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Abstract: Advances in additive manufacturing (AM) processes have increased the number of relevant
applications in various industries. To keep up with this development, the process stability of AM
processes should be monitored, which is conducted through the assessment of the outputs or product
characteristics. However, the use of univariate control charts to monitor an AM process might lead
to misleading results, as most additively manufactured products have more than one correlated
quality characteristic (QC). This paper proposes a framework for monitoring the multivariate quality
characteristics of AM processes, and the proposed framework was applied to monitor a fused filament
fabrication (FFF) process. In particular, specimens were designed and produced using the FFF process,
and their QCs were identified. Then, critical quality characteristic data were collected using a precise
measurement system. Furthermore, we propose a transformation algorithm to ensure the normality
of the collected data. After examining the correlations between the investigated quality characteristics,
a multivariate exponential weighted moving average (MEWMA) control chart was used to monitor the
stability of the process. Furthermore, the MEWMA parameters were optimized using a novel heuristic
technique. The results indicate that the majority of the collected data are not normally distributed.
Consequently, the efficacy of the proposed transformation technique is demonstrated. In addition, our
findings illustrate the correlations between the QCs. It is worth noting that the MEWMA optimization
results confirm that the considered AM process (i.e., FFF) is relatively stable.

Keywords: additive manufacturing; process monitoring; multivariate quality characteristics; fused
deposition modeling process; fused filament fabrication; transformation methods; control chart;
heuristic optimization

1. Introduction and Literature Review

The field of additive manufacturing (AM) has developed over the last four decades.
Research in the AM field has grown rapidly, leading to many promising applications in
various industrial sectors. The key advantage that AM processes have over traditional
manufacturing processes is the very low percentage of scrap when compared to subtractive
manufacturing [1]. A small amount of waste is created during the AM process, as the
components are manufactured through layer-by-layer material deposition. An initial
computer-aided design (CAD) model is broken up into smaller layers using slicer software,
which creates G-code commands that are transferred to the AM 3D printer. Under certain
circumstances, it may be required to carry out further steps for component completion (post-
processing), such as polishing, sintering, curing, sanding, powder removal, or painting.
Tuan D. Ngo et al. [2] outlined 3D printing and surveyed its advantages and disadvantages
to serve as a standard for potential studies and an improvement for AM processes.

The monitoring of manufacturing process has been widely investigated in the litera-
ture with the aim of pointing out any defects, data analyzing, and quality improvement. To
achieve these aims, prototypes are produced before the real production takes place. The
prototyping process, as an important part of product development, has utilized recent
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advances in technologies, such as computer-aided design (CAD) and computer-aided man-
ufacturing (CAM) [3]. These technologies consist of what is called rapid prototyping, which
easily produces prototypes directly from CAD models. The rapid prototyping process is
classified into the addition and removal of materials. In addition, the accretion of material
during the rapid prototyping process can be classified according to the state of the used
material [4]. However, rapid prototyping mainly depends on additive manufacturing [3].

Due to its flexibility with materials, simplicity of use, low cost, and excellent precision,
FFF—an AM process—has been utilized in a wide range of applications [5]. In 1992,
Stratasys founder Scott Crump was granted the first FFF patent [6]. Since then, the number
of FFF machine manufacturers has increased significantly, to the point where there are
now more FFF machines than any other type of AM machine worldwide. The primary
strengths of this technology are the diversity of materials that may be used with FFF and
the effective mechanical qualities that can be achieved with the parts that are produced
using this technique. FFF is a polymer-based additive manufacturing process that allows
for the production of strong parts [7]. Polymer-based AM is an important component of
the developing AM of modern multifunctional and multimaterial processes compared to
metal and ceramics [8]. Polymer materials in the AM process still have many inaccuracies.
Investigating polymer part defects experimentally is an ineffective process due to its limited
and costly experiments. In contrast, numerical methods that used modern techniques such
as machine learning [9] are more practical [10].

The FFF process has been investigated widely in the literature, especially in terms
of its design and modeling. Turner N. et al. [11] presented a systematic literature review
of the process design and modeling for FFF. They explored different FFF processes, such
as filament flow, nozzle, and power consumption. One of the previous works interested
in this part is the research published by Bellini et al. [12] and Agarwala et al. [13]. These
research studies presented the power consumption during the printing process in addition
to the variation in the filament diameter leaving the nozzle. In addition, nozzle positioning
can affect the quality of 3D-printed parts and, consequently, the dimensional accuracy [14].
Some analytical approaches were introduced to describe the relation between the pinch
rollers and feed filament. However, these relations have not been proved experimentally.
It is worth noting that quality control for AM processes in general was reviewed by
Hoejin Kim et al. [15]. The research examined quality-related studies in the context of AM
technology, such as repeatability, reproducibility, reliability, and precision.

The quality of AM processes should be investigated, which may allow for an im-
proved process throughput. Experimental AM quality monitoring techniques have been
used to spot irregularities in the process and forecast the quality of the finished output [16].
Nevertheless, numerical quality control techniques are more often used than experimental
techniques for AM operations. The goal of numerical performance monitoring is to employ
statistical models to quantitatively determine quality problems, such as dimensional ones.
The performance of the AM process (or product quality) may be optimized through the
use of numerical models to predict the potential product quality and to develop a set of
AM input variables. Numerous trials carried out in controlled environments have been
conducted to verify the viability of numerical methods [17,18]. Modeling many process
variables in a small amount of time is a key benefit of numerical quality monitoring ap-
proaches over experimental ones [19,20]. Nonetheless, the complexity of the manufacturing
process may restrict the application of numerical approaches.

AM process monitoring has been investigated in the literature to a limited extent,
especially regarding the monitoring of process stability. Bianca et al. [21] presented various
topics related to quality engineering in additive manufacturing processes. They investi-
gated the feasibility of applying quality control concepts, such as inspection, in the additive
manufacturing field. The same authors also published a chapter presenting the existing
quality solutions for AM [22]. Most of the investigated AM processes in the field of process
monitoring have been taken as case studies to demonstrate proposed statistical models, as
in the work of Iqbal et al. [23], who attempted to involve auxiliary variables in the monitor-
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ing process rather than the response variable alone. In a similar manner, Luan et al. [24]
considered the stereolithography process conditions to monitor shape deformation. Quality
control for different AM processes using different materials has also been evaluated. Budzik
et al. [25] proposed a quality control methodology to evaluate the performance of additive
manufacturing using polymer materials. Furthermore, metal-based AM was investigated
by Khanzadeh et al. [26]; however, they assumed the normality of the data to use the
Hoteling T2 chart in real-time monitoring.

Monitoring AM processes can be conducted to detect any defects in product quality at
early stages. This method has been applied in the literature as in the studies by Charoula
Kousiatza, and Dimitris Karalekas [27]. They performed real-time monitoring for the
strain and temperature during the FFF process. The results show that an integrated optical
sensing device provides a dependable option for real-time monitoring during the FFF
procedure and the quality of the produced parts. Sensors are widely applied to monitor
3D printing processes. Another application of sensors in AM processes is transmission
condition monitoring, such as that presented in [28,29]. Moreover, K.Gomathi et al. [30]
monitored the resulting vibration during the motion of the 3D printer. These vibrations
cause defects in printed parts. This is important in monitoring the quality of the 3D-
printed parts. However, it is intended to predict the printer faults based on condition
monitoring, which is easier to observe, rather than monitoring the process based on the
quality characteristics, which may result from unnoticeable causes.

Optimizing process parameters is an approach for enhancing the quality of 3D-printed
parts. Porosity, dimensional accuracy, and surface roughness were some of the main
quality factors that were improved during the process parameter optimization [31]. In
addition, the quality of specific products could be optimized by applying quality assurance
in different stages of production [32]. Furthermore, Shahrian et al. [33] used the design
of the experiment to optimize the dimensional accuracy and geometric characteristics
by stating the key process inputs. These studies are critically important in determining
the process parameters that affect each quality characteristic. Monitoring the quality of
multivariate characteristics is still limited.

Moreover, H.R. Vanaei et al. developed a numerical model to predict the temperature
profile of the FFF process. In such a case, optimizing the process in terms of the optimum
heat for producing high-quality products is possible. The desired heat is modeled using
the numerical model, and then an experimental test could be used for validation. The
data acquisition during the FFF process also provides a good environment for the quality
monitoring of the produced parts through numerical modeling. Satish Kumar et al. [34]
presented an acquisition system for the FFF process data to detect the faults. Later, the
acquired data can be used for machine learning techniques.

These models can be used to predict the quality of produced parts by FFF; however,
the quality is based on a single response. The quality of FFF products usually depends
on multiple characteristics in which the monitoring process should be conducted once for
all quality characteristics. Despite the validity and advantages of the numerical methods,
studies using such methods for the quality control of AM processes remain limited. Further-
more, univariate control charts were employed in most of these investigations, despite the
fact that multivariate quality control charts are necessary due to the correlations between
various quality characteristics [35]. This study presents a general framework for monitor-
ing multivariate quality characteristics in the FFF process, including the diameter, height,
and wall thickness. The proposed framework involves specifying the critical-to-quality
characteristics, a data collection process, 3D printing, a measurement system, normality
transformation, multivariate control chart optimization, and assessing the variability of the
considered AM process.

In the following section, the process and used material are presented. In Section 3, the
proposed methodology is detailed. The results and discussions are provided in Section 4,
and our major findings and conclusion are highlighted in Section 5.
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2. Process and Material

This research investigated the stability of the fused deposition modeling process
through measuring the quality characteristics of the process outputs, namely FFF-printed
products. A product should have some characteristics that are critical, and any deviations
from these specifications beyond the specified limits can be expected to affect the primary
function of the product. These characteristics are called critical-to-quality (CTQ). Quality
characteristics are determined according to engineering and customer specifications. For
this research, a cylinder product that has applications in many industries (e.g., automotive)
was selected, as shown in Figure 1. In the considered product, the dimensional properties
are considered as CTQ. Based on this, the three-dimensional properties of the products were
measured, including the height, diameter, and wall thickness dimensions (see Figure 1).
As the product under consideration possesses multiple CTQ characteristics, the correla-
tions between these characteristics must be examined to determine whether univariate or
multivariate process monitoring is appropriate.
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Figure 1. Product design (CAD model).

2.1. Process

The product was designed using the CREO Parametric 8.0 software in STL format.
The STL files of the designed samples were exported from the Creo 8.0 software and
imported into Prusa Slicer 2.5.0 for slicing and G-code file generation. An open-access FFF
printer (Original Prusa i3 MK3S+) equipped with a 0.4 mm nozzle diameter was used to
manufacture the samples. The used printing parameters are listed in Table 1.

Table 1. FFF printing parameters.

Parameter Value

Extruder temperature (◦C) 215
Bed temperature (◦C) 60

Printing speed (mm/s) 45
Layer height (mm) 0.2

Infill (%) 100

In FFF, a heating chamber is used to melt the polymer material, which is inserted into
the system in the form of a filament. The extrusion pressure is created by the filament being
pushed into the chamber by an arrangement resembling a tractor wheel; it is this pushing
action that creates the pressure. The machine used in this study is shown in Figure 2.
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2.2. Material

For this study, polylactic acid (PLA) polymer was used. The PLA filament (Prusa-
ment PLA Galaxy Silver filament) with a diameter of 1.75 mm was obtained from Prusa
Polymers, Czech Republic. Polylactic acid (PLA) is popular for FFF printing due to its
excellent printability, low cost, non-toxicity, biocompatibility, biodegradability, and eco-
friendliness [36,37]. It shows a high tensile strength, modulus, and elongation at break-
age [36]. PLA is an aliphatic polyester derived from non-fossil renewable resources such
as corn and sugar cane [37]. In contrast, PLA has the lowest heat resistance of the major
3D printing polymers when it has not been annealed initially. Objects made of PLA can be
created using techniques such as solvent welding, 3D printing, casting, injection molding,
machining, and extrusion. PLA filament is designed for use in three-dimensional printing.
When fabricating fused filament on desktop 3D printers, PLA may be utilized as a feedstock
material. When used in a vapor chamber, the low boiling point of ethyl acetate makes it
possible to smooth the surfaces of PLA.

3. Methodology

The special requirements of 3D-printed parts impose a high dimensional accuracy,
which was considered in this study. In this context, we present a framework for moni-
toring the dimensional accuracy of FFF outputs, including specifying the critical quality
characteristics, a data collection process, 3D printing, a measurement system, normality
transformation, multivariate control chart optimization, and assessing the variability of
the considered AM process. Moreover, there are many dimensional characteristics that are
correlated with each other. Consequently, the proposed methodology is based on multivari-
ate monitoring, which can take the correlations between QCs into consideration. The steps
of the proposed methodology are listed in Table 2. The first two steps were described in
the previous section, and are related to deciding which additive manufacturing process
will be investigated. Determining the process and material to be used is crucial, as the later
findings will only be valid with respect to these choices. Selecting the printed product, its
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characteristics, and applications will help in the trade-off process between the benefits and
cost of highly accurate production.

Table 2. Methodology steps.

Step Description

Step 1 Select the desired additive manufacturing process and material

Step 2 Select a product as an output of the selected additive manufacturing process and identify its quality
characteristics (QCs)

Step 3 Identify number of samples, sample size, and the measurement methods

Step 4 Design and produce the product using the selected AM process

Step 5 Test the capability of the measurement system

Step 6 Measure the selected quality characteristics

Step 7 Examine the normality of the data. If the data are normally distributed, go to Step 9; otherwise, continue to Step 8

Step 8 Use an iterative search to find an appropriate transformation to normalize the data

Step 9 Investigate the correlation between the quality characteristics of the product.

Step 10 Select the proper multivariate or univariate control chart, based on the correlation test, to monitor the
process variability

Step 11 Optimize the control chart by varying chart parameters to be able to detect any shift in the process characteristics

Step 12 Using the multivariate chart along with the parameters suggested in Step 11, the variability of the additive
manufacturing process can be monitored.

3.1. Sampling and Printing Process

Sampling in the field of process monitoring is distinguished from other sampling
methods in different scientific fields according to the data collection approach. Specifically,
sampling involves two decisions that should be made in order to optimize the data col-
lection and sampling process. These parameters are the sample size, which refers to how
many parts should be collected and measured each time, and the frequency of collection,
which denotes how often one should collect data or make a sample. A larger number of
samples is better, but is not always economically ideal. In this regard, there should be
a criterion to judge the appropriate number of samples, such as the average run length,
which provides an indication of the point of time at which a process will go out of control.
Regarding the sample size, in this context, it is well-known that the sample size typically
varies between three and five [38]. Therefore, for this study, we considered ten samples
with five observations in each sample. Three-dimensional printed parts are widely used
in different industries. In this case, we designed a specific part that is commonly used
as a joint in various automotive industries [39] (see Figure 1). This part has three critical
dimension quality characteristics: diameter, height, and wall thickness. It is worth noting
that the part was produced using a 3D printer that operates according to an FFF additive
manufacturing process. The parts during printing and final products are shown in Figure 3.

3.2. Data Collection and Measurement Capability

Furthermore, a data collection process was established to measure the three critical
quality characteristics (i.e., diameter, height, and wall thickness). The measurement process
was conducted using a very precise device called a profile projector, which is shown in
Figure 4. The device model is Multi-Lens Profile Projector VOM-2515. According to the
manufacture, the error of the contour measuring is under 0.08% under illumination. This
measurement device was also examined for its capability to measure the same object various
times consistently. Furthermore, the differences between operators were investigated. For
this test, ten random parts were chosen to study the capability of the measurement system,
where two different operators measured each of these ten parts twice.
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3.3. Proposed Normality Improvement

It is worth noting that most statistical tests are based on the assumption of normally
distributed data; that is, the conclusion of such tests is valid only if the data fit the normal
distribution. The normality assumption can be evaluated through the use of probabil-
ity plots and histograms. Whenever the data are normally distributed, the measured
characteristics may be examined for their correlation directly; otherwise, an appropriate
transformation method should be used to transform the data. An improved Johnson trans-
formation method can be used to transform the data to normality; basically, Table 3 was
used to transfer the data to follow the normal distribution. However, this transformation
does not always perform well. Therefore, another iterative search algorithm was used to
continually change the transformation parameters until the data satisfied the normality
test. The skewness of the data was used as a measure of the data normality, where normal
data have a skewness of zero; a positive skewness indicates that the data are skewed to
the right, whereas negative skewness indicates that the data are skewed to the left. The
skewness has been used in the literature as an indication of data normality, such as in [40].
Thus, the algorithm presented in Figure 5 was used to search for the optimal parameters
for the equations in Table 3, resulting in the minimal skewness of the considered data.
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Table 3. Johnson transformation system [41].

Johnson System Bounded System
(SB)

Log-Normal System
(SL)

Unbounded System
(SU)

Johnson Curve τ3(x, ε, λ) = log
(

x−ε
λ+ε−x

)
τ1(x, ε, λ) = log

( x−ε
λ

)
τ2(x, ε, λ) = sinh−1( x−ε

λ

)
Normal Transformation z = γ + ηln

(
x−ε

λ+ε−x

)
z = γ + ηln(x− ε ) z = γ + ηsinh−1( x−ε

λ

)
Parameters Constraints η, λ > 0

−∞ < γ < ∞

η > 0
−∞ < γ < ∞
−∞ < ε < ∞

η, λ > 0
−∞ < γ < ∞
−∞ < ε < ∞

X Constraint ε ≤ x ≤ ε + λ x ≥ ε −∞ < x < ∞
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The correlations between different quality characteristics were investigated due to the
associated direct effects on the process performance. The process under investigation was
assessed using sample process outputs, where the outputs denote the finished products.
The quality of a product is judged according to the characteristics that are required by the
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customer, and these characteristics are often statistically or functionally correlated. The
existence of a correlation between different characteristics requires their joint monitoring
and evaluation, as the individual evaluation of each characteristic may lead to wrong
conclusions. A functional correlation is judged according to the engineering design and
consumer requirements, whereas a statistical correlation should be tested using statistical
methods. The correlation between two variables can be estimated using Equation (1), where
the value of the correlation coefficient ranges from −1 to 1, indicating the strength and
direction of the relationship between the two variables. A correlation coefficient of −1
between two variables implies a perfect negative relation (i.e., by increasing one variable,
the other is decreased), whereas a correlation of 1 implies a perfect positive relation. The
strength of the relationship varies from strong to weak as the correlation coefficient comes
closer to zero.

rx1x2 =
n∑n

i=1 xijxik −∑n
i=1 xij∑n

i=1 xik√
n∑n

i=1 xij
2
(
∑n

i=1 xij
)2
√

n∑n
i=1 xik

2−(∑n
i=1 xik)

2
, (1)

where n is the sample size and xj and xk denote any two measured variables, such as height
and diameter

3.4. Optimizing the Multivariate Process Variability Monitoring Chart

In this study, the multivariate exponential weighted moving average (MEWMA) chart
proposed by Lowry, Cynthia A., et al. [42] was used to monitor the variability of the
considered process. MEWMA was chosen due to its ability to detect small deviations in
the process mean. MEWMA begins by computing a vector for each variable, as shown in
Equation (2):

zi = λxi + (1− λ)zi−1,
i = 1, 2, . . . , n,

(2)

where n is the number of quality characteristics under investigation;

λ is a constant number, and 0 < λ ≤ 1;
z0 = µi;
xi is the ith quality characteristics;
zi is the MEWMA statistic; and µi is the mean of ith quality characteristics.

Then, the MEWMA chart gives an out-of-control signal and consequently indicates an
unstable process if the following condition occurs:

T2 = zi
′Σzi

−1zi > h4, (3)

where h4 > 0 is estimated to be the value that results in a desired average run length
(ARL), which is a method used to assess the choices made for the sample size and sampling
frequency. ARL is the average number of points that should be drawn prior to a point
showing an out-of-control situation. ∑Zi

denotes the covariance matrix of Zi:

∑Zi
=

λ ∗
(

1− (1− λ)2i
)

2− λ
∗∑, (4)

where ∑ is the covariance matrix of Xi. The covariance matrix Σ is computed for multivari-
ate data xi, and i = 1,2, . . . n. In this study, i = 1, 2, and 3, for height, diameter, and wall
thickness.

However, the MEWMA chart must be optimized by selecting the optimal chart param-
eters. The proposed methodology uses Monte Carlo simulation to optimize the MEWMA
parameters, which involves optimizing the values of λ and h4 that result in ARL = 370,
which is a common ARL value used in the literature [38,43]. For example, p = 0.0027 is the
probability that a point escapes beyond the limits of mean(µ)± 3 ∗ standard deviation(σ)
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while the process is under control. As a result, when the process is under control, the ARL
of the chart is ARL = 1/p = 1/0.0027 = 370.

For this reason, an algorithm was constructed that iteratively searches for the optimal
values of the MEWMA parameters. The proposed methodology is presented in Figure 6.
The algorithm starts by obtaining the multivariate quality characteristic data. These data
are then examined for normality, following which the multivariate data are normalized
according to the equations provided in Table 3. When the data are normally distributed,
the mean and covariance of the considered data are estimated in order to generate large
multivariate data based on these parameters. The initial parameters of MEWMA are
assigned to the algorithm to compute the corresponding MEWMA values Zi, according to
Equation (2). These values are then combined to form a single value T2 for each vector, as
in Equation (3). The values of T2 are judged against the upper control limit h4. An initial
value for the upper multivariate EWMA chart (h4) is suggested, which is further improved
using the proposed MEWMA chart optimization algorithm. For a specific number of
iterations, a large sample of multivariate characteristics is generated and evaluated against
h4. Whenever an out-of-control signal is found, the corresponding observation number
will be registered as an ARL. The process is continued until a preset number of iterations is
met, following which the ARL is taken as the average ARL for all iterations. If the ARL is
equal to 370, the algorithm is stopped and the optimal MEWMA parameters are obtained;
otherwise, an action is taken by changing either λ or h4. Basically, different runs of the
algorithm are performed with different values of h4: each time, a given value of h4 will be
fixed, whereas λ is iteratively changed until ARL = 370 is satisfied.
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4. Results and Discussions
4.1. Data Collection

The quality characteristics of the obtained samples were measured using a very
precise device called a profile projector. Table 4 lists the measurement values. A total of ten
samples were measured, each with a sample size of five. For this purpose, 50 parts were
manufactured in batches of 5 in order to allow for the monitoring of the process using a
sample size greater than one. Three quality characteristics were measured in each part,
namely the height, diameter, and wall thickness of the manufactured parts. Consequently,
a total of 150 measurements were taken using the profile projector.

Table 4. Measurements of height, diameter, and wall thickness of 3D-printed parts.

QC\Sample 1 2 3 4 5 6 7 8 9 10

Height

1 11.935 11.9165 11.921 11.851 11.945 11.919 11.901 11.9045 11.956 11.948

2 11.9505 11.9705 11.932 11.89 11.9455 11.9425 11.9115 11.9015 11.966 11.9358

3 11.9585 11.939 11.9295 11.9615 11.976 11.948 11.94 11.9245 11.9705 11.939

4 11.942 11.945 11.8035 11.9665 11.9635 11.9435 11.9125 11.907 11937 11.935

5 11.9005 11.965 11.97 11.891 11.972 11.925 11.90005 119505 11.9555 11.95

Diameter

1 14.481 14.3155 14.47 14.4615 14.5255 14.5045 14.4515 14.3355 14.412 14.495

2 14.37 14.362 14.4775 14.406 14.3885 14.3135 14.335 14.3865 14.3725 14.409

3 14.383 14.37 14.404 14.427 14.3665 14.3595 14.7705 14.4475 14.343 14.3735

4 14.4055 14.3615 14.3 14.4095 14.3665 14.3745 14.436 14.364 144455 14.4665

5 14.365 14.444 14.394 14.4355 14.392 14.387 14.4335 143815 14.382 14.4585

wall
thickness

1 0.5045 0.422 0.4395 0.427 0.533 0.427 0.4365 0.443 0.44 0.52

2 0.442 0.461 0.4485 0.454 0.4265 0.435 0.4385 0.4425 0.4475 0.4455

3 0.4735 0.43656 0.449 0.4315 0.4285 0.4435 0.486 0.445 0.4325 0.4595

4 0.4355 0.457 0.4525 0.4515 0.4365 0.424 0.444 0.4415 4470 0.513

5 0.4465 0.504 0.453 0.4495 0.4505 0.4355 0.447 0.433 0.4365 0.5215

4.2. Capability of the Measurement System

In any measurement system, it is necessary that the measurement system is accurate
and precise. Accurate means that the measurement system measures correctly, whereas
precise means that it gives the same measurement each time it is used for measuring the
same object. However, it is useful to ensure the capability of the measurement system and
that it is free of built-in errors or imprecisions using the gauge R&R method or repeatability
and reproducibility measures. It is worth noting that there are generally variations from
part to part associated with the manufacturing process. However, the measurement system
may add more variations between parts if there are measurement errors. In this regard, the
variation from part to part and gauge system variation may be considered good at values
of around 10% and acceptable up to 30%. However, a variation greater than 30% is the
maximum acceptable variability of the measurement system with respect to the tolerance
of the process, such that corrective action should be taken [44].

Therefore, ten specimens were selected to be measured by three operators, where each
operator measured each specimen twice. The measurements are presented in Table 5.



Processes 2023, 11, 1216 12 of 19

Table 5. Measurement system variation test data.

No.
Operator 1 Operator 2

Trial 1 Trial 2 Trial 1 Trial 2

1 14.3455 14.3686 14.373 14.3562
2 14.475 14.476 14.454 14.461
3 14.3685 14.3535 14.303 14.3275
4 14.327 14.3415 14.337 14.3395
5 14.3684 14.388 14.296 14.2765
6 14.3455 14.31 14.336 14.3615
7 14.369 14.364 14.2995 14.308
8 14.3255 14.33 14.341 14.3475
9 14.3975 14.4095 14.3685 14.373
10 14.3545 14.3585 14.3185 14.311

The results of the gauge R&R test are provided in Table 6. The results indicate that
the repeatability variation—which indicates the accuracy of the measurement device—was
small (5.73%), and most of the measurement system variation was due to part-to-part
deviations. The contribution of the measurement system variation to the total variation
was 18% of the total variation, which includes the variations due to the measuring device
(repeatability) and the variations among different operators (reproducibility).

Table 6. Gauge R&R test results.

Source Variance Components Contribution (%)

Total Gauge R&R 0.0004172 18.95
Repeatability 0.0001261 5.73

Reproducibility 0.0002911 13.23
Part-To-Part 0.001784 81.05

Total Variation 0.0022012 100

4.3. Normality Assumption

Next, the normality of the data was investigated. Figure 7 presents the normality
plots for the weight, diameter, and wall thickness characteristics. Notably, the data for the
three characteristics were not centered around a straight line. Furthermore, there were
many outliers, especially in the wall thickness data, and the p-values corresponding to
the three characteristics were all less than 0.05. These three indicators (off-center data,
existence of outliers, and small p-values) all indicate a deviation in the data from the normal
distribution. The y1, y2, and y3 are the transformations of the three characteristics data,
respectively. Figure 7 shows the improvement after the transformation using an improved
Johnson transformation. The data become more centered around the straight line and the
p-values increase.

Based on the results of the normality test, the transformation algorithm described
in Figure 5 was used to transform the data to a normal distribution. For this purpose, a
MATLAB code was developed to construct the suggested algorithm. The skewness was
used as a measure of the accuracy of the transformation, or as a measure of the normality.
As mentioned above, zero skewness indicates normal distribution, whereas positive and
negative skewness indicate a right and left skew of the data, respectively. Table 7 shows the
skewness results for the original, Johnson-transformed, and improved Johnson-transformed
data. The results reveal that the Johnson transformation could reduce the absolute skewness
of the data, whereas the iterative search further improved the skewness result. It is worth
noting that negative and/or positive skewness can be further improved using the improved
Johnson algorithm, whereas positively skewed data can be transformed by the Johnson
transformation directly.
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Figure 7. Normality plots for height, wall thickness, and diameter characteristics.

Table 7. Skewness of the original and transformed data.

QC Original Data
Skewness

Johnson Data
Skewness

Improved Johnson
Data Skewness

Height (x1) −0.2640 −0.4524 0.0061

Diameter (x2) 3.1381 −0.1212 −0.0245

Wall thickness (x3) 1.7167 0.4963 0.4963

We used the MATLAB software to improve the quality of the transformation of the
non-normal data, allowing it to become normally distributed. Consequently, the skewness
of the transformed data was dramatically improved by designing an appropriate algorithm
based on changing the parameters of the transformation function iteratively and evaluating
the corresponding results against the original. Table 7 presents the skewness values for the
considered three quality characteristics of the 3D-printed parts (height, x1; diameter, x2;
and wall thickness, x3), with the skewness values of the same data after transformation by
the two considered methods. The table clearly demonstrates the large differences between
original and Johnson-/improved Johnson-transformed data in terms of skewness.

The correlation matrix between the three quality characteristics (height, diameter, and
wall thickness) is presented in Table 8. The results indicate that the correlation between
diameter and wall thickness was positive and moderate (r = 0.761). As there exists a
correlation between the considered quality characteristics, these characteristics should be
studied together in the multivariate analysis.

Table 8. Correlation matrix.

Height Diameter Wall Thickness

Height 1
Diameter 0.020 1

wall thickness 0.171 0.761 1

For the above analysis, a Pearson correlation test was conducted. This test requires the
relationships between the investigated variables to be linear. Therefore, it is important to
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validate the linearity assumption. The scatter diagram is ideal for visualizing the type of re-
lationship or judging the existence of a curvilinear relationship between two variables. The
two quality characteristics (diameter, wall thickness, and their corresponding transformed
data) were plotted in scatter diagrams to investigate the relationships between each pair, as
shown in Figure 8 The graph shows a positive trend for diameter and wall thickness data,
whereas a negative trend can be observed for the transformed data. Regarding the type of
relationship, some constant linear patterns can be observed at the beginning of the data;
however, a positive or negative linear pattern can be seen as the data values increase. The
interpretation of the existing negative correlation between the transformed data, in contrast
to the original data, is attributed to the transformation of each quality characteristic data
separately using different parameters, especially when using an iterative search to further
improve each type of transformed data.
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It is noticed that the most correlated values are those of high observations. This led to
an investigation in this study to conduct an outlier test to ensure the existence of outlier
values within the collected data. Table 9 shows the results of Grubbs’ test of outliers. The
test revealed that, out of four tested variables, the diameter variable has one outlier value.

Table 9. Grubbs’ test of outliers.

Variable N Mean StDev Min Max G p

Diameter 50 14.414 0.076 14.3 14.771 4.69 0

Wall thickness 50 0.45197 0.02684 0.422 0.533 3.02 0.078

y2 50 −2.3558 0.3567 −3.4019 −1.3031 2.95 0.102

y3 50 −0.1325 0.5433 −1.5 1.5 3 0.083

Outlier

Variable Row Outlier

Diameter 27 14.7705

4.4. Multivariate Exponential Moving Average Chart

Constructing multivariate quality control charts begins with grouping all multivariate
characteristics into a single factor. This is called dimension reduction, which is essential
in establishing multivariate quality characteristics. Dimension reduction in the multivari-
ate exponential moving average chart begins by using the equations mentioned earlier.
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After transforming the data to a normal distribution, each quality characteristic datum is
transformed to an MEWMA statistic using Equation (3). Table 10 presents the mean and
variance of original (x), transformed (y), and MEWMA statistic (z) data. The MEWMA
statistic (z) data were obtained according to Equation (3), using a suggested value for λ.
For the values presented in Table 10, the used λ value was 0.1. In fact, this is not a rule,
and the choice of λ is subject to many considerations, such as the associated variability in
the process and control limit. Therefore, this section details the optimization of MEWMA
parameters, such as λ and h4.

Table 10. Mean and variance of original (x), transformed (y), and standardized (z) data.

Measure
Original Data Transformed Data Standardized Data

x1 x2 x3 y1 y2 y3 z1 z2 z3

Average 11.9397 14.4311 0.4599 −0.2976 −2.3558 −0.1325 −0.2438 −1.9299 −0.1287

STD 0.0208 0.1111 0.0367 0.0344 0.3531 0.5378 0.0714 0.4769 0.1094

The multivariate exponential moving average chart parameters were optimized, where
the best values of λ and control limits were chosen. λ is used to transform the data into
standardized data. In addition, it is used in the formula for reducing the dimensionality
of the multivariate data to a single factor. Its value ranges from zero to one. Each chosen
value of λ results in a different optimal control limit (h4). The optimal control limit (h4) is
chosen based on an average run length of 370. The reduced factor T2 is used to monitor
the variability of the process. To determine the variability of the considered additive
manufacturing process, the mean and standard deviation of T2 are used to generate large
samples of normal data, which are evaluated against the control limit.

In this regard, a MATLAB code was designed to estimate the optimal control limit (h4)
for T2 data. The optimal limit is that which results in an ARL equal to 370 runs. In other
words, the control limits that approximately cause the T2 data to signal an out-of-control
pattern are considered as optimal. It is worth noting that T2 (and, consequently, the control
limits) are based on choosing the value of λ; that is, different values of λ result in different
T2 and different control limits.

For each combination of λ and h4, large samples were generated 1000 times, and the
ARL was calculated for each iteration as shown in Table 11. The optimal ARL was set as
370 runs. The value of λ was first fixed, and the ARL was calculated for each value of
h4. First, h4 was set as the value of the mean plus half of the standard deviation. With
each iteration, h4 was increased by half of the standard deviation of the data, up to three
standard deviations. Changing λ has no significant effect on the ARL value; however,
different values of h4 led to different ARL values, with the ARL increasing exponentially
along with an increase in h4.

The optimization of the MEWMA parameters revealed that the considered additive
manufacturing process was relatively stable. In particular, the natural tolerance (the mean
plus three standard deviations) revealed an ARL larger than 370 runs. This indicates that
this process will present an out-of-control signal after 370 runs when h4 is set to the mean
plus 2.8 standard deviations. To illustrate the stability of the process, Figure 9 shows the
control chart of the process. Clearly, the plotted means are far from the control limit (h4).
However, the chart in Figure 9 also shows an increasing trend in the beginning of the chart;
this is due to the nature of the chart calculations, which start with very small data and move
toward the center line before showing stability. Stability is indicated by the points after
crossing the center line, which are plotted horizontally. As the increase in the plotted data
reduces, the process is predicted to be in control when more samples have been plotted.
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Table 11. ARL values under different MEWMA parameters.

UCL (h4)
λ Values

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

h4 = µ + 0.5 × σ 3 3 3 3 3 3 3 3 3 3
h4 = µ + 1 × σ 7 6 6 6 6 6 6 6 6 6

h4 = µ + 1.5 × σ 15 15 15 15 15 15 16 15 15 15
h4 = µ + 2 × σ 45 44 44 43 44 46 44 45 43 44

h4 = µ + 2.5 × σ 167 159 164 160 160 160 170 157 161 166
h4 = µ + 3 × σ 724 733 754 727 747 753 754 733 748 727

h4 = µ + 2.6 × σ 215 203 215 218 218 217 219 219 217 211
h4 = µ + 2.7 × σ 280 293 280 287 303 295 298 281 289 297
h4 = µ + 2.8 × σ 385 387 385 390 401 400 401 386 392 389
h4 = µ + 2.9 × σ 520 530 520 517 533 531 528 542 527 512
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5. Conclusions

AM processes are widely applied in different real-life applications to manufacture
various products that must possess high-quality characteristics and precise dimensions.
To achieve this goal, AM processes should be monitored using appropriate methods,
such as the approach proposed in this paper. An effective monitoring process starts
by focusing on the critical-to-quality characteristics, which are obtained according to
customer requirements and engineering designs. When a product has more than one
QC, they should be monitored jointly when they are statistically and/or functionally
correlated. Practically, the data of different characteristics of a single product may be
reduced to one index, which can then be used to monitor the stability of the considered
AM process. It is worth noting that most real industry data are not normally distributed.
Therefore, we presented an improved Johnson transformation algorithm. This proposed
algorithm is based on optimizing the Johnson transformation with respect to the objective
of minimizing the absolute value of the skewness of the data. When transforming the data,
improving the skewness of the data has been recommended as an effective measure of
normality. Moreover, the literature has suggested using a profiler projector to measure the
considered dimensions, which was evaluated using a gauge R&R test and was shown to be
capable of reliably repeating the same measurement. Finally, we investigated choosing the
appropriate multivariate chart to monitor the considered process in terms of optimizing
the chart parameters against the average run length. As a result, we proposed a heuristic
optimization algorithm, which was implemented using MATLAB to simulate the process
under different parameters. The optimized parameters were the values of the MEWMA
chart constant and the upper control limit (h4). Generally, the values of the MEWMA chart
constant ranged between 0 and 1, while the upper control limit (h4) was set to be in the
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range of the mean plus 0.5–3 standard deviations (σ) of the process. Simulation codes were
run to generate very large replicate samples to evaluate the ARL against each configuration
of the chart parameters.

Moreover, this work suggests future research directions to be investigated. Some
of these directions evaluate the FFF process in term of engineering specifications. An
evaluation of the AM process could be conducted using the process’s outputs against
specifications. Process capability analysis is one of the quality tools that can be used to
evaluate the capability of the process to meet the desired specification limits. Using process
capability indices for multivariate AM processes’ responses or quality characteristics is
a promising research direction. In addition, multi-response optimization using quality
characteristics is another research direction. Each AM process has many parameters that can
be changed to influence the different responses of the process. Studying curves of different
responses simultaneously is expected to reveal important findings. The multiple responses
can be treated together by using multivariate process capability indices. This work can also
be applied to more complex scenes, such as corners, 3D lattices, and geometrical cylindricity
to figure out the dimensional accuracy with different designs. Moreover, the measurement
system is another research point. In this context, various measurement systems can be
compared. In addition, analyzing the repeatability of the measure can be extended to
involve more than two operators.
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