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Abstract: Composites of (1-x)Gd2Zr2O7·xMgO were prepared by mixing gadolinium zirconate
with freshly precipitated Mg(OH)2 followed by heat treatment at 1500 ◦C. Small concentrations
of magnesium oxide dissolved in the complex oxide matrix of Gd2Zr2O7. This led to decrease in
the lattice parameters of the matrix phase and a complex redistribution of Gd and Zr over the A
and B sublattices. According to the impedance spectroscopy results of the studied samples, for
(1-x)Gd2Zr2O7·xMgO (x = 0.05, 0.07, 0.10), the ionic conductivity was slightly higher than that for
the undoped Gd2Zr2O7. The share of dominant ion transport did not change upon doping with
magnesium oxide. The composites showed chemical resistance in a lithium halide (LiCl) melt and
interacted with LiCl-xLi2O (x = 2 wt.%, 4 wt.%) melts at 650 ◦C with the formation of a Gd2O3 phase or
a mixture of phases (Gd2O3, Li2ZrO3, ZrO2, LiGdO2, or LiGdCl2) on the ceramic surface, respectively.

Keywords: composite; pyrochlore; gadolinium zirconate; Gd2Zr2O7; oxide ion conductivity; chemical
stability in Li-containing halide melts

1. Introduction

The pyrochemical processing of spent nuclear fuel is an effective way to reduce nuclear
waste. Processes such as anodic dissolution, mass transfer, and the electrodeposition of
actinides in molten salts have been studied in detail by scientists around the world [1–4]. The
electrochemical reduction of SNF to a metallic form is the main stage of the electrorefining
process for LiCl-xLi2O melts. As a result, actinide metal oxides are deposited on the
cathode, while due to the proximity of electrode potentials, metallic lithium is formed on
the cathode, which participates in the process of chemical reduction of actinide oxides. To
obtain a high-quality product and avoid undesirable processes, such as the dissolution
of the platinum anode at a low content of Li2O in the melt, i.e., ~0.25–0.50 wt.%, the lack
of solubility of plutonium and americium oxides at high contents of Li2O, at ~3.4 wt.%
and ~5.1 wt.%, respectively, or the degradation of structural materials, it is necessary to
maintain a certain concentration of oxide ions in the working melt [5]. Therefore, devices
for the continuous monitoring of the oxygen ion content in the working LiCl-xLi2O melt
environment are needed.

Most of the ion-selective membrane sensors proposed for fabrication are made of
ceramic materials, which must be inert in LiCl-based melts containing Li2O. Materials
based on zirconium oxide used in oxide-halide melts are not stable enough to maintain
stable operation for a long time. The formation of Li2ZrO3 is inevitable when using ZrO2 in
LiCl-xLi2O melts, and with an increase in the content of Li2O, the stoichiometry of lithium
zirconate changes to Li6Zr2O7 and Li8ZrO6 [6–8]. The coating of ceramics with a layer
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of lithium zirconate changes the conductivity from oxygen ion to cationic transport (by
Li+-ions) [9–14]. The instability of electrolytes based on ZrO2 in the corrosive environment
of Li+-containing melts [15–17] has stimulated the search for alternative materials—that is,
sensors of the activity of O2− ions in melts.

One of the promising materials with high oxygen ionic conductivity is the Gd2Zr2O7
solid electrolyte with a pyrochlore structure. It is known that the structure of gadolinium
zirconate withstands high doses of radiation due to the ability of the structure to endure
cationic disorder. Under the action of radiation, the structure can undergo a structural
phase transition from pyrochlore to a structure of defective fluorite, without being subjected
to amorphization. In this regard, Gd2Zr2O7 is considered as a matrix for radioactive waste
disposal [18–22]. Gadolinium zirconate is also used as a material for thermal barrier
coatings [20–22], catalysts [23,24], solid electrolytes for SOFCs [25,26], and sensors [27].

The sensory activity of gadolinium zirconate has been insufficiently studied. However,
there is evidence showing that when testing Ca+2-doped Gd2Zr2O7 as a NO2 sensor at
500 ◦C, the device showed the highest current value and the fastest response time, as well
as the fastest recovery time. The results obtained were better than those of the commercial
YSZ-based sensor [28].

In order to explore the possibility of using the material in the chloride melt as a sensor,
it is necessary to study its chemical stability in the melt. For this purpose, it is necessary to
determine the range of dopants that can ensure the acquisition of a high-density ceramic
material with high, dominant oxygen ion conductivity. Previously, it was found that the
use of lithium as a dopant for the Gd2Zr2O7 phase makes it possible to increase the oxygen
ion conductivity but does not make it possible to obtain high-density ceramics [29,30].
Therefore, the problem of searching for dopants for the Gd2Zr2O7 phase remains relevant.

It has been established [31] that the homogeneous magnesium doping of Gd2Zr2O7
(solid-solution Gd2-xMgxZr2O7-x/2) can prevent the ion exchange of high-density ceramics
with LiCl-xLi2O melts up to a Li2O concentration of 4 wt.%. Thus, a small concentration of
magnesium is assumed to be able to protect the material from interaction with the melt [32].
For this article, materials based on Gd2Zr2O7 were chosen as the objects of study. In order
to obtain high-density Gd2Zr2O7 ceramics, a composite with MgO additive was used.
Composites based on gadolinium zirconate (1-x)Gd2Zr2O7·xMgO were investigated for
their chemical resistance in oxide-chloride lithium melts for the first time. The structure
and transport properties of (1-x)Gd2Zr2O7·xMgO were also studied for the first time.

2. Materials and Methods

Composites of (1-x)Gd2Zr2O7·xMgO were prepared by mixing gadolinium zirconate
Gd2Zr2O7 with magnesium hydroxide. Gadolinium zirconate was synthesized by mixing
with the starting reagents Gd2O3 (99.998%, VEKTON, RF) and ZrO2 (99.99%, REACHIM,
RF). The oxide powders were ground together in a planetary ball mill (Fritsch Planetar
Micro Mill Pulverisette 7, Fritsch GmbH, Federal Republic of Germany) with a rotation
speed of 350 rpm in ethanol-exploiting zirconium balls for 8 h. After milling, the mixture
was dried and annealed at 1200–1400 ◦C with steps of 100 ◦C. Freshly precipitated Mg(OH)2
was obtained from MgCO3 (99.99%, VEKTON, RF). The MgCO3 was dissolved in dilute
nitric acid a with pH ~2–3, and then the resulting Mg(NO3)2 was caused to interact with
a solution of NH4OH with the formation of a corresponding precipitate. The obtained
Mg(OH)2 was dried and mixed with Gd2Zr2O7 in the amount required for the preparation
of the samples of (1-x)Gd2Zr2O7·xMgO (x = 0.05, 0.07, 0.10). The corresponding calculations
were carried out taking into account TG studies of the obtained Mg(OH)2. The resulting
mixture was ground in the planetary ball mill at a rotation speed of 700 rpm for 2 h in
ethanol. Then, the dried mixtures were pressed into cylindrical briquettes and treated at
a temperature of 1500 ◦C for 12 h. The sintering of the cylindrical briquettes of undoped
Gd2Zr2O7 was carried out at a temperature of 1550 ◦C for 15 h.

A crystal structure analysis of the samples was conducted using an X-ray diffractome-
ter with Cu-Kα radiation (scanning rate of 0.5 ◦/min, steps of 0.01◦) (Rigaku MiniFlex600,
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Japan) and the SmartLab Studio II (Rigaku, Japan) software with the PDF-2 2019 database
(ICDD, USA). Silicon powder (NIST640f) was used as the external standard. The FullProf
program was used for the refinement of the parameters with the Rietveld method.

Scanning electron microscopy of the sintered samples was conducted with Phenom
ProX (Phenom-World, Holland). Before analysis, the surfaces of the samples were polishing
on a diamond wheel. The composition of the samples was determined using energy-
dispersive X-ray spectroscopy with a silicon drift detector and Phenom Pro Sute software.

The average density of the ceramics was determined using the geometric method. The
value of the crystallographic density of the samples was taken as the standard.

The measurements of ac electrical conductivity, as a function of temperature and
oxygen partial pressure, were made using the impedance spectroscopy method (Elins
Z-1000P spectrometer, Elins Ltd., Moscow, Russia) in air over a temperature range of
300–1000 ◦C with cooling of 1 ◦/min and a pO2 range of 1 × 10–18–0.21 atm. The surfaces
of the cylindrical-shaped samples were covered with platinum paste. The electrodes were
burned in air at a temperature of 900 ◦C for 3 h. The ZView-4.0 software (Scribner Associate
Inc., Southern Pines, NC, USA) was used to treat the impedance data. The oxygen partial
pressure measurements were performed using an 8 mol.% Y2O3-stabilized zirconia (YSZ)
sensor and an oxygen pump.

The stability of the ceramic composite samples was assessed in a glove box (SPEKS
GB, Russia) in an argon atmosphere with an impurity oxygen content less than 2 ppm
and a water content less than 1 ppm. The salts LiCl, LiCl-2 wt.% Li2O, and LiCl-4 wt.%
Li2O were placed in a glassy carbon crucible. The salts LiCl (CAS No: 7447-41-8, Leverton
Clarke Ltd., Basingstoke, UK) and Li2O (99.5 wt.%, Alfa Aesar, Haverhill, MA, USA) were
used for the experiment. Before the experiment, the LiCl salt was subjected to additional
purification by zone recrystallization. The salt in the crucible was heated in a shaft furnace
at a temperature of 650 ◦C. The temperature in the working area was controlled using
a Pt-Pt(Rh) thermocouple. The ceramics were preliminarily weighed on a balance and
dried in an oven at 200 ◦C. They were then immersed in a melt of the corresponding salt.
Exposure in the salt melts was carried out for 48 h. After holding in the melt, the samples
were removed and washed in distilled water and ethanol. After drying the samples in an
oven at 200 ◦C, the composites were analyzed by XRD and SEM.

The components of the melt were analyzed before the experiment and after 8, 16,
24, and 48 h by chemical analysis with inductively coupled plasma atomic emission spec-
troscopy (Optima 4300 DV Perkin Elmer spectrometer, USA).

3. Results
3.1. X-ray Analysis and SEM Characterization

The interpretation of the X-ray spectra (Figure 1) showed that the main phase in all
the obtained composites was Gd2Zr2O7 with a pyrochlore structure (space group Fd-3m).
The 0.90Gd2Zr2O7–0.10MgO composite contained a small amount of the second phase,
which corresponded to the magnesium oxide. According to the XRD data, the samples
with additives of MgO at the amounts of 5 wt.% and 7 wt.% were single-phase.

The lattice parameter decreased with the addition of MgO up to 7 wt.% (Figure 2a).
However, the parameter remained unchanged over the concentration range of 7–10 wt.%.

The change in the lattice parameter indicates the formation of solid solution due to the
dissolution of magnesium in the structure and the redistribution of cations between the
A and B sublattices. The redistribution of cations with different ionic radii will affect the
lattice parameter [33]. Figure 2b shows the X-ray pattern of the 0.95Gd2Zr2O7–0.05MgO
sample processed using the Rietveld method in the FullProf program. In Figure 2b, one can
see the diffraction data, which were treated using a gadolinium and zirconium redistributed
model (Table 1). However, the inversion degree between the A and B sublattices grew from
8.15% (0.95Gd2Zr2O7–0.05MgO) to 12.7% (0.90Gd2Zr2O7–0.10MgO) with the increase in
the Mg content.
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Table 1. The refined coordinates of atoms of 0.95Gd2Zr2O7–0.05MgO in a cubic unit cell (space group
Fd-3m) in the Gd and Zr disorder model.

Atom Wyckhoff Symbol x/a y/b z/c Occupancy

Gd 16c 0.000 0.000 0.000 1.837 (5)
Zr 16c 0.000 0.000 0.000 0.163 (5)
Zr 16d 0.500 0.500 0.500 1.837 (5)
Gd 16d 0.500 0.500 0.500 0.163 (5)
O1 48f 0.411 0.125 0.125 6.00 (5)
O2 8a 0.125 0.125 0.125 1.00 (0)

Rp = 2.56, Rwp = 3.72, Rexp = 2.39, Rb = 3.67, Rf = 4.59, Chi2 = 2.41.

The size of the Mg2+ ion is smaller than the Gd3+ ion in eightfold coordination [33];
thus, the parameter may decrease. In this regard, we assume that part of the Mg2+ dopes the
Gd2Zr2O7 matrix and occupies the Gd3+ position (Table 2). Noting the misunderstanding
of the exact amount of magnesium oxide included in this calculation, we considered the lim-
ited case, where the minimum concentration of the composite additive was included in the
Gd2Zr2O7 structure. Accordingly, we can write the composition 0.95Gd2Zr2O7–0.05MgO
as a solid solution: Gd1.88Mg0.05Zr0.07Zr1.93Gd0.07O7. The introduction of magnesium is
accompanied by an increase in the degree of order of 0.95Gd2Zr2O7–0.05MgO by 11.4%
compared to the undoped sample. In our previous work [31], it was shown that the intro-
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duction of magnesium into the structure could be achieved at an amount of 0.05 wt.%, and
the calculations were conducted using the Rietveld method.

Table 2. The refined coordinates of atoms of 0.95Gd2Zr2O7–0.05MgO in a cubic unit cell (space group
Fd-3m), with Gd and Mg existing in the A sublattice.

Atom Wyckhoff Symbol x/a y/b z/c Occupancy

Gd 16c 0.000 0.000 0.000 1.880 (5)
Zr 16c 0.000 0.000 0.000 0.070 (5)
Mg 16c 0.000 0.000 0.000 0.050
Zr 16d 0.500 0.500 0.500 1.930 (5)
Gd 16d 0.500 0.500 0.500 0.070 (5)
O1 48f 0.412 0.125 0.125 5.56 (2)
O2 8a 0.125 0.125 0.125 1.00 (0)
O3 8b 0.375 0.375 0.375 0.44 (2)

Rp = 2.46, Rwp = 3.54, Rb = 3.61, Rf = 4.19, Chi2 = 3.23.

The calculations performed for the two different models of 0.95Gd2Zr2O7–0.05MgO
sample presented in Tables 1 and 2 show close results regarding the obtained calculation
errors. It is probable that the lattice parameter is affected by a complex process associated
with the disordering of the cationic and anionic sublattices, as well as the presence of small
amounts of magnesium. Thus, to describe the structure of the obtained composites, one
must not be limited to the X-ray method alone.

The SEM images confirm that all the (1-x)Gd2Zr2O7·xMgO samples contain impurities
of MgO. Figure 3a–c shows densely sintered grains in the main phase, which tend to
coalesce with each other with an increase in the concentration of MgO additive. Addi-
tionally, in all the SEM figures, there are dark spots of poorly crystallized (amorphous)
phase. The EDS spectra show that such poorly crystallized spots belong to phase with an
increased magnesium content (Figure 4a,b), and we believe that this is magnesium oxide. It
is probable that due to amorphization, the low concentration of the composite additive MgO
(x = 0.05 and x = 0.07) does not enable its identification in the composites by X-ray diffraction.
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The relative densities of the obtained samples are all close to each other (Table 3), and
there is a slight tendency for the relative density to increase with the content of magnesium
oxide. It should be emphasized that higher temperatures and holding times are required to
obtain high-density ceramics of undoped Gd2Zr2O7. Therefore, it can be concluded that
the MgO additive contributes to an increase in the sinterability of the material, as shown in
previous works [34,35].

Table 3. The relative density of Gd2Zr2O7 and (1-x)Gd2Zr2O7·xMgO samples.

Chemical Formula ρ, %

Gd2Zr2O7 96d24
0.95Gd2Zr2O7–0.05MgO 96.40
0.93Gd2Zr2O7–0.07MgO 96.83
0.90Gd2Zr2O7–0.10MgO 97.27

3.2. Electrical Conductivities

Well-resolved impedance hodographs, obtained in the range from 300 ◦C to 1000 ◦C
in air, are presented as two semicircles (Figure 5).
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It was possible to separate the volume and grain boundary contributions to the total
electrical conductivity. One semicircle, with a capacity of C = 10−11 F·cm−1, exceeds
zero and is responsible for the bulk properties of the sample, and the second one, with
a capacity of C = 10−9 F·cm−1, is responsible for the properties of the grain boundaries.
By extrapolating the first semicircle to the OX axis, the bulk electrical conductivity was
determined. The value of the bulk electrical conductivity of (1-x)Gd2Zr2O7-xMgO, shown in
Figure 6, is slightly increased compared to that of the undoped Gd2Zr2O7 with a pyrochlore
structure over the entire temperature range. The electrical conductivities of all the doped
samples are close to each other. This effect is probably due to acceptor doping and the
formation of oxygen vacancies.
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composites.

The results obtained here were compared with the literature data on the conductivity
of the most highly conductive phases [36,37]. Figure 7 shows the bulk conductivities of the
materials with a pyrochlore structure. The electrical conductivity of the highly conductive
phase Sm2-xCaxZr2O7-x/2 (x = 0, 0.05, 0.10) [36] is comparable with the data that we obtained
for the composite (1-x)Gd2Zr2O7·xMgO. It can also be concluded (Figure 7a) that these
samples have similar activation energies. Calcium doping of the gadolinium sublattice
in Gd2Zr2O7 (Gd2-xCaxZr2O7-x/2 (x = 0.10)) significantly reduced the conductivity of the
material. It can be seen in [37] that all the obtained samples have different activation
energies of Gd2-xCaxZr2O7-x/2, and the electrical conductivity of the obtained compositions
sharply decreases in the region of medium temperatures (Figure 7b). Thus, the addition of
magnesium oxide MgO to gadolinium zirconate Gd2Zr2O7 did not lead to a decrease in
conductivity; the values of ionic conductivity are comparable to those of the most highly
conductive pyrochlores. At the same time, the addition of magnesium oxide made it
possible to sinter the material at a lower temperature and obtain high-density ceramics.
We believe that this method of obtaining high-density ceramics can be extended to other
promising systems with a pyrochlore structure. Thus, for pyrochlores, magnesium oxide
can be used both as an acceptor dopant and as a sintering additive.
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composites, Sm2-xCaxZr2O7-x/2 (x = 0, 0.05, 0.10) [36], and Gd2-xCaxZr2O7-x/2 (x = 0.10) [36].
(a) Temperature dependence of bulk electrical conductivity for the (1-x)Gd2Zr2O7·xMgO composites
and Gd2-xCaxZr2O7-x/2 (x = 0, 0.02, 0.05, 0.10) [37] (b).

The transport properties of the ceramics were studied in atmospheres with different
oxygen partial pressures. The differentiation of the total conductivities into their ionic (σion)
and electronic (σel) contributions was carried out through the analysis of the isotherms
logσ–logpO2. The total electrical conductivity (σtot) obtained in air at the oxygen partial
pressure (pO2) = 0.21 atm is the sum of the ionic and electronic conductivities (1). The ionic
electrical conductivity σion does not depend on pO2 (it is a plateau on the logσ–logpO2 graph).

σtot = σel + σion (1)

Small additions of a dopant do not change the general nature of the dependence. The
isotherms of conductivity are shown in Figure 8a–c, where the plateau of ionic conductivity
can be observed over the entire temperature range. With an increase in the concentration
of the heterogeneous additive to x = 0.10, the plots of electrical conductivity against pO2
show a positive slope in the region of high oxygen partial pressures, which indicates the
appearance of a small p-type contribution to the total conductivity of the sample.
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Figure 8. Dependence of the electrical conductivity of the composition on the oxygen partial pressure
for (a) 0.95Gd2Zr2O7-0.05MgO, (b) 0.93Gd2Zr2O7-0.07MgO, (c) 0.90Gd2Zr2O7-0.10MgO.

Based on the data obtained, the temperature dependence of ionic conductivity can be
plotted. As can be seen in Figure 9, the ionic conductivity of all the composites is higher
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than that for the undoped phase. It can be assumed that this is due to an increase in oxygen
vacancies as a result of acceptor doping and a complex redistribution of cations over the A
and B sublattices.
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Figure 9. Temperature dependence of ionic conductivity (a). Dependence of ionic conductivity on x
in (1-x)Gd2Zr2O7·xMgO at 600 ◦C (b).

The ionic transport number can be calculated as:

tion =
σion
σtot

(2)

where σion is the ionic conductivity from the plateau of the logσ−pO2 dependencies between
10−18 atm and 10−4 atm, and σtot is the total conductivity at pO2 = 0.21 atm. As we can see
from the equation, the ionic conductivity and the total conductivity increase, respectively,
while the share (tion) does not change.

The ion transport numbers of the (1-x)Gd2Zr2O7·xMgO and undoped Gd2Zr2O7
samples are close (Figure 10). The transport numbers tend to increase with decreasing
temperature and are close to unity over the entire temperature range. Thus, the addi-
tion of magnesium oxide did not affect the dominant ionic nature of transport of the
Gd2Zr2O7 phase.
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3.3. Chemical Resistance of LiCl and LiCl-Li2O Melts

Table 4 shows photographs of the (1-x)Gd2Zr2O7·xMgO ceramic samples before and
after interaction with LiCl-xLi2O melts, where x = 0 wt%, 2 wt%, and 4 wt% at a temperature
of 650 ◦C. As can be seen in the photo, with an increase in the concentration of lithium
oxide in the melt, the degree of destruction of the samples increases. In particular, the
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0.90Gd2Zr2O7-0.10MgO sample in a LiCl melt did not undergo destruction. The same
sample in the LiCl-2 wt.% Li2O melt was partially destroyed and split into three parts,
and in the LiCl-4 wt.% Li2O melt, it was completely destroyed and divided into three
large parts and many small parts, which also underwent dissolution, judging by the
presence of a white coating on the surface of the electrolyte during the experiment and
chemical analysis. High-density ceramic samples of Gd2Zr2O7 were examined in our earlier
work [27]; however, it was shown that Gd2Zr2O7 interacted with the LiCl-2 wt.% Li2O melt
during high-temperature exposure.

Table 4. Photographs of the obtained ceramic samples of (1-x)Gd2Zr2O7·xMgO before and after
exposure in LiCl-xLi2O melts at T = 650 ◦C.

x in
(1-x)Gd2Zr2O7·xMgO

Photo before the
Experiment

Photo after 48 h of
Exposure in LiCl

Photo after 48 h of
Exposure in

LiCl-2 wt.% Li2O

Photo after 48 h of
Exposure in

LiCl-4 wt.% Li2O

0.05
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Table 5 shows the change in mass of the ceramics after the exposure of the ceramic 
samples of (1-x)Gd2Zr2O7·xMgO in LiCl-xLi2O melts at a temperature of 650 °C. After hold-
ing the samples in the LiCl melt, there was no significant change in the density of the 
ceramics and no mass loss. Despite the fact that the 0.93Gd2Zr2O7-0.07MgO ceramics 
cracked, the mass loss during the study was 0.01%. It is likely that the presence of small 
defects in the form of cracks in 0.93Gd2Zr2O7-0.07MgO significantly affected the strength 
characteristics of the material and led to destruction; thus, this fact should be taken into 
account in further studies. When 2wt.%Li2O was added to the melt, the 0.90Gd2Zr2O7-
0.10MgO ceramics were destroyed, as a result of which the mass loss was ~3%. In the melt 
with 4wt.%Li2O, there was a significant mass loss in all the ceramics under study, decreas-
ing from ~3% to ~11.5%. The greatest loss occurred in the 0.90Gd2Zr2O7-0.10MgO sample. 

Table 5. Change in the mass loss of ceramic samples of (1-x)Gd2Zr2O7·xMgO before and after expo-
sure in LiCl-xLi2O melts at T = 650 °C. 

Composition Before After 
LiCl 

After 
LiCl-2wt.%Li2O 

After 
LiCl-4 wt.%Li2O 

 % % % % 
0.95Gd2Zr2O7-0.05MgO - +0.28 −0.07 −3.4 
0.93Gd2Zr2O7-0.07MgO - −0.01 +0.09 −2.89 
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Table 5 shows the change in mass of the ceramics after the exposure of the ceramic 
samples of (1-x)Gd2Zr2O7·xMgO in LiCl-xLi2O melts at a temperature of 650 °C. After hold-
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cracked, the mass loss during the study was 0.01%. It is likely that the presence of small 
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Table 5 shows the change in mass of the ceramics after the exposure of the ceramic 
samples of (1-x)Gd2Zr2O7·xMgO in LiCl-xLi2O melts at a temperature of 650 °C. After hold-
ing the samples in the LiCl melt, there was no significant change in the density of the 
ceramics and no mass loss. Despite the fact that the 0.93Gd2Zr2O7-0.07MgO ceramics 
cracked, the mass loss during the study was 0.01%. It is likely that the presence of small 
defects in the form of cracks in 0.93Gd2Zr2O7-0.07MgO significantly affected the strength 
characteristics of the material and led to destruction; thus, this fact should be taken into 
account in further studies. When 2wt.%Li2O was added to the melt, the 0.90Gd2Zr2O7-
0.10MgO ceramics were destroyed, as a result of which the mass loss was ~3%. In the melt 
with 4wt.%Li2O, there was a significant mass loss in all the ceramics under study, decreas-
ing from ~3% to ~11.5%. The greatest loss occurred in the 0.90Gd2Zr2O7-0.10MgO sample. 

Table 5. Change in the mass loss of ceramic samples of (1-x)Gd2Zr2O7·xMgO before and after expo-
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LiCl 

After 
LiCl-2wt.%Li2O 

After 
LiCl-4 wt.%Li2O 

 % % % % 
0.95Gd2Zr2O7-0.05MgO - +0.28 −0.07 −3.4 
0.93Gd2Zr2O7-0.07MgO - −0.01 +0.09 −2.89 

0.10

Processes 2023, 11, x FOR PEER REVIEW 10 of 16 
 

 

and many small parts, which also underwent dissolution, judging by the presence of a 
white coating on the surface of the electrolyte during the experiment and chemical analy-
sis. High-density ceramic samples of Gd2Zr2O7 were examined in our earlier work [27]; 
however, it was shown that Gd2Zr2O7 interacted with the LiCl-2wt.%Li2O melt during 
high-temperature exposure. 

Table 4. Photographs of the obtained ceramic samples of (1-x)Gd2Zr2O7·xMgO before and after ex-
posure in LiCl-xLi2O melts at T = 650 °C. 

х in 
(1-

x)Gd2Zr2O7·xMgO 

Photo before the Ex-
periment 

Photo after 48 h of 
Exposure in LiCl 

Photo after 48 h of 
Exposure in LiCl-

2wt.% Li2O 

Photo after 48 h of 
Exposure in LiCl-

4wt.% Li2O 

0.05 

 

 
 

 

 
 

 

 
 

 

 
 

0.07 

   

 

 
 

0.10 
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ing the samples in the LiCl melt, there was no significant change in the density of the 
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cracked, the mass loss during the study was 0.01%. It is likely that the presence of small 
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Table 5 shows the change in mass of the ceramics after the exposure of the ceramic 
samples of (1-x)Gd2Zr2O7·xMgO in LiCl-xLi2O melts at a temperature of 650 °C. After hold-
ing the samples in the LiCl melt, there was no significant change in the density of the 
ceramics and no mass loss. Despite the fact that the 0.93Gd2Zr2O7-0.07MgO ceramics 
cracked, the mass loss during the study was 0.01%. It is likely that the presence of small 
defects in the form of cracks in 0.93Gd2Zr2O7-0.07MgO significantly affected the strength 
characteristics of the material and led to destruction; thus, this fact should be taken into 
account in further studies. When 2wt.%Li2O was added to the melt, the 0.90Gd2Zr2O7-
0.10MgO ceramics were destroyed, as a result of which the mass loss was ~3%. In the melt 
with 4wt.%Li2O, there was a significant mass loss in all the ceramics under study, decreas-
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0.10MgO ceramics were destroyed, as a result of which the mass loss was ~3%. In the melt 
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ing from ~3% to ~11.5%. The greatest loss occurred in the 0.90Gd2Zr2O7-0.10MgO sample. 
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Table 5 shows the change in mass of the ceramics after the exposure of the ceramic sam-
ples of (1-x)Gd2Zr2O7·xMgO in LiCl-xLi2O melts at a temperature of 650 ◦C. After holding
the samples in the LiCl melt, there was no significant change in the density of the ceramics
and no mass loss. Despite the fact that the 0.93Gd2Zr2O7-0.07MgO ceramics cracked, the
mass loss during the study was 0.01%. It is likely that the presence of small defects in the
form of cracks in 0.93Gd2Zr2O7-0.07MgO significantly affected the strength characteristics
of the material and led to destruction; thus, this fact should be taken into account in further
studies. When 2 wt.% Li2O was added to the melt, the 0.90Gd2Zr2O7-0.10MgO ceramics
were destroyed, as a result of which the mass loss was ~3%. In the melt with 4 wt.% Li2O,
there was a significant mass loss in all the ceramics under study, decreasing from ~3% to
~11.5%. The greatest loss occurred in the 0.90Gd2Zr2O7-0.10MgO sample.
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Table 5. Change in the mass loss of ceramic samples of (1-x)Gd2Zr2O7·xMgO before and after
exposure in LiCl-xLi2O melts at T = 650 ◦C.

Composition Before After
LiCl

After
LiCl-2 wt.% Li2O

After
LiCl-4 wt.% Li2O

% % % %
0.95Gd2Zr2O7-0.05MgO - +0.28 −0.07 −3.4
0.93Gd2Zr2O7-0.07MgO - −0.01 +0.09 −2.89
0.90Gd2Zr2O7-0.10MgO - −0.32 −2.73 −11.46

The X-ray phase analysis data presented in Figure 11a show that the 0.95Gd2Zr2O7-
0.05MgO sample interacted with the LiCl melt, since during the experiment, a phase of
gadolinium oxide formed on the surface of the material. The samples (0.93Gd2Zr2O7-
0.07MgO, 0.90Gd2Zr2O7-0.10MgO) did not chemically interact with the working medium
during the 48 h of exposure. Figure 11b shows that in a more aggressive melt containing
lithium oxide at an amount of 2 wt.%, exposure led to the interaction of all the ceramics
with the melt, together with the formation of a gadolinium oxide phase.
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The concentration of lithium oxide also significantly affects the rate of destruction of
the material and the formation of end products through the chemical interaction of the
material with the melt. Figure 12 shows the X-ray diffraction patterns of the composite
surface after 48 h of interaction with the LiCl-4 wt.% Li2O melt. The surface consists of
a mixture of phases formed by the chemical interaction of gadolinium zirconate with the
melt components. Such a process can be described by Equations (3)–(6):

Gd2Zr2O7 + 2Li2O = 2Li2ZrO3 + Gd2O3 (3)

Gd2O3 + Li2O = 2LiGdO2 (4)

LiGdO2 + 4LiCl = 2LiGdCl4 + 2Li2O (5)

or
Gd2O3 + 8LiCl = 2LiGdCl4 + 3Li2O (6)
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The SEM data of the composites are confirmed by the XRD data. Figure 13a–c shows
the surfaces of composites exposed in a LiCl melt at a temperature of 650 ◦C. It was found
that the surface of 0.95Gd2Zr2O7-0.05MgO had grains of different contrasts. The surfaces
of the remaining compositions remained identical to the initial state. The surfaces of
the composites exposed in LiCl-2 wt.% Li2O were distinguished by grains with different
morphologies and contrasts which were unevenly distributed over the ceramic surfaces
(Figure 13d–f). The smallest grain growth and grain concentration were recorded for the
composite 0.93Gd2Zr2O7-0.07MgO. EDS spectra confirmed (Figure 14) that the dark surface
grains corresponded to a phase with a high content of zirconium, and the light grains
corresponded to a phase with a high content of gadolinium. With an increase in the content
of lithium oxide to 4 wt.%, the morphology of the grains also changed (Figure 13g–i), and
their enlargement occurred.

The chemical analysis of the (1-x)Gd2Zr2O7·xMgO composite did not establish the
presence of Gd or Zr ceramic components in the LiCl melt. With an increase in the concen-
tration of lithium oxide in the melt, the concentrations of zirconium and gadolinium as
components of the melt increased (Figure 15). Additionally, depending on the composition
of the ceramics, the saturation time of the melt, with respect to gadolinium, varied. At
x = 0.05, the saturation time for the LiCl-4 wt.% Li2O melt was 8 h, and at x = 0.07 and
x = 0.10, the saturation times were 24 and 30 h, respectively.

Thus, the results obtained showed that the addition of magnesium oxide did not lead
to an increase in the chemical stability of the phase Gd2Zr2O7 in the melts of LiCl-Li2O. We
believe that this is due to the morphology of the obtained composites when the magnesium
oxide phase was localized in the form of individual grains. It is probably that the situation
would be more favorable with the addition of magnesium oxide, encapsulating the grains
of the main phase, Gd2Zr2O7, and preventing interaction with the melt. Since the system
under study was demonstrated to be capable of obtaining high oxygen ion conductivities
and high-density ceramics, it is of interest for further research, for example, using higher
concentrations of magnesium oxide or changing the method for obtaining a composite.
This will be the topic of our further research.
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0.07MgO, and (c) 0.90Gd2Zr2O7-0.10MgO after exposure for 48 h in LiCl at a T = 650 ◦C. Scan-
ning electron microscopy images of (d) 0.95Gd2Zr2O7-0.05MgO, (e) 0.93Gd2Zr2O7-0.07MgO, and
(f) 0.90Gd2Zr2O7-0.10MgO after exposure for 48 h in a LiCl-2 wt.% Li2O melt at T = 650 ◦C. Scan-
ning electron microscopy images of (g) 0.95Gd2Zr2O7-0.05MgO, (h) 0.93Gd2Zr2O7-0.07MgO, and
(i) 0.90Gd2Zr2O7-0.10MgO after exposure for 48 h in a LiCl-4 wt.% Li2O melt at T = 650 ◦C.Processes 2023, 11, x FOR PEER REVIEW 13 of 16 

 

 

  
  

  
(a) (b) 

Figure 14. SEM images and EDS data for the sample of 0.90Gd2Zr2O7-0.10MgO after exposure for 48 
h in a LiCl-2wt.%Li2O melt at T = 650 °C (a). SEM images of and EDS spectrum of the 0.90Gd2Zr2O7-
0.10MgO sample after exposure for 48 h in the LiCl-2 wt.%Li2O melt at T = 650 °C (b). 

The chemical analysis of the (1-x)Gd2Zr2O7·xMgO composite did not establish the 
presence of Gd or Zr ceramic components in the LiCl melt. With an increase in the con-
centration of lithium oxide in the melt, the concentrations of zirconium and gadolinium 
as components of the melt increased (Figure 15). Additionally, depending on the compo-
sition of the ceramics, the saturation time of the melt, with respect to gadolinium, varied. 
At x = 0.05, the saturation time for the LiCl-4 wt.% Li2O melt was 8 h, and at x = 0.07 and 
x = 0.10, the saturation times were 24 and 30 h, respectively. 

Thus, the results obtained showed that the addition of magnesium oxide did not lead 
to an increase in the chemical stability of the phase Gd2Zr2O7 in the melts of LiCl-Li2O. We 
believe that this is due to the morphology of the obtained composites when the magne-
sium oxide phase was localized in the form of individual grains. It is probably that the 
situation would be more favorable with the addition of magnesium oxide, encapsulating 
the grains of the main phase, Gd2Zr2O7, and preventing interaction with the melt. Since 
the system under study was demonstrated to be capable of obtaining high oxygen ion 
conductivities and high-density ceramics, it is of interest for further research, for example, 
using higher concentrations of magnesium oxide or changing the method for obtaining a 
composite. This will be the topic of our further research. 

Figure 14. SEM images and EDS data for the sample of 0.90Gd2Zr2O7-0.10MgO after exposure
for 48 h in a LiCl-2 wt.% Li2O melt at T = 650 ◦C (a). SEM images of and EDS spectrum of the
0.90Gd2Zr2O7-0.10MgO sample after exposure for 48 h in the LiCl-2 wt.% Li2O melt at T = 650 ◦C (b).



Processes 2023, 11, 1217 14 of 16
Processes 2023, 11, x FOR PEER REVIEW 14 of 16 
 

 

  
(a) (b) 

Figure 15. (a) Chemical analysis data on the content of Gd in the melts after 48 h of exposure for (1-
x)Gd2Zr2O7·xMgO. (b) Chemical analysis data on the Zr content in the melts after 48 h of holding 
for (1-x)Gd2Zr2O7·xMgO. 

It should be emphasized that there are few studies on the chemical resistance of ce-
ramics in halide melts. The investigations are mainly carried out for simple oxides (doped 
with an acceptor impurity), for example: ZrO2(Y2O3), ZrO2(MgO), ZrO2(Sc2O3), ZrO2(CaO), 
CeO2(Gd2O3) [38,39]. It was shown that the increase in the content of Li2O led to the de-
struction of the samples. Therefore, investigations of Gd2Zr2O7-based pyrochlores are the 
most promising. 

4. Conclusions 
Composites with the general formula (1-x)Gd2Zr2O7·xMgO were obtained. Small con-

centrations of magnesium oxide were dissolved in the complex oxide matrix of Gd2Zr2O7 
with the formation of a solid solution, which manifested itself through a decrease in the 
lattice parameters of the matrix phase. This led to the formation of oxygen vacancies 𝑽𝑶∙∙  
and a complex redistribution of the Gd and Zr over the A and B sublattices. The ionic 
conductivity of the studied samples of (1-x)Gd2Zr2O7·xMgO (x = 0.05, 0.07, 0.10) was 
slightly higher than that of the undoped phase. The oxygen ionic conductivity reached 
6.6·10−3 Ohm·cm at 800 °C and 8.1 × 10−4 Ohm·cm at 600 °C for (1-x)Gd2Zr2O7·xMgO (x = 
0.07). The transfer numbers, below 500 °C, reached 100%. The share of dominant ion 
transport did not change upon doping with magnesium oxide. 

Composites based on gadolinium zirconate were investigated for their chemical re-
sistance in oxide-chloride lithium melts for the first time. Composites of (1-
x)Gd2Zr2O7·xMgO (x = 0.07, 0.10) showed chemical resistance in lithium halide (LiCl) melts 
for 48 h at 650 °C. However, when Li2O was introduced into the melt at the amounts of 2 
wt.% and 4 wt.%, the composites chemically interacted with the melt component (Li2O), 
with the formation of a Gd2O3 phase or a mixture of phases (Gd2O3, Li2ZrO3, ZrO2, LiGdO2, 
or LiGdCl2) on the ceramic surface, respectively. This interaction was also confirmed by 
the chemical analysis of the melt after the experiments. 

Additives of magnesium oxide had a significant effect on sintering, which ensured 
the production of high-density samples at lower temperatures and shorter heat treatment 
times. 

Author Contributions: Conceptualization, I.A. (Irina Animitsa); methodology, Y.Z. and I.A. (Irina 
Anokhina); X-ray diffraction analysis, V.V. and N.K.; melt research and methodology, M.E.; writ-
ing—original draft preparation, I.A. (Irina Animitsa) and I.A. (Irina Anokhina); writing—review 
and editing, I.A. (Irina Animitsa) and I.A. (Irina Anokhina). All authors have read and agreed to the 
published version of the manuscript. 

Funding: This research received no external funding.  

Figure 15. (a) Chemical analysis data on the content of Gd in the melts after 48 h of exposure for
(1-x)Gd2Zr2O7·xMgO. (b) Chemical analysis data on the Zr content in the melts after 48 h of holding
for (1-x)Gd2Zr2O7·xMgO.

It should be emphasized that there are few studies on the chemical resistance of
ceramics in halide melts. The investigations are mainly carried out for simple oxides
(doped with an acceptor impurity), for example: ZrO2(Y2O3), ZrO2(MgO), ZrO2(Sc2O3),
ZrO2(CaO), CeO2(Gd2O3) [38,39]. It was shown that the increase in the content of Li2O led
to the destruction of the samples. Therefore, investigations of Gd2Zr2O7-based pyrochlores
are the most promising.

4. Conclusions

Composites with the general formula (1-x)Gd2Zr2O7·xMgO were obtained. Small con-
centrations of magnesium oxide were dissolved in the complex oxide matrix of Gd2Zr2O7
with the formation of a solid solution, which manifested itself through a decrease in the
lattice parameters of the matrix phase. This led to the formation of oxygen vacancies
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