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Abstract: In the medical domain, early identification of cardiovascular issues poses a significant
challenge. This study enhances heart disease prediction accuracy using machine learning techniques.
Six algorithms (random forest, K-nearest neighbor, logistic regression, Naïve Bayes, gradient boosting,
and AdaBoost classifier) are utilized, with datasets from the Cleveland and IEEE Dataport. Optimiz-
ing model accuracy, GridsearchCV, and five-fold cross-validation are employed. In the Cleveland
dataset, logistic regression surpassed others with 90.16% accuracy, while AdaBoost excelled in the
IEEE Dataport dataset, achieving 90% accuracy. A soft voting ensemble classifier combining all six
algorithms further enhanced accuracy, resulting in a 93.44% accuracy for the Cleveland dataset and
95% for the IEEE Dataport dataset. This surpassed the performance of the logistic regression and Ad-
aBoost classifiers on both datasets. This study’s novelty lies in the use of GridSearchCV with five-fold
cross-validation for hyperparameter optimization, determining the best parameters for the model,
and assessing performance using accuracy and negative log loss metrics. This study also examined
accuracy loss for each fold to evaluate the model’s performance on both benchmark datasets. The
soft voting ensemble classifier approach improved accuracies on both datasets and, when compared
to existing heart disease prediction studies, this method notably exceeded their results.

Keywords: heart disease prediction; machine learning; soft voting ensemble classifier; performance matrices

1. Introduction

Statistics from the World Health Organization (WHO) indicate that heart disease is
a major threat to humans worldwide [1]. Heart disease can be caused by many different
things, including high blood pressure, obesity, excessive cholesterol, smoking, unhealthy
eating habits, diabetes, and abnormal heart rhythms [2]. Most patients die from heart
disease as a result of an inadequate diagnosis at the initial phase. Therefore, it is imperative
to use efficient disease classification and prediction algorithms to comprehend disease
prediction. In contrast, it is necessary to implement a more accurate model in order to
predict heart disease. An assessment of the accuracy of a model to predict heart-related
diseases is based on its precision, F1 score, and recall performance. Association rules can
also improve the prediction accuracy for heart disease models. The use of association rules
on medical datasets produces a number of regulations. Most of these rules do not have any
medical relevance. Furthermore, finding them can be time-consuming and impractical. This
is due to the fact that the association rules are drawn from the available dataset rather than
being based on an independent sample. Hence, to identify early-stage predictions for heart
disease, search constraints are applied to actual datasets containing patients with heart
disease. Using search constraints, a rule-generation algorithm has been used for the early
detection of heart attacks [3]. Moreover, recent advances in healthcare technology have
driven the development of machine learning (ML) systems for the prediction of human
health diseases [4–6]. There have been many researchers working on the development
of improved ML models. The primary objective of the ML technique is to generate com-
puter code that can access and use current data to predict future data [7]. Additionally,
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there are some tried-and-true methods for improving the accuracy of the model. These
include adding more information to the dataset, treating missing and outlier values, feature
selection, algorithm tuning, cross-validation, and ensembling. This paper implements Grid-
searchCV hyperparameter tuning and five-fold cross-validation to evaluate the model’s
performance on both benchmark datasets. It also employs an ensemble voting classifier to
improve model accuracy, aiming to enhance ML model accuracy. This article presents the
following significant work:

• This work examines and implements six major ML algorithms on the Cleveland and
IEEE Dataport heart disease datasets, analyzing performance classification metrics.

• In the early phase, various ML classifier techniques, including random forest (RF), K-
nearest neighbor (KNN), logistic regression (LR), Naive Bayes (NB), gradient boosting
(GB), and AdaBoost (AB) were trained.

• The GridsearchCV hyperparameter tuning method with five-fold cross-validation and
performance assessment using accuracy and negative log loss metrics was employed
to achieve the highest level of accuracy.

• Finally, all classifiers were combined using a soft voting ensemble method in order to
increase the accuracy of the model.

2. Literature Review

Several new research opportunities in healthcare have been enabled by advances in
ML and advances in computing capabilities [8]. Various researchers have proposed ML
algorithms to enhance the accuracy of disease prediction [9–11]. To refine the precision of
the outcomes, much of the research has meticulously evaluated the presence of missing
data in the dataset, a crucial aspect in the data preprocessing process. Gupta et al. [12]
used Pearson correlation coefficients and different ML classifiers to replace missing values
in the Cleveland dataset. Rani et al. [13] have investigated multiple imputations by the
chained equations (MICE) method to deal with the missing values problem. In this case,
missing values are imputed through a series of iterative predictive models. During each
iteration, each variable in the dataset is assigned using the other variables. In another
work, Jordanov et al. [14] proposed a KNN imputation method for the prediction of both
continuous (average of the nearest neighbors) and categorical variables (most frequent).
Another study used an LR model to classify cardiac disease with an accuracy of 87.1% after
cleaning the dataset and identifying missing values at the time of preprocessing [15]. In
contrast, some researchers have eliminated missing values. Based on DT, LR, and Gaussian
NB algorithms, the features are reduced from 13 to 4 using feature selection method
and reported an accuracy of 82.75% [16]. A hybrid random forest (RF) with the linear
model was developed by Mohan et al. [17] and improved the accuracy of 297 records and
13 characteristics of the Cleveland dataset for heart disease prediction. Kodati et al. [18]
tested several types of classifiers using Orange and Weka data-mining tools to predict heart
disease with 297 records and 13 features.

In addition, the feature selection method plays an important role in improving the
accuracy of the model. To select features, Shah et al. [19] utilized probabilistic principal
component analysis (PCA). The Cleveland dataset was used by R. Perumal et al. [20] to
develop LR and support vector machine (SVM) models with similar accuracy levels (87%
and 85%, respectively). To train the ML classifiers, they used a dataset of 303 data instances
and standardized and reduced features using PCA. In another study, a particle swarm opti-
mization (PSO) technique was used to select features [21]. In contrast, Yekkala et al. [22]
used a rough set-based feature selection method along with the RF algorithm and obtained
an accuracy of 84%. Saw et al. [23] used a random search to find the best parameters to build
an accurate prediction model. It was found that this approach uses LR for classification
and is 87% accurate at predicting heart attacks. Other works have used both methods
and predicted the accuracy using different algorithms. The model presented by Otoom
et al. [24] used NB, SVMs, and available trees to achieve an accuracy of 84.5%. Vemban-
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dasamy et al. [25] proposed an NB classifier for predicting heart disease and achieved an
accuracy of 84.4%.

Further, to determine the optimum combination of heart disease predictors, Gazeloglu
et al. [26] evaluated 18 ML models and three feature selection techniques for the Cleveland
dataset of 303 instances and 13 variables. Recently, ten classifiers were trained to identify
the most effective prediction models for precise prediction [27]. The most suitable attributes
were identified using three methods of attribute selection, including a feature subset
evaluator based on correlation, a chi-squared attribute evaluator, and a relief attribute
evaluator. Furthermore, a hybrid feature selection method aimed at enhancing accuracy
by incorporating RF, AB, and linear correlation was suggested by Pavithra et al. [28].
The implementation of this technique led to a 2% increase in the accuracy of the hybrid
model, following the selection of 11 features through a combination of filter, wrapper, and
embedded methods. To further enhance the accuracy, researchers have used the ensemble
technique to combine different algorithms. The ensemble method for detecting heart
disease was developed by Latha et al. [29] by combining NB, RF, multilayer perceptrons
(MLP), and Bayesian networks based on majority voting (MV). They achieved an accuracy
of 85.48%. It was also employed by an ensemble model with five classifiers, including a
memory-based learner (MBI), an SVM, DT induction with information gain (DT-IG), NB,
and DT initiation with the Gini index (DT-GI) [30]. As the datasets in the authors’ study
contained only pertinent attributes, there was no feature selection. A pre-processing step
has been performed to eliminate outliers and missing values from the data. Tama et al. [31]
developed an ensemble model to diagnose heart disease with an accuracy rate of 85.71%.
The ensemble model utilized GB, RF, and extreme GB classifiers. Alqahtani et al. [32]
developed an ensemble of ML and deep learning (DL) models to predict the disease with
an accuracy rate of 88.70%. This study employed a total of six classification algorithms.
Trigka et al. [33] developed a stacking ensemble model after applying SVM, NB, and
KNN with a 10-fold cross-validation synthetic minority oversampling technique (SMOTE)
in order to balance out imbalanced datasets. This study demonstrated that a stacking
SMOTE with a 10-fold cross-validation achieved an accuracy of 90.9%. Another study used
stochastic gradient descent classifiers, LR, and SVM to develop a model with an accuracy of
93% using multiple datasets [34]. For further improving accuracy, Cyriac et al. [35] utilized
seven different machine-learning models as well as two ensemble methods (soft voting
and hard voting). With this approach, the highest accuracy score was achieved at 94.2%.
Another study developed a combined multiple-classifier predictive model approach for
better prediction accuracy [36]. Five classifier models are combined with Cleveland and
Hungarian datasets. A total of 590 data-valid instances and 13 attributes were taken into
consideration. A baseline accuracy of 93% was achieved using the Weka data-mining tool.

In 2020, Manu Siddhartha created a new dataset by combining five well-known heart
disease datasets—Switzerland, Cleveland, Hungary, Statlog, and Long Beach VA. This
new dataset includes all the characteristics shared by the five datasets [37]. In the same
dataset, Mert Ozcan et al. [38] investigated the use of a supervised ML technique known
as the Classification and Regression Tree (CART) algorithm to predict the prevalence of
heart disease and to extract decision rules that clarify the associations between the input
and output variables. The outcomes of the investigation further ranked the heart disease
influencing features based on their significance. The model’s reliability was corroborated
by an 87% accuracy in the prediction. Other researchers Rüstem Yilmaz et l. [39] worked to
compare the predictive classification performances of ML techniques for coronary heart
disease. Three distinct models using RF, LR, and SVM algorithms were developed. Hyper-
parameter optimization was performed using a 10-fold repeated cross-validation approach.
Model performance was assessed using various metrics. Results showed that the RF
model exhibited the highest accuracy of 92.9%, specificity of 92.9%, sensitivity of 92.8%,
F1 score of 92.8%, and negative predictive and positive predictive values of 92.9% and
92.8%, respectively.
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In the field of predictive modeling, there is a constant pursuit to enhance the accu-
racy of classification and forecast models. The classification models are deployed to label
data points while forecast models are used to predict future values. A suitable combina-
tion of models and features can enhance the accuracy of these models. Bhanu Prakash
Doppala et.al [40] proposed a model that was evaluated on diverse datasets to determine
its efficacy in improving accuracy. The evaluation involved testing the model on three
datasets: the Cleveland dataset, a comprehensive dataset from IEEE Dataport, and a cardio-
vascular disease dataset from the Mendeley Data Center. The results of the proposed model
exhibited high accuracy rates of 96.75%, 93.39%, and 88.24% on the respective datasets.

In contrast to the above work, the ensemble classifier is implemented using six ML
models on the Cleveland heart disease dataset [41] and the IEEE Dataport heart disease
datasets (comprehensive) [42]. This study used six ML algorithms: RF, KNN, LR, NB, GB,
and AB. A GridsearchCV hyperparameter method and five-fold cross-validation methods
were employed to obtain the best accuracy results before implementing the models. The
hyperparameter values provided by GridsearchCV enhance the accuracy of the model.
Using these parameters, the accuracy of six different algorithms is verified and the most
accurate algorithm is determined. Additionally, the ensemble method was applied to the
proposed algorithms in order to enhance their accuracy. This method boosts overall model
accuracy from 90.16% (LR) to 93.44%, and from 90% (AB) to 95% using soft-voting ensemble
classifiers on Cleveland and IEEE datasets.

3. Resources and Approaches

This section describes the methods to predict heart disease using the two benchmark
publicly available datasets. This study consists of various phases, from the collection
of data to the prediction of heart disease. In the first phase, data can be pre-processed
using feature scaling and data transformation methods. The proposed model is built using
multiple ML algorithms as the next step. An ensemble approach is used in the next phase
of the process to enhance the model’s accuracy. Figure 1 shows a detailed diagram of the
workflow architecture.
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3.1. Description of the Datasets

Dataset I: The UC Irvine ML Repository-Cleveland dataset, which contains 303 in-
stances and 14 attributes, is included in this dataset.

Dataset II: The IEEE Dataport heart disease dataset (comprehensive) comprises 12 multivariate
attributes and 1190 instances, which are included in this dataset.

The availability of these datasets can accelerate research in the field of heart disease
prediction and lead to the development of more accurate and effective diagnostic tools.

3.2. Data Pre-Processing

This study preprocesses Dataset I and Dataset II heart disease datasets before construct-
ing the predictive model with ML. Since these datasets have undergone extensive prepro-
cessing and cleaning, they are easier to use and require less time and effort for data prepa-
ration. Additionally, they are well documented and frequently cited in scientific literature.

In both datasets, a target attribute integer value indicates the presence of a patient’s
heart disease. If the value is 0, there is no heart disease, and if it is 1, there is heart disease.
Based on gender, the attribute ‘sex’ consists of two classes: 1 for males and 0 for females.
There are four classes of chest pain in the attribute ‘cp’ (chest pain type) two classes of
fasting blood sugar in the attribute ‘fbs’ (fasting blood sugar) three classes of resting
electrocardiograms in the attribute ‘restecg’ (resting ecg) and two classes of exercise in the
attribute ‘exang’ (exercise angina). Additionally, ‘slope’ (ST slope) is composed of three
classes. The remaining four attributes, such as ‘trestbps’ (resting bp s), ‘chol’ (cholesterol),
‘age’, and ‘oldpeak’, are considered numerical values. There are different steps involved in
data pre-processing, from reading data to splitting data for training and testing. The steps
are illustrated in Figure 2.
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The data pre-processing process begins by identifying and addressing missing or
duplicate values in the dataset. The presence of missing data in a dataset implies incom-
pleteness, which can affect the statistical significance of the results obtained from the model
analysis. When data are missing, the overall accuracy and validity of the analysis may be
compromised. Therefore, to maximize the effectiveness of the analysis, it is recommended
to fill in missing values either with a user-defined constant or the average value of the
dataset, rather than completely suppressing the observations. The detailed explanation
of each attribute presented in Tables 1 and 2 describes both datasets. Initially, Dataset
I contained 303 instances, out of which one duplicate row was removed. As a result, a
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dataset of 302 unique instances was obtained, with 164 instances corresponding to patients
with heart disease and 138 instances corresponding to patients without heart disease. In
Dataset II, we identified no missing values. Additionally, 272 duplicate instances have
been identified. Therefore, to complete the dataset, the duplicate instance was removed.
Among these, 508 instances correspond to patients with heart disease, and the remaining
410 instances belong to patients without heart disease.

Table 1. Attributes for the heart disease dataset.

Sr. No. Attribute Icon Attribute Name Description

1 Age Age Patient age

2 Sex Gender For males indicates 1, females 0

3 Chest pain type Chest pain type Chest pain: (1) angina—0, (2) atypical angina—1,
(3) non-anginal pain—2, and (4) asymptomatic—3.

4 Resting blood pressure Rest state blood pressure
(mm/Hg)

Resting blood pressure upon hospital admission,
measured in mm/Hg.

5 Serum cholesterol Serum cholesterol (fat) Blood cholesterol level measured in mg/dL.

6 Fasting blood sugar Fasting blood sugar (not eating)
If the blood sugar level is over 120 mg/dL after a fast of not
eating overnight, it is considered to be high (1—true). If it is
below 120 mg/dL, it is considered to be normal (0—false).

7 Resting ECG Rest ECG test
An EsCG test result can be categorized as follows: 0 for a

normal result, 1 for the presence of ST-T wave abnormality,
and 2 for left ventricular hypertrophy.

8 Max. heart rate Max. heart rate achieved Max heart rate during exercise.

9 Exercise angina Exercise-induced angina Angina occurred by a workout, 0 for no; 1 for yes.

10 Oldpeak ST depression (ECG test) ST depression due to exercise relative to relaxation will
observe in the ECG test

11 ST slope Slope (ST depression) Maximum workout 1 for upsloping; 2 for flat;
3 for down sloping)

12 Ca No. of vessels (0–3) The number of major blood vessels that can be visualized
using fluoroscopy can range from 0 to 3.

13 Thal Thalassemia (hemolytic disease)

Thalassemia is a blood disorder caused by abnormal
hemoglobin production, with a score of 3 indicating

normal production, 6 indicating permanent deficiency, and
7 signifying temporary impairment.

14 Target Heart failure class attribute No heart disease—0; heart disease—1

Table 2. Description of Datasets I, II.

Datasets Classes Attributes Instances

Cleveland (Dataset I) 0—(no heart disease)
1—(heart disease) 14 303

IEEE Dataport (Dataset II) 0—(no heart disease)
1—(heart disease) 12 1190

However, some attributes in the data have large input values that are incompatible
with other attributes, which results in poor learning performance. Therefore, to make it
compatible with other attributes, data exploration was performed to visually explore and
identify relationships between them. This is accomplished through the use of a one-hot
encoding method. One-hot encoding is performed using features such as cp, thal, and
slope for the available datasets. Those three features are further subdivided into cp_0 to
cp_3,thal_0 to thal_3, and slope_0 to slope_2 features and merged into the original datasets.
After exploring the data, the data were scaled for further processing. This is essential when
using the dataset for a KNN. In order to make it compatible with all algorithms, a large
number of features have been scaled down. As a result, ML models perform better.
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Feature scaling involves two essential techniques called standardization and normal-
ization. In standardization, the mean is subtracted from the distribution shifts and divided
by the standard deviation. The act of subtracting the average from the data points is referred
to as centering while dividing each data point by the standard deviation is called scaling.
Standardization helps maintain the presence of outliers, making the resulting algorithm
less susceptible to influences compared to one that has not undergone standardization.
Standardizing a value can be accomplished using the following equations from (1) to (3).

x′ =
x− µ

σ
(1)

Here, x is the participation value, x’ is the standardized value, µ the mean, and σ is the
standard deviation. These can be calculated as follows:

µ =

N
∑

i=1
x

N
(2)

When referring to a dataset, N represents the total number of columns in the attribute
being scaled. From the available dataset, age, trestbps, chol, and oldpeak features have
large dimensional values. Hence, the standard scalar is used to convert these feature values
into uniform scaling.

σ =

√√√√ 1
N

N

∑
i=1

(xi − µ)2 (3)

After scaling the large feature values, min-max scaling is applied for normaliza-
tion. This technique is appropriate for data distributions that do not follow a Gaussian
distribution. As a result of normalization, feature values become bounded intervals be-
tween the minimum and maximum. For min-max scaling, normalize the data using
Equation (4) below.

x′ =
x− xmin

xmax − xmin
(4)

Here, xmin and xmax are the minimum and maximum values of the respective feature
in the dataset. With the use of the above equation, all the features are normalized [0,1]. The
last step in pre-processing involved dividing the data into two subsets, known as training
and testing data, after normalizing the data. The split was carried out in such a way that
80% of the available data was allocated for training and the remaining 20% for testing.
This division enabled the training and evaluation of various ML classifiers by testing their
accuracy using the training and testing datasets. An exploratory data analysis (EDA) is also
conducted prior to discussing each algorithm used to predict heart disease. A description
of the descriptive statistics and the information regarding the correlation matrix cannot be
presented here for brevity.

3.3. Performance Measures

This study applied various ML algorithms such as RF, KNN, LR, NB, GB, and AB to
predict heart disease. Before using the ML algorithms, a number of matrices such as the
confusion matrix, receiver operating characteristics (ROC), the area under curve (AUC),
learning curve, and precision-recall curve are briefly described in the following subsection.

1. Confusion matrix

The confusion matrix provides a visual representation of the algorithm’s performance.
The confusion matrix table makes it easy to visually inspect the prediction errors. The
confusion matrix depicted in Figure 3 comprises four components: true negatives (TNs),
false positives (FPs), false negatives (FNs), and true positives (TPs). The matrix showcases
actual class instances as rows and predicted class instances as columns (or vice versa) [43].
The confusion matrix serves not only as a visual representation of errors, but can also
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include various metrics such as precision, recall, and F1. Each metric holds its significance
and is applied in specific situations.
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Figure 3. The confusion matrix.

• Precision

It is calculated based on the total number of predictions made by the model. The
percentage of correct predictions is then divided by the total number of predictions [44].
This can be defined as the ratio of the TP to the total prediction (TP + FP) made by the
model. It can be expressed as an equation in (5).

Pr ecision =
TP

TP + FP
(5)

• Precision

A second significant metric is recall, which is also known as sensitivity or the true
positive rate [45]. This can be determined by determining the proportion of positive
observations that were accurately predicted in relation to the overall number of positive
observations. Thus, recall indicates the range of positive classes. As an equation, it can be
written as (6).

Re call =
TP

TP + FN
(6)

A good classifier should have precision and recall of one, which corresponds to a FP
and FN equal to zero. It is better to consider both precision and recall if the cost of the FP
and FN is very different. Consequently, precision and recall need to be considered when
there is an uneven distribution of classes. Therefore, the F1 score can be regarded as a
measure of both precision and recall [46].

• Precision

The F1 score is obtained by taking the average of precision and recall. This metric
has generally been considered to be a reliable method for comparing the performance of
different classifiers, particularly when the data are unbalanced. F1 scores are calculated by
considering both the number of prediction errors and the type of errors the model makes.
As an equation, it can be written as (7).

F1-Score =
2× (Pr ecision× recall)

Pr ecision + Re call
(7)
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2. ROC curve and AUC

ROC curves are utilized as a means of evaluating the performance of classification
algorithms. The curve plots the true positive rate (TPR), also referred to as recall, against
the false positive rate (FPR) at various threshold values [47]. The TPR is calculated using
Equation (6), while the FPR is determined through Equation (8). This representation helps
to distinguish between the actual positive results and false results (noise).

FPR =
FP

FP + TN
(8)

The TPR is plotted on the Y-axis, while FPR is plotted on the X-axis. Thus, it is
necessary to utilize a method referred to as AUC in order to calculate the values at any
threshold level efficiently [48]. AUC measures the performance of a classifier across
different thresholds as indicated by the ROC curve. In general, the AUC value ranges
from 0 to 1, which suggests a good model will have an AUC close to 1, which indicates
a high degree of separation. The ROC curve represents how well a classification model
performs across all classification thresholds. On this curve, two parameters are plotted.
The ROC space is divided by the diagonal. Points above the diagonal indicate successful
classification; points below the line indicate unsuccessful classification. The valuation of
the AUC curve is explained in Table 3.

Table 3. Valuation of the area under the curve.

Area Under the Curve (AUC) Understanding

0.90 ≤ AUC Exceptional
0.80 ≤ AUC < 0.90 Decent
0.70 ≤ AUC < 0.80 Reasonable
0.60 ≤ AUC < 0.70 Unfortunate
0.50 ≤ AUC < 0.60 Flop

3. ROC curve and AUC

Using a learning curve, we can determine how much more training data will benefit
our model. It illustrates the relationship between training and test scores for a ML model
with a variable number of training samples. The cross-validation procedure is carried out
behind the scenes when we call the learning curve.

4. ROC curve and AUC

Plotting recall on the x-axis and precision on the y-axis obtains the precision-recall
curve. This curve depicts the false positive to false negative ratio. The precision-recall
curve is not constructed using the number of true negative results [49].

3.4. Accuracy and Loss of Each Fold Measurement

In ML classifiers, the accuracy and loss of each fold have a significant impact on the
model’s overall performance. The accuracy of each fold determines how well the model has
learned from the training data and how accurately it can predict new data. If the accuracy
of a fold is high, it indicates that the model has successfully learned the underlying patterns
in the data and can make accurate predictions. However, if the accuracy of a fold is low, it
implies that the model needs further improvement and fine-tuning to achieve better results.

Similarly, the loss function of each fold plays a crucial role in determining the model’s
performance. The loss function measures how well the model can approximate the actual
values of the target variable. A low loss value indicates that the model is fitting the training
data well and has the potential to perform well on new data. On the other hand, a high
loss value suggests that the model is not fitting the training data well, and more refinement
is necessary to improve its performance. Finally, both accuracy and loss of each fold are
essential metrics that impact the performance of ML classifiers.
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• Log loss function

Log loss, also known as cross-entropy loss, is a measure of the performance of a
classification model. It measures the difference between the predicted probabilities of the
model and the actual outcomes. In binary classification problems, the log loss formula can
be expressed as in Equation (9).

log _loss = −((xy) log(p) + x(1− y) log(1− p)) (9)

where y is the true label (either 0 or 1), p is the predicted probability of the positive class,
and the log is the natural logarithm. The log loss ranges from 0 to infinity, with a perfect
model having a log loss of 0. A model that always predicts the same probability for all
samples would have a log loss of approximately 0.693. Log loss penalizes highly confident
but wrong predictions more than it penalizes predictions that are only slightly wrong.
As a result, it is a popular loss function for classification problems where the focus is on
predicting probabilities rather than hard class labels.

4. ML Classification Algorithms and Experimental Data Analysis
4.1. Hyperparameter Tuning and Experimental Results

Optimizing an ML model’s performance is essential before its implementation to
ensure it achieves the highest possible precision. This optimization process entails the
careful adjustment of specific variables called hyperparameters, which govern the model’s
learning behavior. Fine-tuning a model typically involves fitting it to a training dataset
multiple times with various hyperparameter combinations, ultimately determining the
ideal configuration for improved performance.

One efficient method for exploring the optimal hyperparameter values is with Grid-
SearchCV, a technique that involves creating a comprehensive grid of potential hyperparam-
eter values. Tables 4 and 5 provide a list of hypermeter tuning values for six ML classifiers.

Table 4. Hypermeter tuning values for Dataset I.

Sr. No. Classifier GridsearchCV Hypermeter Tuning Values

1 RF n_estimators = 500, random_state = 42, max_leaf_nodes = 20, min_samples_split = 15
2 KNN n_neighbors = 19
3 LR max_iter = 20, random_state = 1, solver = ‘newton-cg’, penalty = l2
4 NB var_smoothing = 0.35
5 GB learning_rate = 0.2, n_estimators = 50, max_depth = 3
6 AD n_estimators = 10, learning_rate = 0.6

Table 5. Hypermeter tuning values for Dataset II.

Sr. No. Classifier GridsearchCV Hypermeter Tuning Values

1 RF ‘criterion’: ‘gini’, ‘max_depth’: 8, ‘max_features’: ‘auto’, ‘n_estimators’: 200
2 KNN ‘n_neighbors’: 12
3 LR class_weight = ‘balanced’, max_iter = 20, random_state = 42, solver = ‘liblinear’
4 NB ‘var_smoothing’: 0.8111308307896871
5 GB ‘learning_rate’: 0.2, ‘max_depth’: 3, ‘n_estimators’: 50
6 AD ‘learning_rate’: 0.6, ‘n_estimators’: 10

4.2. Random Forest Classifier

The RF classifier makes predictions by averaging the predictions of their real trees.
RF is an ensemble-learning-based method for supervised ML [50]. It utilizes bagging to
combine multiple decision trees, thereby improving the accuracy of predictions. Bagging
training is provided on an individual basis to each individual. As part of the training
process, each decision tree is evaluated using different samples of data that were generated
randomly using replacements from the original dataset. When constructing trees, a random
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selection of features is also made. A majority vote is used to combine the predictions of
multiple trees [51]. For Dataset I, the model’s confusion matrix revealed that it successfully
predicted 19 positive cases and 33 negative cases. However, there were nine incorrect
predictions, consisting of eight false negatives and one false positive. In the case of Dataset
II, the confusion matrix showed that the model accurately predicted 71 positive cases
and 92 negative cases, but it also made 21 incorrect predictions, which included 17 false
negatives and 4 false positives. Table 6 showcases the performance of the RF in predicting
heart disease for two datasets: Dataset I (Cleveland) and Dataset II (IEEE Dataport). The
metrics used to evaluate the model include precision, recall, and F1 score, for both classes,
0 (no heart disease) and 1 (having heart disease).

Table 6. Performance measure curve values of RF (Datasets I and II).

Model Accuracy Classes
Dataset I (Cleveland) Dataset II (IEEE Dataport)

Precision (%) Recall (%) F1 Score (%) Precision (%) Recall (%) F1 Score (%)

0 95 70 81 94 82 87
1 80 97 88 85 95 90

Accuracy 85 89
Macro average 88 84 84 89 88 88

Weighted average 87 85 85 89 89 89

For Dataset I, Class 0 has a precision of 95%, recall of 70%, F1 score of 81%, and
27 instances. Class 1 has a precision of 80%, recall of 97%, F1 score of 88%, and 34 instances.
The overall accuracy, macro average, and weighted average are 85%, 88%, and 87%, respec-
tively, for the 61-instance dataset. For Dataset II, Class 0 has a precision of 94%, recall of
82%, F1 score of 87%, and 88 instances. Class 1 has a precision of 85%, recall of 95%, F1
score of 90%, and 96 instances. The overall accuracy, macro average, and weighted average
are 89% for the 184-instance dataset. Figures 4 and 5 represent the RF model’s performance
measuring plots on Dataset I and Dataset II.
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4.3. K-Nearest Neighbor Classifier

KNN is an instance-based or lazy learning technique. The term lazy learning refers to
the process of building a model without the requirement of training data. KNN neighbors
are selected from a set of objects with known properties or classes [52]. The confusion
matrix reveals that for Dataset I, 22 positive records and 29 negative records were accurately
predicted, while 10 predictions were inaccurate, specifically consisting of 5 false negatives
and 5 false positives. Similarly, in the confusion matrix for Dataset II, 74 positive records and
88 negative records were correctly predicted, but 22 predictions were inaccurate, including
14 false negatives and 8 false positives. Table 7 presents the performance of the KNN
classifier in predicting heart disease for two datasets: Dataset I (Cleveland) and Dataset
II (IEEE Dataport). Evaluation metrics include precision, recall, F1 score, and support for
both classes: 0 (no heart disease) and 1 (having heart disease).

Table 7. Performance measure curve values of KNN (Datasets I and II).

Model Accuracy Classes
Dataset I (Cleveland) Dataset II (IEEE Dataport)

Precision (%) Recall (%) F1 Score (%) Precision (%) Recall (%) F1 Score (%)

0 81 81 81 90 84 87
1 85 85 85 86 92 89

Accuracy 84 88
Macro average 83 83 83 88 88 88

Weighted average 84 84 84 89 88 88

In Dataset I, Class 0 shows a precision of 81%, recall of 81%, F1 score of 81%, and
27 instances. Class 1 displays a precision of 85%, recall of 85%, F1 score of 85%, and
34 instances. The dataset, containing 61 instances, has an overall accuracy, macro average,
and weighted average of 84%, 83%, and 84%, respectively. For Dataset II, Class 0 has a
precision of 90%, recall of 84%, F1 score of 87%, and 88 instances. Class 1 demonstrates
a precision of 86%, recall of 92%, F1 score of 89%, and 96 instances. The overall accuracy,
macro average, and weighted average for the 184-instance dataset are 88%, 88%, and 89%,
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respectively. Figures 6 and 7 represent the KNN model’s performance measuring plots on
Dataset I and Dataset II.
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4.4. Logistic Regression Classifier

LR is an algorithm for predicting whether an observation belongs to one of two categories
in ML. The LR classifiers predict the target class based on calculated logits (scores). A
logistic function is used to convert probabilities into binary values that can be used to
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make predictions [53]. The confusion matrix for the model reveals the following results
for Dataset I and Dataset II: In Dataset I, the model accurately predicted 21 positive and
34 negative cases while making 6 incorrect predictions, all of which were false negatives
and no false positives. In Dataset II, the model successfully predicted 75 positive and
88 negative cases, but it also made 21 incorrect predictions, comprising 13 false negatives
and 8 false positives. Table 8 illustrates the performance of a Logistic Regression (LR)
classifier in predicting heart disease for two datasets: Dataset I (Cleveland) and Dataset II
(IEEE Dataport). The evaluation metrics presented include precision, recall, F1 score, and
support for both classes: 0 (no heart disease) and 1 (having heart disease).

Table 8. Performance measure curve values of LR (Datasets I and II).

Model Accuracy Classes
Dataset I (Cleveland) Dataset II (IEEE Dataport)

Precision (%) Recall (%) F1 Score (%) Precision (%) Recall (%) F1 Score (%)

0 100 78 88 90 85 88
1 85 100 92 87 92 89

Accuracy 90 89
Macro average 93 89 90 89 89 89

Weighted average 92 90 90 89 89 89

In Dataset I (Cleveland), Class 0 has a precision of 100%, recall of 78%, F1 score of
88%, and 27 instances. Class 1 exhibits a precision of 85%, recall of 100%, F1 score of 92%,
and 34 instances. With a total of 61 instances, the overall accuracy, macro average, and
weighted average are 90%, 93%, and 92%, respectively.

For Dataset II (IEEE Dataport), Class 0 displays a precision of 90%, recall of 85%, F1
score of 88%, and 88 instances. Class 1 shows a precision of 87%, recall of 92%, F1 score
of 89%, and 96 instances. The dataset, containing 184 instances, has an overall accuracy,
macro average, and weighted average of 89%. Figures 8 and 9 represent the LR model’s
performance measuring plots on Dataset I and Dataset II.

Processes 2023, 11, x FOR PEER REVIEW 16 of 34 
 

 

 
Figure 8. Performance measuring curves of LR on Dataset I. 

 
Figure 9. Performance measuring curves of LR on Dataset II. 

  

Figure 8. Performance measuring curves of LR on Dataset I.



Processes 2023, 11, 1210 15 of 31

Processes 2023, 11, x FOR PEER REVIEW 16 of 34 
 

 

 
Figure 8. Performance measuring curves of LR on Dataset I. 

 
Figure 9. Performance measuring curves of LR on Dataset II. 

  

Figure 9. Performance measuring curves of LR on Dataset II.

4.5. Naive Bayes Classifier

One of the most popular supervised ML algorithms for multi-classification problems
is the NB algorithm. Several classification problems can be solved using the NB algorithm,
which is based on the Bayes theorem. The basic concept of NB is to estimate the probability
of each class we wish to reveal based on the probability of each feature being present in the
data. According to Equation (10), naive models assume that the features of a model are
independent of each other.

P(c/x) =
p(x/c)p(c)

p(x)
(10)

where the P(c/x) represents the posterior probability, which is the probability of a hypoth-
esis (or class) given the observed data. The term p(x/c) denotes the likelihood, which
is the probability of observing the data given the hypothesis (or class). The class prior
to probability is denoted by p©, and it represents the probability of observing the hy-
pothesis (or class) in the absence of any data. Finally, the predictor prior to probability,
denoted by p(x), represents the probability of observing the data in the absence of any
hypothesis (or class) [54]. The NB algorithm assumes that each feature in the data has an
independent condition on how the probability of an outcome will happen for each unique
class of data in the dataset. For Dataset I, the confusion matrix reveals that the model
accurately predicted 23 positive and 31 negative cases, while making 7 incorrect predic-
tions, which include 4 false negatives and 3 false positives. In the case of Dataset II, the
confusion matrix shows that the model successfully predicted 73 positive and 89 negative
cases, but also made 22 incorrect predictions, comprising 15 false negatives and 7 false
positives. Table 9 presents the performance of a NB model in predicting heart disease for
two datasets: Dataset I (Cleveland) and Dataset II (IEEE Dataport). Evaluation metrics
include precision, recall, F1 score, and support for both classes: 0 (no heart disease) and
1 (having heart disease).
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Table 9. Performance measure curve values of NB (Datasets I and II).

Model Accuracy Classes
Dataset I (Cleveland) Dataset II (IEEE Dataport)

Precision (%) Recall (%) F1 Score (%) Precision (%) Recall (%) F1 Score (%)

0 88 85 87 88 85 87
1 89 91 90 89 91 90

Accuracy 89 89
Macro average 89 88 88 89 88 88

Weighted average 89 89 88 89 89 88

In Dataset I, Class 0 has a precision of 88%, recall of 85%, F1 score of 87%, and 27 instances.
Class 1 exhibits a precision of 89%, recall of 91%, F1 score of 90%, and 34 instances. With
61 instances in total, the overall accuracy, macro average, and weighted average are 89%.

For Dataset II, Class 0 displays a precision of 88%, recall of 85%, F1 score of 87%,
and 88 instances. Class 1 shows a precision of 89%, recall of 91%, F1 score of 90%, and
96 instances. With 184 instances, the overall accuracy, macro average, and weighted average
are 89%. Figures 10 and 11 represent the NB model’s performance measuring plots on
Dataset I and Dataset II.
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4.6. Gradient Boosting Classifier

A GB Classifier is an ML technique that uses an ensemble of weak models to produce a
robust classifier. The algorithm sequentially trains individual models, each addressing the
residual errors generated by the previous model. The final prediction is made by combining
each model’s predictions, weighted according to their contribution [55]. This technique
can be applied to binary and multi-class classification problems and is often implemented
using decision trees for weak learners. The goal is to minimize the loss function through
the iterative process of model training and combining. For Dataset I, the confusion matrix
indicates that the model accurately predicted 21 positive and 31 negative cases, while
making 9 incorrect predictions, consisting of 6 false negatives and 3 false positives. In
Dataset II, the confusion matrix reveals that the model successfully predicted 75 positive
and 89 negative cases, but also made 20 incorrect predictions, which include 13 false
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negatives and 7 false positives. Table 10 showcases the performance of a GB classifier
in predicting heart disease for two datasets: Dataset I (Cleveland) and Dataset II (IEEE
Dataport). It includes evaluation metrics such as precision, recall, F1 score, and support for
both classes: 0 (no heart disease) and 1 (having heart disease).
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Table 10. Performance measure curve values of GB (Datasets I and II).

Model Accuracy Classes
Dataset I (Cleveland) Dataset II (IEEE Dataport)

Precision (%) Recall (%) F1 Score (%) Precision (%) Recall (%) F1 Score (%)

0 88 78 82 91 85 88
1 84 91 87 87 93 90

Accuracy 85 89
Macro average 86 84 85 89 89 89

Weighted average 85 85 85 89 89 89

For Dataset I (Cleveland), Class 0 has a precision of 88%, recall of 78%, F1 score of 82%,
and 27 instances. Class 1 displays a precision of 84%, recall of 91%, F1 score of 87%, and
34 instances. The dataset, with 61 instances, has an overall accuracy, macro average, and
weighted average of 85%.

In Dataset II (IEEE Dataport), Class 0 exhibits a precision of 91%, recall of 85%, F1 score
of 88%, and 88 instances. Class 1 presents a precision of 87%, recall of 93%, F1 score of 90%,
and 96 instances. With 184 instances, the overall accuracy, macro average, and weighted
average are 89%. Figures 12 and 13 represent the GB model’s performance measuring plots
on Dataset I and Dataset II.
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4.7. AdaBoost Classifier

The AB is a ML algorithm designed for classification tasks. It combines multiple
simple models, known as weak learners, to form a more robust overall classifier. The
algorithm starts by training the first weak learner on the data and then calculates the error.
Subsequently, misclassified samples are given greater weight, and the subsequent weak
learner is trained on these samples with higher emphasis. This process is repeated several
times. Each weak learner’s prediction is given a weight proportional to its accuracy before
being combined to form the final prediction [56]. The AB can be used for binary or multi-
class classification problems, and weak learners often utilize decision trees. The algorithm
adjusts the weight of the samples based on their classification performance, allowing it to
focus on the samples that are challenging to classify. For Dataset I, the confusion matrix
shows that the model accurately predicted 19 positive and 33 negative cases, while making
9 incorrect predictions, which include 8 false negatives and 1 false positive. In Dataset II, the
confusion matrix indicates that the model successfully predicted 75 positive and 90 negative
cases, but also made 19 incorrect predictions, consisting of 13 false negatives and 6 false
positives. Table 11 presents the performance of the AB classifier in predicting heart disease
for two datasets: Dataset I (Cleveland) and Dataset II (IEEE Dataport). Evaluation metrics
include precision, recall, F1 score, and support for both classes: 0 (no heart disease) and
1 (having heart disease).

Table 11. Performance measure values of AB classifier (Dataset I and II).

Model Accuracy Classes
Dataset I (Cleveland) Dataset II (IEEE Dataport)

Precision (%) Recall (%) F1 Score (%) Precision (%) Recall (%) F1 Score (%)

0 95 70 81 93 85 89
1 80 97 88 87 94 90

Accuracy 85 90
Macro average 88 84 84 90 89 90

Weighted average 87 85 85 90 90 90

In Dataset I (Cleveland), Class 0 has a precision of 95%, recall of 70%, F1 score of
81%, and 27 instances. Class 1 demonstrates a precision of 80%, recall of 97%, F1 score of
88%, and 34 instances. With 61 instances in total, the overall accuracy, macro average, and
weighted average are 85%.

For Dataset II (IEEE Dataport), Class 0 shows a precision of 93%, recall of 85%, F1 score
of 89%, and 88 instances. Class 1 displays a precision of 87%, recall of 94%, F1 score of 90%,
and 96 instances. With 184 instances, the overall accuracy, macro average, and weighted
average are 90%. Figures 14 and 15 represent the AB model’s performance measuring plots
on Dataset I and Dataset II.

4.8. Performance Measurement Analysis of Different Curves

For each classifier, Table 12 shows the results obtained for both Dataset I and Dataset II.
The performance is compared across different classifiers and datasets to understand which
model performs better in each scenario. In general, the result indicates that the RF, LR, NB,
and AB classifiers demonstrate higher ROC-AUC and precision-recall values, suggesting
better overall performance compared to the other models. However, the GB classifier
shows a perfect learning curve score of 100% for Dataset I, which implies it effectively
learns from the training data. The ROC-AUC curve, learning curve, and precision-recall
curves for both datasets are illustrated in Figures 4–15. This visualization allows for a
comprehensive comparison of classifier performance across the two datasets, considering
multiple evaluation metrics.
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4.9. Assessing the Accuracy and Accuracy Loss of Each Fold: Measurement and
Performance Evaluation

The loss and accuracy values for each fold provide an estimate of how well the model
is performing on different subsets of the data. Figures 16–27 show six models’ five-fold
accuracy and loss value plots for Datasets I and II. Table 13 presents the values of accuracy,
accuracy loss of each fold, and mean and standard deviation values of six models.
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Table 12. Different performance measure curve analysis values on ML models.

Classifiers Dataset ROC-AUC (%) Learning Curve (%)
Average

Precision
Recall (%)

ROC of Class
True, AUC

Training
Score CV Score Average

RF
I 95 88 76 96
II 95 99 87 95

KNN
I 91 81 76 88
II 93 86 84 93

LR
I 95 87 80 95
II 94 87 84 95

NB
I 94 83 82 95
II 94 87 85 94

GB
I 91 100 75 92
II 94 99 84 94

AB
I 94 90 78 95
II 95 94 80 95

Table 13. The values of accuracy, accuracy loss of each fold and mean and standard deviation values
of six models.

Model

Grid Search CV (5-Fold) Cross-Validation, Accuracy,
Loss of Each Fold

Dataset Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Mean Value with a
Standard Deviation

RF

I
Accuracy 0.755 0.917 0.875 0.688 0.896 0.826 (+/−0.089)

Loss 0.244 0.083 0.125 0.312 0.104 0.173
Neg log loss −0.48 −0.411 −0.375 −0.56 −0.343 −0.434 (+/−0.078)

II
Accuracy 0.857 0.891 0.878 0.850 0.884 0.862 (+/−0.013)

Loss 0.142 0.108 0.122 0.149 0.116 0.129
Neg log loss −0.359 −0.308 −0.308 −0.361 −0.351 −0.337 (+/−0.028)

KNN

I
Accuracy 0.755 0.917 0.833 0.688 0.917 0.822 (+/−0.090)

Loss 0.244 0.083 0.166 0.312 0.083 0.178
Neg log loss −0.571 −1.771 −0.353 −2.036 −0.314 −1.009 (+/−0.740)

II
Accuracy 0.857 0.857 0.871 0.844 0.877 0.863 (+/−0.012)

Loss 0.142 0.142 0.129 0.156 0.123 0.142
Neg log loss −0.383 −0.302 −0.281 −0.337 −0.347 −0.330 (+/−0.036)

LR

I
Accuracy 0.735 0.917 0.875 0.729 0.917 0.834 (+/−0.085)

Loss 0.265 0.083 0.125 0.270 0.083 0.165
Neg log loss −0.553 −0.354 −0.342 0.618 −0.301 −0.434 (+/−0.127)

II
Accuracy 0.850 0.864 0.864 0.837 0.856 0.854 (+/−0.010)

Loss 0.149 0.136 0.136 0.163 0.143 0.145
Neg log loss −0.347 −0.336 −0.311 −0.381 −0.381 −0.351 (+/−0.027)

NB

I
Accuracy 0.735 0.938 0.875 0.729 0.917 0.839 (+/−0.089)

Loss 0.265 0.062 0.125 0.270 0.083 0.161
Neg log loss −1.29 −0.437 −0.7 −1.702 −0.434 −0.913 (+/−0.503)

II
Accuracy 0.857 0.884 0.891 0.830 0.870 0.866 (+/−0.022)

Loss 0.142 0.115 0.108 0.170 0.130 0.132
Neg log loss −0.369 −0.328 −0.333 −0.412 −0.391 −0.367 (+/−0.032)

GB

I
Accuracy 0.735 0.875 0.854 0.771 0.896 0.826 (+/−0.060)

Loss 0.265 0.104 0.145 0.229 0.104 0.173
Neg log loss −0.768 −0.372 −0.41 −0.68 −0.33 −0.512 (+/−0.183)

II
Accuracy 0.857 0.891 0.905 0.884 0.877 0.887 (+/−0.016)

Loss 0.142 0.108 0.095 0.115 0.123 0.115
Neg log loss −0.394 −0.324 −0.27 −0.35 −0.359 −0.340 (+/−0.041)

AB

I
Accuracy 0.816 0.854 0.854 0.792 0.875 0.838 (+/−0.030)

Loss 0.183 0.145 0.145 0.208 0.125 0.161
Neg log loss −0.608 −0.609 −0.599 −0.612 −0.581 −0.602 (+/−0.011)

II
Accuracy 0.844 0.871 0.898 0.837 0.856 0.862 (+/−0.022)

Loss 0.156 0.129 0.102 0.163 0.143 0.102
Neg log loss −0.565 −0.566 −0.57 −0.566 −0.567 −0.567 (+/−0.002)

In this study, the performance of various ML models, including RF, KNN, LR, NB, GB,
and AB, was evaluated on two different datasets (I and II). The models’ performance was
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assessed using five-fold cross-validation, and three metrics were reported: accuracy, loss
(1—accuracy), and negative log loss.

The results indicate that, for Dataset I, the RF model achieved the highest mean
accuracy (0.826) with a standard deviation of 0.089, followed closely by the NB and LR
models with mean accuracies of 0.839 and 0.834, respectively. On the other hand, the KNN
model had the lowest negative log loss (−1.009) with the largest standard deviation (0.740),
which could suggest overfitting or instability in model performance across different folds.

For Dataset II, the GB showed the best performance with a mean accuracy of 0.887
and a standard deviation of 0.016. The other models, including KNN, LR, and NB, also
demonstrated relatively high mean accuracies, ranging between 0.854 and 0.866. The
negative log loss values were more stable for this dataset, with the AB model having
the most consistent performance, indicated by a mean negative log loss of −0.567 and a
standard deviation of 0.002. Further, this study reveals that selecting the best model requires
careful consideration of the evaluation metrics and their respective standard deviations.

5. Methodology of Ensemble Classifier

In this proposed methodology, Multiple ML models are combined using the ensemble
method to produce a collective result that is more accurate than any of the individual algo-
rithms. Voting ensembles combine the predictions of our six ML models based on voting.
In the voting classifier, there are two types of votes. These are hard votes and soft votes:

• Hard: the estimator selects the class prediction most frequently among the ML base
models as the final class prediction by a majority vote.

• Soft: the final class prediction is based on the average probability considered from all
the ML base model predictions.

Soft voting can yield better results than hard voting as it “gives more weight” to the
confident votes by being an average of the probabilities. Both weighted and mean majority
voting are considered in the soft voting ensemble. The soft voting ensemble (SVE) combines
the predictions of individual models and uses the strengths of each model to make a more
accurate prediction. In addition, the SVE reduces the risk of overfitting and is more robust
to outliers and errors in the data. It is important to note that the performance of a SVE
will depend on the problem and data being analyzed. The choice of base models and how
their predictions are combined can also greatly impact the ensemble’s performance [57]. A
target label of essential probability can be selected in this manner. By doing so, individual
classifiers are compensated for their shortcomings. The central aim of ensemble methods is
to decrease the amount of bias and variance in a model.

Based on the scores of all forecasts by the base classifiers, the SVE method was used in
our study in order to classify heart disease predictions. According to the proposed SVE
model, the highest scores class is taken and the scores predicted by each of the base ML
classifiers are added [58]. The SVE model we propose predicts the category with the highest
probability value. Equation (11) shows the average score of each base classifier.

SVE = argmax(
1
N
× ( P(RF) + P(KNN) + P(LR) + P(NB) + P(GB) + P(AB))) (11)

where “N” denotes the number of base classifiers and “P” represents the probability of each
base classifier and arg max (argument maximize) is the function that returns the class with
the highest probability. Figure 28 illustrates an ensemble classifier model for soft voting.
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Figure 28. Proposed soft voting ensemble classifier.

6. Comparative Study

Figure 29 presents a performance analysis of six ML classifiers applied to Dataset
I. The results show that LR achieves the highest accuracy of 90% among the classifiers,
with notable precision and recall values for both classes. Other classifiers, such as RF,
KNN, NB, GB, and AB display varying levels of performance across the different metrics.
Upon examining the results, it is evident that the classifiers exhibit different strengths and
weaknesses. For instance, while RF and AB have high precision for Class 0, they show
lower recall values for the same class. Conversely, LR demonstrates remarkable precision
for Class 0 and recall for Class 1.
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Figure 30 represents the performance analysis for six ML classifiers. In this, the
analysis reveals that the classifiers demonstrate relatively similar performance on Dataset
II, with the AB classifier achieving the highest accuracy of 90%. Precision, recall, and F1
score values are also consistent across the classifiers. However, there are some differences
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in performance, such as RF having a higher precision for Class 0 and a lower recall for the
same class.
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Upon analyzing Figure 31, it is evident that the SVE classifier consistently outperforms
the individual ML classifiers in both datasets, achieving 93.44% accuracy on Dataset I
and 95% on Dataset II. As it is considered from individual classifiers, it has observed the
maximum accuracy is only 90%, which is obtained from AB classifier on both the data sets.
It is also notable that the performance of all classifiers improves from Dataset I to Dataset
II. The SVE classifier effectively combines the strengths of the six individual classifiers,
leading to enhanced accuracy in both datasets. This demonstrates the potential of ensemble
methods for improved performance in heart disease prediction tasks. Tables 14 and 15
compare the previous researcher’s accuracy and the proposed work result accuracy on
Dataset I and Dataset II. Compared to the previous work results, our proposed model
produced more accuracy.
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Table 14. Comparison of the proposed system with existing heart disease prediction systems
on Dataset I.

Ref. Year Dataset Classifiers Used Methodology Used Maximum
Accuracy (%)

[28]. 2019 Cleveland
NB Net, C 4.5, MLP, PART,

Bagging, Boosting, majority
voting, Stacking

Ensemble techniques such as bagging
and boosting are employed for
improving prediction accuracy.

85.48

[27]. 2020 Cleveland LR, SVM, KNN
Feature normalization and

dimensionality reduction utilizing
principal component analysis (PCA)

87.00

[16]. 2020 Cleveland LR, DT, and Gaussian naïve
Bayes (GNB),

Dimensionality reduction was
executed through singular

value decomposition.
82.75

[34]. 2022 Cleveland

Stochastic Gradient Descent
Classifiers, LR,

SVM, NB, ConvSGLV,
and Ensemble methods

Majority voting, CNN has been
utilized for feature extraction with

flatten layer converting 3D data into
1D as ML models work on 1D data.

93.00

[59] 2023 Cleveland LR, KNN, DT, XGB, SVM, RF GridsearchCV hyperparameter tuning. 87.91

Proposed Cleveland
dataset

RF, KNN, LR, NB, GB, AB,
SVE classifier Soft voting ensemble method. 93.44

Table 15. Comparison of the proposed system with existing heart disease prediction systems on
Dataset II.

Ref. Year Dataset Classifiers Used Methodology Used Maximum
Accuracy (%)

[38] 2022 Heart disease dataset
(IEEE Dataport) CART Classification and regression

tree algorithm. 87.00

[39] 2021 Heart disease dataset
(IEEE Dataport) RF, LR, SVM

A 10-fold repeated
cross-validation

method was employed.
92.00

[40] 2022 Heart disease dataset
(IEEE Dataport)

NN, MLPNN, AB, SVM, LR,
ANN, RF

An ensemble strategy that
combines multiple classifiers. 93.39

Proposed Heart disease dataset
(IEEE Dataport)

RF, KNN, LR, NB,
GB, AB, SVE classifier

Soft voting
ensemble method. 95.00

The limitation of this model is that it is based on a limited amount of patient data,
which only include 303 and 1190 patients in the datasets. Future work includes more
patient data, the application of the feature selection method, and the development of a deep
learning-based system for early heart disease detection. Additionally, utilizing medical IoT
devices and sensors for the simultaneous collection of clinical parameters such as ECG,
blood oxygen level, and body temperature can further improve the performance of the
proposed system.

7. Conclusions

In conclusion, this research presents an efficient ML-based diagnosis system for de-
tecting heart disease. To get the best accuracy results, the GridsearchCV hyperparameter
method and the five-fold cross-validation method have been used before implementing
models. Six ML classifiers were implemented and compared using accuracy, precision,
recall, and F1 score metrics. The results indicate that the LR and AB classifiers attained
the highest accuracies of 90.16% and 89.67% on both datasets, respectively. However,
when the soft voting ensemble classifier method was applied to all six models on both
datasets, it yielded even greater accuracies of 93.44% and 95%. To use this ML model for
real-time heart disease prediction, it is necessary to integrate the model into a practical
application. This can be achieved through a web application, mobile app, or other software
systems. By deploying the model in a real-world setting, such as a hospital or clinic, it
can be used to predict heart disease risk for patients. The model can also be integrated
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into an electronic health record (EHR) system and make use of the patient’s EHR data for
real-time predictions.
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