.63448 68.722926 57.810769 830.0325560  474.1996651
6 (y) 13.940000 17.300949 0.0000000 0.0000000 0.1000000 0.3030458 25.1000000  7.532920944
p7(y) 0.0544985 0.0161183 0.0352289 0.0239832 138.83431 22.077449 0.463241118  0.112722402

6.2. Analysis of Exploration Quality (pg(y) — p23(y))
6.2.1. Analysis of Exploration Ability for Multimodal Functions (ps(y) — p13(y))

Optimization algorithms are tested for exploration ability by testing on multimodal
benchmark functions as described with many local optima. Table 3 tabulates 30-dimensional
multimodal benchmark functions. Table 4 tabulates the statistical results of MWAO, WOA
for 50 runs on the mentioned benchmark functions, and other six algorithms mentioned
in [16]. It is observed from Table 4 that for ps(y), po(v), p10(y), p11(y) the proposed
MWADO is able to supersede all other algorithms. For p15(y), the proposed MWAO gives
competitive results.
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Table 3. Multimodal benchmark function (30-dimensional).

Function Dimension Range Fonin
ps(y) = Tty —y;sin(/lyil) 30 [-500, 500 —12569.5
po(y) = X, [y> — 10cos(2my,) + 10] 30 [-5.12, 5.12]% 0
o) = ~20exp (<02 T, 2 ) — exp (3 Ky cosCary)) + 20+ el (32, 32" 0

. 30
p1(y) = goo Do v2 — T COS(%) +1 30 [—600, 600] 0

p12(y) = %{10 sin(mx;) + L1 (Yfl)z 1+ 10sin? (mxi41)] }

+(xn — 1) + X0, u(y;, 10,100, 4)

30
x=1+01 30 [—50, 50] 0
k(yi—a)"yi >a
u(y;,a,km) = 0—a<y;<a
k(-yi—a)"y; <a
P13y
{sm (3my;) + Z (y; — 1)*[1 +sin? 3y, + 1)] + (y,, — 1)*[1 +sin?(27y,,)] } + 30 (50, 50)% 0
5 u(y,,5,100.4)
i=1

Table 4. Statistical result of different algorithms derived on multimodal 30-dimensional benchmark

functions for 50 runs.

MWAO WOA LSA DSA
Function
Av. St.Dev Av. St.Dev Av. St.Dev Av. St.Dev
ps(y) —12,502.007 163.77647 —10,175.947 1956.1498 —8058.7179 669.15931 —10,005.1120  278.960960
po(y) 0 0 1.8948 x 10715 1.0378 x 10~ 14 59.697425 14915302 46.6551322  7.19733732
p10(y) 1.0066 x 10~15 6.4863 x 10716 0.023891 0.01689 2.5372704 0.9108028 3.646161760  1.984370448
p11(y) 0 0 0.56157 0.2582 0.0073960 0.0067533 1.091219304  0.093916433
p12(y) 0.006556 0.0023295 1.8197 1.8725 0.1036690 0.7439600 0.170607599  0.33670129
p13(y) 0.15038 0.058981 0.0006597 0.0003747 0.0109874 0.0472792 1.015913093  0.784576410
BSA FFA PSO HSA
Function
Av. St.Dev Av. St.Dev Av. St.Dev Av. St.Dev
ps(y) —9611.699 253.00510 —5867.317 655.51928 —3979.339 869.14843 —7388.96021  350.4224603
po(y) 66.364367 8.0299007 24.615080 9.1492405 42619764 10.628658 85.55923249  10.78576220
p10(y) 2.9164642 1.4912506 0.0507003 0.0137381 0.0028502 0.0110875 8.796876785  0.612494464
p11(y) 1.0668755 0.0868654 0.0056496 0.0014346 0.0098795 0.0242059 1.243666737  0.064079805
p12(y) 0.0759286 0.1533844 0.0002308 0.0001001 1.9034 x 107 0.0541695 0.159434981  0.097411015
p13(y) 0.5269402 0.7494317 0.0019041 0.0010403 1.1485 x 107> 0.0054067 1.700684317  0.549887450

6.2.2. Analysis of Exploration Capability for Fixed Dimension Multimodal Functions
(P1a(y) = p23(v))

Fixed dimension multimodal benchmark functions are tabulated in Table 5. Statistical
results are given in Table 6. From analyzing the outcome from Table 6, it is concluded that
MWAO provides global optima/near optima values for 5 functions, i.e., p15(y), p16(y),
p17(y), p18(y), p19(y) from 10 test functions. For functions pi5(y), p16(y), p17(v), p1s(v),
MWAQO is able to provide the best result. For function pyg(y), the second-best result is
obtained by MWAO. For function py;(y), the third-best result was obtained by MWAO.
For function p19(y), the outcome produced by MWAO is positioned fourth. For functions
p1a(y), p22(y) and pa3(y), MWAO provides competitive results. Thus, it is seen that for
unimodal functions and also multimodal functions, MWAO is much more competent than
fixed-dimensional multimodal functions.
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Table 5. Fixed dimension multimodal benchmark functions.

Function Range Fonin
, B 1 ! —65, 65 1
p1a(y) = (500 +j§1 W) ! ]
11 2 2
p15(y) = El {ai - %} [-5, 5]* 0.00030
pis = 4y — 21y} = §y§ +y1y, — 4y3 +4y3 -5, 5)° ~1.0316
() = (v2— 32y + 2y, - 6)2 +10(1 - gk ) cos(y;) + 10 -5, 5)° 0-398
Prs(y) = [1+ (1 +y2+1)° (19— Ldys + 392 — yo + 6y112 +343) | 2, o 3
[30+ (251 — 32)” x (18 — 3291 + 1247 + 48y> — 36y1y + 2733) | '
2 3
pro(y) = — Tiq ciexp (_ Z]4=1 ajj (Yj - pij) ) [ 3] —3.86
2 6
p20(y) = — Ll ciexp (_ 21'6:1 djj (Yj - pij) ) [0, 1] —3.32
5 T -1 4 _
puy) == L[ —a)(Y —a)" +] [0, 10] 101532
iz
7 T -1 4 _
poly) == L [(Y-a) (Y —a)" +a [0, 10] 104028
iz
10 4
poly) == L [(Y=a)(¥ )"+ [0, 10] ~10.5363
Table 6. Statistical result of different algorithms derived for 50 runs on fixed-dimensional multimodal
benchmark functions.
Function MWAO WOA LSA DSA
Av. St.Dev Av. St.Dev Av. St.Dev Av. St.Dev
p1a(y) 2.17811 2.4943 4678 x 10715 2,628 x 10715 0.9980038 0.3379795 0.99800384 3.36448 x 10716
p15(y) 0.0003848 7.982 x 1075 0.0006597 0.0003747 0.0241485 0.0472792 1.17000617 0.784576410
p16(y) —1.0316 48164 x 107° 0.39789 9.23 x 1077 —1.031628 0.0000000 —1.0316285 0.000000000
p17(y) 0.39826 0.0009911 0.0054253 0.029715 0.3978874 1.682 x 10716 0.39788736 7.79967 x 10712
p1s(y) 3.0001 0.0003218 3.0000 0.0001023 3.000000 3.345 x 1015 3.00000000 5.38203 x 108
p19(y) —3.8588 0.0060555 —3.8599 0.0060714 —3.862782 0.0000000 —3.8627821 0.000000000
p20(y) —3.2749 0.082639 —3.1969 0.11385 —3.272060 0.0592765 —3.3219952 2.32293 x 108
1 (v) —9.6997 1.8733 —8.4587 1.8387 —7.02732 3.1561521 —10.152834 0.001254219
p2(y) —9.4978 1.7935 —7.3764 3.4035 —7.136702 3.5149774 —10.393586 0.044169900
pas(y) —10.0826 2.1227 —8.4166 3.4307 —10.53641 3.5960426 —10.536396 0.012504559
Function BSA FFA PSO HSA
Av. St.Dev Av. St.Dev Av. St.Dev Av. St.Dev
pa(y) 0.9980038 3.3645 x 10716 1.9920878 0.6688734 1.7903980 1.2598958 1.605937 1.371648196
p1s(y) 0.7564660 0.7494317 0.0022405 0.0010403 0.0044428 0.0054067 1.83258210 0.5498874505
p16(y) —1.031628 0.0000000 —1.031624 2.827 x 1077 —1.035284 0.0000000 —0.9965145 0.0681095561
p17(y) 0.3978874 1.4332 x 10712 0.3978874 3.131 x 102 0.3978873 1.684 x 10~16 0.407772879 0.021637622
p1s(y) 3.0000000 3.50940 x 10~ 3.0000001 2561 x 108 3.000000 4113 x 10715 3.000052375 0.0000538472
p19(y) —3.8627821 0.000000 —3.862782 9.161 x 1010 —3.508608 0.3077822 —3.86021051 0.0032566497
p20(y) —3.3219945 2.6286 x 10760 —3.267674 0.0619827 —1.852705 0.6552864 —3.12163665 0.133471100
1 (v) —10.153199 0.00058358 —8.427091 3.1202941 —8.653837 2.8082488 —2.78267147 1.8136031039
P2 (y) —10.402947 0.00010680 —10.27848 0.8800407 —10.08649 1.2652499 —3.04577891 1.645499759
) —10.536409  6.41563 x 100 —10.53640 1.115 x 106 —10.32051 1.0609041 —4.20434150 3.0085418461
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6.3. Examination of Convergence Nature

The convergence curves of MWAO, WOA are shown in Figures 1-3, which are tab-
ulated in Tables 1, 3 and 5. Convergence curves give an idea about performance of the
algorithm. From the analysis of Figures 4-6, it is clear that for all the cases, the convergence
characteristic obtained from MWAO is better than that of WOA with the exception of
functions py1(y) and p22(y). For functions py1(y) and p2(y), WOA converges faster to
reach local optima with the MWOA. Here, the average best score so far means average of
the best solution reached so far in every iteration for 50 runs. By analyzing figures (i.e.,
from Figures 4-6), it is deduced that MWAO accelerates faster with the iteration for all
mentioned functions in Tables 1-3. This is due to the application of the Cosine function for
decay of the control parameter ‘d” during the iteration process of MWAO as depicted by
Equation (11). Whereas WOA uses a linear function as given by Equation (5). The use of
the Cosine function provides good balancing between a combination of exploration and
exploitation over complete iteration and thus gives good convergence characteristics for
arriving at the best optimal result. Further position vector correction factors are employed
to decrease step change size. This helps MWAO to search challenging areas during the
earlier steps of iteration and then quickly converges close to optima after performing few
earlier iterations. The high exploration nature of MWAO is because of the improvised
position upgrading mechanism using correction factors.
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Figure 5. Convergence plot analysis for 30-dimensional functions pg, po, p10, P11, P12, P13-

6.4. Comparison of Execution Time

The time of execution of WOA and MWAO is computed by running the algorithms
50 times having 50 search particles and for 500 iterations on 23 benchmark functions. All
these analyses were carried out. For the above intention, a Windows 7 Professional on
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Pl4

Intel(R) Core(TM) i7 M640 2.8 GHz processor with 8GB RAM is used. The outcomes are
shown in Table A3. It is concluded from Table A3 that for unimodal as well as multimodal
benchmark functions, MWAO consumes little additional time for execution in comparison
to WOA. This is due to the use of a linear equation for algorithm parameter ‘d” in WOA,
whereas a Cosine trigonometrical term is used in MWAO. It is also seen that for some
benchmark test functions (p3(v), p16(v), p17(¥), p20(y), p21(y)), MWAO needs a shorter
execution time as compared with WOA. Altogether it is inferred that, MWAO is capable of
providing good results as compared with WOA with a little more execution time.
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Figure 6. Convergence plot for functions p14, p1s, P16, P17, P18, P19, P20, P21, P22, P23-

7. Proposed Approach: Concurrent Diminution of Torque Ripple with Speed
Regulation of SRM Using MWAO Optimized Fractional Order Controller

Because of the nonlinear function of stator flux linkage with rotor current, the SRM
drive is subjected to high torque ripple and acoustic noise. The controlling profile of the
stator current, and with intelligent selection of the turn-on (6on)/turn-off angle (6orr) [6],
the dimunition of torque ripple is achieved. By the appropriate and exact computation of
the switching angle and by controlling the stator current profile, the control of SRM can be
achieved [20,32-35].

As a multiobjective optimization technique using the proposed MWAO FO-PI con-
troller, for simultaneous reduction of torque ripple, the tracking of speed with reference
speed and reducing current error is implemented. The objective is achieved by employing
the MWAO FO-PI speed controller, MWAO FO-PI current controller, and a commutation
angle controller.

Optimal parameter combinations of MWAO FO-PI speed controller, MWAQO FO-PI cur-
rent controller and commutation angle controller are utilized for performance advancement
of SRM.

Equation (17) explains the measurement of the integral square error (ISE) of speed.
Equation (18) explains measurement the ISE of current.

ISE(speed) = /(wref - wm>2dt (18)
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2
ISE(current) = / (Ireg = Tonase) dt (19)

Here, the ISE(speed) is the Integral Squared Error of speed, ISE (current) is the Integral
Squared Error of current.
Torque ripple coefficient (T, p1.) is [4] as explained below.

Tax — T
Tripple = =T (19a)

Tmean

where T,;;, and T4y represents the minimum value and maximum value of torque. Tyean
is the mean value of torque.

7.1. Multiobjective Problem Formulation

A multiobjective problem for optimization is formulated by combining ISE(speed),
ISE(current), and Tyippie-
Diminution of ISE of speed is formulated below:

y1 = min(ISE(speed)) (20)

Diminution of T;;,, is explained by (21):

Y2 = min (Tripple) (21)
Diminution of ISE of current as:
y3 = min(ISE(current)) (22)

The multiobjective optimization problem having the final objective function Y is
formulated below:

min(Y) = Biy1 + Bay2 + B3y3 (22a)

B1, B2, B3 are weighing factors. The weights are selected such that to make each term
competitive during the optimization process or normalizing the objectives y1, i, and y3 in
a uniform scale.

7.2. Execution of MWAO & WOA Technique

Table 7 shows the range of gain used for the FO-PI controller. Table 8 shows the
bounds of the PI controller.

Table 7. Range of gains adopted for CamAO FO-PI controller, commutation angle controller.

Gains Lower Limit Upper Limit

Kp s 0 200

Kis 0 200
Speed controller integrator order, A 0.1 1

Kp c 0 2000

Kic 0 100
Current controller integrator order, p 0.1 1
OoN 32 36

O0FF 54 58
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Table 8. Range of gains for PI controller and commutation angle controller.

Gains Lower Limit Upper Limit
Kp s 0 200
Kis 0 200
Kp_c 0 2000
K c 0 100
CION 32 36
O0FF 54 58

8. Results and Discussion

As MATLARB software is user-friendly, easy for programming applications, and ex-
cellent at graphics, we were inspired to develop the proposed control technique in the
MATLAB/SIMULINK environment.

The parameters considered for the designing of four phase SRM, considered in this
paper, are provided in Appendix B. To have a comparison of operational efficiency of
each algorithm, 50 independent trials were conducted for WOA, as well as for MWAO.
The performance appraisal of SRM implementing different controllers was conducted by
analyzing different statistical outcomes like mean, best, standard deviation of the ISE of
current, ISE of speed, and torque ripple coefficient, listed in Table 9.

Table 9. Statistical execution of (PI/FO-PI) controller, commutation angle controller.

Method Parameters Best Value Worst Value Mean Value Std Deviation
MWAO
(FO-PI controller) Thipple 29.2972 29.5669 29.4097 0.1403
ISE(speed) 1.3353 x 10* 1.3507 x 10* 1.3426 x 10* 77.3649
ISE(current) 34.3528 59.9811 47.6706 11.4450
Y 2.5981 x 10° 2.71802 x 10° 2.7080 x 10° 9.9606 x 103
MWAO
(PI controller) Thipple 29.5523 29.5746 29.5667 0.0099
ISE(speed) 1.4348 x 10* 1.4562 x 10* 1.4468 x 10* 89.0206
ISE(current) 37.1105 34.9143 34.5690 0.4137
Y 2.626535 x 10° 2.734226 x 10° 2.7290 x 10° 3.5509 x 103
WOA Thipple 31.9311 33.0552 32.15857 0.0628
ISE (speed) 1.4997 x 10* 1.8238 x 10* 1.6513 x 10* 1.8712 x 10°
ISE(current) 212.7761 310.1984 254.9331 50.0165
Y 2.8882 x 10° 2.9379 x 10° 2.9036 x 10° 3.1041 x 10*
The final stage selection of the controller’s parameters related to the minimum objec-
tive function obtained by the WOA and MWAO method are listed in Table 10.
Table 10. Optimal gain of different parameter and commutation angle of FO-PI and PI controller.
Technique/Parameter I(I_speed KP_speed A Ky current  KPp_current u OoN OoFF
MWAQO (FO-PI Controller) 1.0001 1.00012 0.5833 48.0830 435.4619 0.5051 36 54
MWAO (PI Controller) 1.001 1.0024 NA 100 541.041 NA 36 54
WOA (PI Controller) 3.0355 1.0036 NA 9.5044 77.8519 NA 36 58
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As shown in Table 9, the ISE (current), coefficient for torque ripple is minimized by
MWAO as compared with the WOA algorithm. Table 9 shows that the torque ripples pro-
duced by the MWAO FO-PI controller, MWAO PI controller and WOA with PI controller,
and MWAO-based commutation angle controller are 29.2972, 29.5523, and 31.9311, respec-
tively. The betterment in torque ripple obtained by MWAQO with FO-PI-based controllers is
8.24% compared with the WOA with PI controller. The improvement in the torque ripple
obtained by MWAO with PI dependent controllers was 7.449% compared with the WOA
with PI controller. The integral square error of the current provided by the MWAO FO-PI
controller and MWAO PI controller was 34.3528 and 37.1105, respectively. Whereas the ISE
of the current deduced by the WOA with PI controller was 212.7761. The improvement
in the ISE of the current deduced by the MWAO FO-PI-dependent controllers was 83.96%
compared with the WOA PI controller. The improvement in the ISE of the current derived
by implementing MWAOQO PI controllers was 82.44% compared with the WOA PI controller.

The integral square error of the speed provided by the MWAO FO-PI controller and
MWAO PI controller was 1.3353 x 10* and 1.4348 x 10*, respectively. The ISE of the speed
obtained by the WOA with the PI controller was 1.4997 x 10*. The improvement in ISE of
the speed obtained by MWAQO FO-PI dependent controllers was 10.96% compared with the
WOA PI controller. The improvement in the ISE of speed deduced by the MWAO PI-based
controllers was 4.3% in comparison with the WOA PI controller.

The combined objective function deduced by the MWAO FO-PI controller, MWAO
PI controller, and WOA PI controller was 2.5981 x 10°, 2.626535 x 10°, and 2.8882 x 10°,
respectively. The percentage advancement in the combined objective function obtained
by the MWAOQO FO-PI controller was 10.044% compared with the WOA PI controller. The
percentage advancement in the combined objective function by the MWAO PI controller was
9.0597% compared with the WOA PI controller. Thus, the MWAO with FO-PI controller and
MWAO with PI controller-dependent speed controller provides altogether better system’s
performance as compared with the WOA with PI controller.

The stator current profile of SRM during its control by using an optimal combination
of parameters for attaining a minimum objective function presented in Table 10, shown in
Figures 7-9 for MWAO with FO-PI controller, MWAO PI controller, and WOA PI controller,
respectively. Figure 10 shows comparison of the torque profile. Figures 11 and 12 show
speed tracking with reference speed.
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Figure 7. Stator current vs. time of 4-phase SRM drive using FO-PI controller and MWAO optimiza-
tion algorithm.
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Figure 8. Stator current profile of 4-phase SRM drive using PI controller and MWAO algorithm.
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Figure 9. Stator 4-phase current with time in second of SRM drive using PI controller and WOA algorithm.
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Figure 10. Comparison of torque profile.
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Figure 11. Comparison of tracking of speed with reference speed by MWAO and WOA controller.
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Figure 12. Zoom in of tracking of speed with reference speed by MWAO and WOA controller.

9. Conclusions and Future Scope

MWAO implements a Cosine trigonometrical function for control parameter ‘d” in an
iteration process. For reducing the step size in the course of the search process, correction
factors are implemented in MWAQO. MWACQ's performance is examined on 23 benchmark
multimodal, fixed dimension multimodal and unimodal test functions. It was shown that
MWAO provides very good operational /working performance results compared with
other state-of-art WOA, PSO, DSA, LSA, FFA, BSA, and HAS optimization methods, in 4
from 7 unimodal benchmark functions, 4 from 6 multimodal benchmark test functions, and
4 from 10 fixed dimensions benchmark test functions.

MWAO performance supersedes other optimization techniques for four unimodal
functions, i.e., p3(v), pa(y), ps(y), p7(y) from 7 unimodal functions. For functions p14(y),
p2(y) and pa3(y), MWAO provides competitive results. Thus, the conclusion reached
is that MWAO is very competent in the case of multimodal and unimodal functions in
comparison with fixed dimensional multimodal functions. To test practical efficacy, an
MWAO based FO-PI controller was designed and implemented for advancement of the
performance of the SRM drive, with the objective of speed control, diminution of torque
ripple, and improvement in the current profile. The betterment in torque ripple obtained by
MWAO with FO-PI based controllers was 8.24% compared with WOA with the PI controller.
The improvement in torque ripple obtained by MWAO with PI-dependent controllers was
7.449% compared with WOA with the PI controller. The improvement in the ISE of the
current deduced by MWAO FO-PI-dependent controllers was 83.96% compared with the
WOA PI controller. The improvement in the ISE of current derived by implementing
MWAO PI controllers was 82.44% compared with the WOA PI controller. The improvement
in the ISE of speed obtained by MWAQO FO-PI-dependent controllers was 10.96% compared
with the WOA PI controller. The improvement in the ISE of speed deduced by MWAO
PI-based controllers was 4.3% in comparison with the WOA PI controller. The percentage
advancement in the combined objective function obtained by the MWAO FO-PI controller
was 10.044% compared with the WOA PI controller. The percentage advancement in the
combined objective function by the MWAO PI controller was 9.0597% compared with the
WOA PI controller.

From the above analysis, the conclusion reached is that the MWAO FO-PI controller
provides very good overall system operational performance compared with the MWAO PI
and WOA PI controller.

The future scope of the present work is to test the performance of the controller
with other improved optimization techniques. Advanced controllers such as the fuzzy PI
controller and PID controller need to be explored. The limitation of the present work is a
lack of experimental verification. The system validation in the hardware setup includes the
future scope of the present research work.
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Abbreviations

A Vector coefficients

B Coefficient of friction

B1, B2, B3 Weighing factors

BSA Backtracking Search Algorithm

8 Vector Coefficients

MWAO Modified Whale Algorithm Optimization
d Control Parameter of MWAO

DSA Differential Search Algorithm

EV Electric Vehicle

FFA Firefly Algorithm

Ys(t) Flux linkage

FO-PI Fractional Order Proportional Integral
HSA Harmonic Search Algorithm

i Current

ISE(current) Integral Square Error of current
ISE(speed) Integral Square Error of Speed

Les Reference current

Lohase Actual current

Is Stator current

ITERMAX Utmost iterations happened

J Moment of Inertia

[ Random value selected between [—1,1]

- . .
Myand Random search agent picked up from present population
mzmj Random search agent picked up from present population
A Speed controller integrator order
v Current controller integrator order
{1 and {5 Correction factors
K1 s Integral Gain Constant of Speed Controller
Kp s Proportional Gain Constant of Speed Controller
WOA Whale Optimization Algorithm
Kp ¢ Proportional Gain Constant of Current Controller
Kj ¢ Integral Gain Constant of Current Controller
KwW Kilowatt
v Separation between the i and best solution reached
LSA Lightninig Search Algorithm
m(t) Position Vector
n*(t) Ongoing Best Solution
PI Proportional Integral
PSO Particle Swarm Optimization
Rg Stator winding resistance
7 Random number
SRM Switched Reluctance Motor
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t Ongoing iteration
T; Load torque
A Order of Integrator
w'(i,0) Machine’s coenergy
W Angular velocity of motor
Ts(S)  Transfer function of Speed Controller
Tc(S)  Transfer function of Current Controller
0 Rotor position in degrees
Tyippie  Torque ripple coefficient
Te(i,0)  Electromagnetic Torque
T-i-0 Torque
Tiax Maximum value of torque
Toin Minimum value of torque
Tiean Mean value of torque
Vs Stator phase voltage
Wiy Actual speed
Wref Reference speed
Appendix A. Sensitivity Analysis ({1) and ( ()
Table A1l. {; is kept fixed at 1.0 and {, varies from 0.5 to 3.0.
. Z1=10, 71 =10, Z1=10, ;=10 71=1.0, Z1=10,
Function t2=05 Z2=10 tr=15 {2=20 tr=25 t2=3.0
) Average 7.6556 x 1041 3.423 x 10740 4.0393 x 10~ 4363 x 10752 1.1593 x 10~5? 5.8225 x 1063
1 Std. deviation 2.782 x 10~40 1.5208 x 10~3? 1.7657 x 10~54 2377 x 10751 4.8737 x 1075 1.7546 x 1062
2(y) Average 1.5828 x 10~23 8.333 x 10~22 1.2976 x 10730 1.1353 x 10732 2.5745 x 10~3 1.2019 x 10730
Std. deviation 6.6982 x 1072 3.9056 x 102 54201 x 10730 35642 x 10732 2.8745 x 1033 5.44 x 10~30
) Average 110363.2492 56408.4512 25512 x 107% 14876 x 10731 1.6209 x 107%  1.6397 x 10~
paly Std. deviation 3345053221 17537.996 12992 x 107% 81215 x 10751 6.0977 x 10756 7.7957 x 10~
) Average 54.3092 43.9519 24977 x 107% 7735 x 10732 6.2449 x 10732 1.0886 x 10~*8
paly Std. deviation 29.0378 29.2169 8.6221 x 1072 3.0035 x 10731 2.8174 x 10731 5.9426 x 10~28
Average 27.7379 27.1548 27.2754 27.2844 26.3645 26.5783
ps(y) Std. deviation 0.443013 0.654897 0.303547 0.323847 0.353131 422645
W) Average 0.64878 0.14746 0.09098 0.098967 0.1047 (3rd) 0.12331
Pely Std. deviation 0.24186 0.11647 0.045069 0.055668 0.046469 0.055738
) Average 0.003287 0.003679 0.00018764 0.000115 0.00011465 0.00017722
p7ly Std. deviation 0.0039455 0.0048482 0.00017255 0.00010374 0.00012841 0.00024685
) Average —9283.7537 —11,113.2137 —12,519.5639 —0.000115 —12,502.0073 —12,447.0115
psly Std. deviation 1335.5325 1964.45009 126.81916 0.00010374 163.776476 238.758513
) Average 0 0 0 0 0 0
poly Std. deviation 0 0 0 0 0 0
pro(y) Average 31382 x 10715 30198 x 10°1°  3.3751 x 1015 1.5987 x 10~ 1° 1.0066 x 10~1° 1.0066 x 10~1°
Std. deviation 2.7174 x 10715 2.001 x 10715 1.6559 x 10~15 1.4454 x 10715 6.4863 x 10715 6.4863 x 10715
W) Average 0 0.0032514 0 0 0 0
puly Std. deviation 0 0.017809 0 0 0 0
( Average 0.029789 0.0065026 0.0048319 0.0060906 0.006556 0.0070208
pi2(y) Std. deviation 0.016391 0.0051216 0.002176 0.0027322 0.0023295 0.003844
) Average 0.63642 0.29502 0.11033 0.12464 0.15038 0.14982
P13y Std. deviation 0.3227 0.2354 0.066306 0.05788 0.05898 0.086802
) Average 3.3582 1.8857 2.0458 2.4375 217811 2.7936
Py Std. deviation 3.0923 1.8955 2.501 2.9447 2.4943 3.4751
W) Average 0.00081561 0.00056235 0.00046141 0.00040091 0.00038476 0.00038418
pisty Std. deviation 0.00051826 0.00029764 0.00024184 0.00011491 7.9821 x 107° 8.9299 x 10~°
) Average —1.0316 —1.0316 —1.0316 —1.0316 —1.0316 —1.0316
Pisly Std. deviation 8.7441 x 10~ 2.3488 x 10~8 1.3637 x 10~¢ 44862 x 10~° 4.8164 x 10~° 1.9395 x 10~
) Average 0.39955 0.3979 0.39885 0.39894 0.39826 0.40058
pi7ly Std. deviation 0.0040552 3.2115 x 105 0.0018938 0.0018712 0.0009911 0.0043102
) Average 3 3 3.0002 3.0003 3.0001 3.0003
pisly Std. deviation 6.0224 x 1075 6.6015 x 1075 0.00040859 0.00058213 0.00032177 0.00066644
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Table A1. Cont.
. 71 =10, 71 =10, 71 =10, 71=10 71 =10, 71 =10,
Function £ =05 =10 t=15 & =20 £ =25 % = 3.0
W) Average —3.8437 —3.8593 —3.8545 —3.8568 —3.8588 —3.8576
Py Std. deviation 0.035037 0.0037188 0.010259 0.0055391 0.0060555 0.00571
) Average —3.1236 —3.2228 —3.2427 —3.2412 —3.266 —3.2382
P20y Std. deviation 0.24137 0.094241 0.094653 0.08854 0.082639 0.091723
W) Average —10.0684 —9.3038 —8.9106 —9.1935 —10.1108 —9.2981
Py Std. deviation 0.0859104 2.2249 2.1651 1.8867 1.8733 1.7044
) Average —10.3287 —8.5547 —9.3393 —8.8644 —9.4978 —8.719
P2y Std. deviation 0.0854108 2.6061 1.5836 2.3254 1.7935 2.2637
W) Average —10.1785 —9.282 —9.1738 —9.5958 —10.4457 —9.7806
P23ty Std. deviation 1.46931 2.5818 22747 1.8494 2.1227 1.504
Table A2. ; is kept fixed at 2.5 and 5 is varied from 1.0 to 3.5.
. 7, =10, 71 =15, 71 =20, 71=25 71 =30, 7, =3.5,
Function t =25 {r=25 0,=25 (=25 (,=25 0,=25
) Av. 1.1593 x 10~%° 84873 x 10224 9.8813 x 1032 0 0 0
Pty Std. 4.8737 x 1079 0 0 0 0 0
pa(y) Av. 25745 x 10~% 1.7253 x 107113 1.1593 x 10162 14723 x 107192 2.3936x 10222 9.9903 x 10243
Std. 2.8745 x 10~3 9.4167 x 10~113 4.4455 x 10162 0 0 0
3 () Av. 1.6209 x 1056 2.3263 x 10-217 7.6088 x 10311 0 0 0
Std. 6.0977 x 1056 0 0 0 0 0
pa(y) Av. 6.2449 x 10~% 7.185 x 10~ 114 5.3626 x 107163 2.0152 x 10718 1.8936 x 107219 1.503 x 10~242
Std. 2.8174 x 10731 3.4089 x 10113 22228 x 10~162 0 0 0
W) Av. 26.3645 27.4518 27.7293 27.9926 28.0469 28.0833
psly Std. 0.353131 0.400047 0.412319 0.363797 0.3473 0.343142
W) Av. 0.1047 0.22679 0.51077 0.53919 0.58355 0.61437
pely Std. 0.046469 0.069648 0.17753 0.15796 0.24981 0.32066
) Av. 0.00011465 8.9378 x 105 0.00010015 8.5411 x 1075 7.8268 x 1075 0.00010142
Pty Std. 0.00012841 7.4012 x 107> 9.3399 x 107> 8.0125 x 10~ 6.886 x 1075 9.2815 x 10~
Av. —12,502.0073 —11,439.6176 —11,380.9642 —11,356.6927 —11,516.3283 —11,129.1044
ps(y) Std. 163.776476 1245.59677 1755.65974 1443.79102 1815.34216 1764.70062
W) Av. 0 0 0 0 0 0
poly Std. 0 0 0 0 0 0
P10(y) Av. 1.0066 x 10~1° 1.0066 x 10~1° 8.8818 x 1016 8.8818 x 10~16 8.8818 x 1016 8.8818 x 10716
0ty Std. 6.4863 x 10716 6.4863 x 10716 0 0 0 0
W) Av. 0 0 0 0 0 0
Pty Std. 0 0 0 0 0 0
W) Av. 0.006556 0.012229 0.024117 0.027424 0.027679 0.042597
P2y Std. 0.0023295 0.0061196 0.0097346 0.01098 0.013716 0.031859
W) Av. 0.15038 0.25599 0.37991 0.47182 0.51315 0.51355
P13y Std. 0.058981 0.090468 0.14704 0.20594 0.20568 0.23737
) Av. 2.17811 5.5874 5.8163 8.2108 9.1477 7.7524
Py Std. 2.4943 4.9629 4911 5.0777 4.8873 5.3965
W) Av. 0.00038476 0.00038663 0.00039224 0.00042184 0.00046921 0.00043481
pisly Std. 7.9821 x 1075 85211 x 1075 0.00011758 0.00012183 0.00013442 0.0001309
W) Av. —1.0316 —1.0117 —1.0055 —1.0048 —1.0041 —1.0057
Pely Std. 4.8164 x 107° 0.012736 0.0094093 0.0079115 0.0083002 0.010042
W) Av. 0.39826 0.39887 0.39864 0.40292 0.39938 0.40198
pi7y Std. 0.0009911 0.00016374 0.0011056 0.024402 0.0042679 0.019078
W) Av. 3.0001 3.0014 3.0036 3.9119 3.9112 8.42953
pisly Std. 0.00032177 0.0021175 0.005737 493 49296 10.9732
W) Av. —3.8588 —3.8532 —3.8355 —3.8313 —3.8385 —3.8155
Pioly Std. 0.0060555 0.014227 0.031627 0.039658 0.033109 0.054432
W) Av. —3.266 —3.2332 —3.1838 —3.1241 —3.1664 —3.0841
P20ty Std. 0.082639 0.10405 0.1321 0.19023 0.13984 0.22011
W) Av. —10.1108 —6.6502 —6.1211 —6.3317 —6.5192 —6.7025
P2ty Std. 1.8733 2.3266 1.8503 1.9532 2.0645 2.0424
Av. —9.4978 —7.3499 —6.3975 —6.8133 —6.8929 —6.6846
p2(y) Std. 1.7935 2.4942 2.1603 24119 2.0272 2.1886
W) Av. —10.4457 —6.4657 —7.1001 —6.5468 —7.1618 —7.0914
P23y Std. 2.1227 2.2941 2.3042 2.2093 2.335 2.2302
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Table A3. Comparison of implementation time (in seconds) of WOA and MWAO.

Functions p1(y) p2(y) p3(y) Pa(y) ps(y) pe(y) p7(y)
WOA 5.359231 6.21212 31.8832 5.48073 6.664643 5.393869 9.180304
MWAO 5.464056 6.2987 31.6330 5.517608 6.820316 5.396708 9.314385
Functions ps(y) Po(y) P10(v) P11 (v) P12(v) P13(v)
WOA 7.165297 5.652841 6.528609 7.405994 18.840883 18.814588
MWAO 7.178957 5.711984 6.665277 7448466 18.857660 19.073341
Functions P14(y) p15(v) P16(y) p17(y) P1s(y)
WOA 46.340362 4.496783 3.87674 2.967898 2.960074
MWAO 47.109380 4.514427 3.336196 2.910601 3.017865
Functions P1o(v) Pao(y) P21 (y) P2(y) P23 (y)
WOA 6.961318 7.226696 11.19802 14.01065 18.852677
MWAO 7.038459 7.217759 11.136932 14.11498 19.03258

Table A4. Parameters setup of various metaheuristic algorithms.

Algorithm Parameter Value
PSO “ 2
C 2
2% 1
FFA & 1
[od 0.2
BSA F 3.rand
DSA pland p2 0.3.rand
LSA Channel time 10
Parameter d of coefficient vector Decreases linearly from 2 to 0.
WOA Parameter a of coefficient vector Decreases from 2 to 0.
Parameter d of coefficient vector Varies between 2 to 0.
MWAO Parameter a of coefficient vector Varies between 2 to 0.
Correction factor, CFy 2.5
Correction factor, CF, 15

Appendix B. Dimension of SRM Adopted for Design

Machine Parameter Value Machine Parameter Value
Power (output) 75 KW Load torque 4 nm
Rotor speed 1000 RPM Aligned inductance 23.62 mH
Resistance of stator 0.05 ohm Unaligned inductance 0.67 mH
Friction 0.02 Nms DC link voltage (Input) 220V
Inertia 0.025 Kg mm Maximum current 450 A
Number of stator pole 8 Maximum flux linkage 0.486 mH

Number of rotor pole 6 Saturated inductance 0.15mH
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Appendix B.1. Flow Chart for Computation

W

{ A zet of random solutions is selected ]

v

[ Update the position of search agents ]

depending on best solution reached till
now

function using equation 12

v

If probability, p = 0.5 and |A] = 1, positions are updated by equation (13) and (14),
which includes corrections factors

IT probability, p = 0.5 and |A| =1, positions are updated by equation (16) and (17),
which includes comrections factors

v

‘ When p= 0.5, update position by equation {15) ‘

v

[ Find the fitness of the search agents ]

{

Algorithm is terminated after reaching the termination
criteria

{ Parameter. d is decreased by employing a cosine ]

W
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