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Abstract: A method of steel structure surface crack identification based on artificial intelligence
technology is proposed to solve the problem that steel cracks can not be detected and forewarned
in time when they appear in the railway industrial environment. The appearance of steel cracks
greatly weakens the stability of steel structures, and will seriously endanger the safety of the railway
industry if it is not detected and repaired in time. However, the common steel crack detection
methods cannot achieve real-time monitoring of steel structures. In order to monitor the surface of
steel structure in real-time and explore the recognition effect and model the advantages of common
classification neural network models for surface cracks of railway industrial steel, this study evaluates
the network model with multiple indicators and parameters under two experimental conditions. In
this study, the steel surface cracks in the railway industrial environment are taken as samples, and
the steel cracks are identified through the neural network model. For large-volume datasets, the
recognition accuracy of the three network models has reached 97%, of which the YOLOv5 model
has the best comprehensive recognition ability, and the C-Alex model has the best performance and
convergence speed in small-volume datasets. This study explores the application prospects of models
under different scenarios, proving that the three models can effectively detect steel surface cracks in
real-time, and at the same time, it will pave the way for the development and application of artificial
intelligence multi-model fusion technology in the field of the railway industry.

Keywords: computer vision; DCNN; railway industry; steel crack identification and detection

1. Introduction
1.1. What Is Steel Structure

Steel structures have now developed into one of the main types of building structures
and there are a series of advantages over traditional building structure types such as high
strength, light weight, high reliability, high seismic performance and short construction
period. They are widely used in construction projects such as houses, bridges and ports,
and road construction [1].

1.2. Effect of Cracks on Steel

While steel structures are widely used in different fields, the disadvantages are also
gradually magnified in the application. Due to the poor corrosion resistance of steel
structure buildings, especially in wet environments, corrosion and fatigue cracking of
components may occur at a high rate, which will lead to problems such as short axle,
derailment, etc., and there are road hazards in railway industrial production.
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Cracks on the surface weaken the stability in the railroad industrial transport load-
bearing application, which makes the overall strength of the railroad transport environment
decrease, and even cause local fractures around the cracks, which seriously affects the
safety of railroad transport [2]. In May 2021, cracks were found at the metal joints between
several car bodies and the chassis in the vehicles manufactured by a company, and a large
range of vehicles was shut down by the related operating companies, causing extremely
serious losses. Therefore, the problems of environmental corrosion and fatigue of steel
structures under long-term loading in railroad industrial applications are also gaining
attention. Considering all the hazards of fatigue cracking on the surface of steel structures,
railroad companies generally carry out regular inspections of the presence of cracks and
their condition [3].

1.3. Current Crack Detection Research and Comparison

Common steel crack detection techniques include ray detection, ultrasonic detection,
magnetic particle detection, penetration detection, and holographic detection [4]. Due to
the high maintenance cost of steel structures used in the railway industry, and the harsh
use conditions of some methods, it is not conducive to complete detection for a long time.
By conventional inspection methods, the damage of the target steel structure can only be
detected in a certain period of time in the previous cycle, long interval times cycles and
regular inspection strategies that cannot achieve real-time tracking detection and timely
warning of cracking history [5]. However, the existence of cracks will lead to overall
building structure safety hazards, so the use of artificial intelligence methods to detect
cracks on steel surfaces has a very wide range of application prospects in the relevant
fields. In order to continuously grasp the damage of the target steel structure, it is also
necessary to use artificial intelligence related technology for long-term real-time dynamic
detection. Artificial intelligence recognition technology has a wide range of applications,
high efficiency, low cost and other advantages that can achieve real-time dynamic detection
of the full process of target performance.

The neural network model of artificial intelligence is similar to the neural network
of the brain. In the vision of a neural network, the information presented in the image
is mapped into parameter sets in the form of grayscale or RGB values, and the model is
trained according to the parameter sets provided to it by a large number of images in order
to complete the relevant classification work [6].

At present, artificial intelligence recognition technology is gradually being applied in
the railway industry. Recently, the team of Ningxia University has carried out detection
research on steel surface cracks based on the improved YOLOv4 model, which provides
a certain direction for the patrol inspection of the railway transportation department,
facilitates the maintenance of staff, and effectively guarantees railway safety. However,
most studies of related AI detection use only one model at present, which will lead to
limitations in training and detection. At the same time, it is difficult to carry out special
processing operations for special samples. In this study, three models are used for detection,
which not only ensures the recognition performance of a single model but also greatly
adapts to the crack samples which are complex and changeable.

In Research on Pavement Crack Detection Based on Computer Vision, Dr. Cheng
proposed an adaptive unsupervised crack detection method based on artificial intelligence
technology and realized a road crack detection system that can target the situation of
missed detection and error detection [7]. The research of experts such as Cheng, as a
precedent for the application of artificial intelligence recognition methods in ordinary road
environments, provides certain reference values for subsequent research. In the railway
industrial environment, the causes and types of steel surface cracks are more complex
than ordinary road surfaces, and the traditional methods of road crack detection cannot
fully meet the needs of the railway industrial scene [7]. Therefore, artificial intelligence
recognition technology also has certain application potential in the railway industrial field.
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Based on the contributions made by Cheng and other experts in relevant fields [7],
this research takes the microscopic disease of steel structure surface fatigue crack in the
railway industry as the research scenario, and through the analysis of multiple neural
network models in the detection of railway industrial steel surface crack, discusses the
future steel structure surface crack detection mode based on artificial intelligence multi
model technology. It also discusses its advantages in the application of railway engineering,
aiming to improve the management and maintenance level of steel structure apparent
fatigue cracks in the field of railway engineering, provide some technical support for the
digitalization and systematization of fatigue crack management and maintenance, and pave
the way for the wider application of artificial intelligence technology in the industrial field.

2. Preparation Materials and Identification Methods
2.1. Material Preparation

In this study, steel surface cracking is the object of study, and all steel cracking images
are from field railroad industrial scenarios. The total dataset of 12,000 steel crack images
(1600 × 256 resolution) consists of 20% special steel surface crack types (Special) and 80%
normal steel surface crack types (Normal) to facilitate simulation and classification of the
dataset for practical application scenarios. Special steel surface cracks are caused by both
“inclusions” and “scarring”, while conventional steel cracks are caused by “delamination”,
“scratches”, and “longitudinal cracks”. Cracks in conventional steel are caused by common
defect factors such as “delamination”, “grab marks”, “longitudinal cracks”, “tail and cross
cracks” and “indentation” [8].

In order to investigate the detailed performance characteristics and comprehensive
recognition effects of three neural models, VGG16, C-Alex and Yolov5, in several specific
scenarios of steel surface cracks, three neural network models were built in Pytorch [9]
framework and then pre-trained and tested to check whether the environment and model
and other related factors were wrong in the pre-preparation process.

The hardware training facility used for neural network training and operation is a
desktop computer with an Inter (R) core (TM) i7-10900K CPU@3.60 GHZ processor, an
NVIDIA GeForce RTX 2060 graphic processing unit, and 32 GB of running memory.

The image acquisition of the steel structure surface in the field scene is carried out
using a computer, which controlled a tracking intelligent vehicle, which is equipped with a
Wi-Fi module for communication with the computer.

2.2. Steel Crack Identification Method

In this study, labeling is used to frame and label the target samples in the images
before training, and special fatigue cracks are labeled by class differential method, and
the relevant “xml label files” are generated after the completion of labeling as the datasets
sample for the neural network model. Some of the dataset samples are taken as a training
set and deployed on the three models for training and the trained model is used as a test
set to test the weight file.

The steel surface crack datasets are mostly neutral in color, and the steel cracks
under different lighting conditions show more obvious grayscale differences with their
surrounding steel surfaces, which will have large errors when using conventional color
single feature recognition. In this study, the range of gray value difference between the steel
surface areas and the concentration state of the distribution of the gray difference existence
area are the main criteria, and the crack existence area is marked with a red rectangular
prediction box.

It is determined by the model whether the current prediction target is a positive sample
based on the confidence during the detection process, so the confidence level threshold
is selected with respect to the evaluation data such as the precision and recall rate of the
model. When the percentage of positive examples in a single prediction frame reaches the
confidence threshold, it is considered a successful detection (non-missing defect). When
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the percentage of positive examples in a single prediction frame exceeds the confidence
threshold, the sample is considered a successful identification (non-missing sample).

In order to reduce the influence of light scattering and reflection, the RGB data set is
normalized and then converted into a grayscale map by the weighted average method,
so that the model can read the grayscale values uniformly [10,11]. R, G, and B are the
normalized RGB values, respectively, and Gray represents the gray value. The grayscale
value is calculated as follows.

Gray = 0.299∗R + 0.578∗G + 0.114∗B (1)

A tracker intelligent vehicle is equipped with a camera to collect the image of the steel
structure surface. Tracker intelligent vehicles will drive according to the planned route in
advance. The computer sends a signal to drive the tracking smart car to collect the surface
image of the target steel structure. The collected image is then sent back to the computer
through the Wi-Fi module as the detection target, and the computer identifies and marks
the steel cracks in the sample.

3. Neural Network Model
3.1. Model Introduction

The Yolov5 neural network model mainly consists of Backbone, Neck and Head
components, following the online enhancement of mosaic images proposed by Yolov4,
which aims to increase the number of small and medium-sized targets in a single batch [12].
In terms of loss function, three components, category loss, target loss and regression loss,
are used by Yolov5 to guide the training [13].

The VGG network model used in the steel crack detection experiments is VGG16,
which consists of 13 convolutional layers, 5 pooling layers and 3 fully connected layers. The
convolutional layers are stacked with multiple 3× 3 and 2× 2 convolutional kernels instead
of the traditional large convolutional kernels [14]. The parameters and computation are
successfully reduced by the small convolutional kernels instead of the large convolutional
kernels, and RMSProp is used as an optimizer so that the model can be better adapted to
complex activation function variables with high complexity computations [15].

3.2. Model Improvement

In this study, based on the experiments and conclusions of the articles [16,17], the
corresponding part of the original Alex model is improved and a new C-Alex model is
designed based on the original Alex model. The improved model replaces the traditional
stochastic gradient descent optimizer with the AdaDelta optimizer by adding a channel
shuffle convolution layer after the fourth layer and a max pooling layer with overlapping
properties near the end.

The channel shuffle convolutional layer makes the output convolutional features
combine with different channel features, increasing the diversity of features in each group
of convolutional layers and improving the network feature extraction capability [18]. The
max pooling method is helpful to reduce the ambiguous effects of average pooling and
enrich the feature parameters [19]. Compared to the random pooling layer used in the
traditional model, the max pooling layer used by C-Alex can achieve a substantial reduction
in noise interference [20].

The use of the AdaDelta optimizer allows for fast descent gradients and complete
regression [21]. The AdaDelta algorithm does not have a learning rate as a hyperparameter,
it replaces the learning rate in the RMSProp algorithm by using a term about the exponen-
tially weighted moving average of the squared updates of the independent variables [22,23].
This makes it possible to extract image features efficiently in a short period of time. The
gradient descent simulation process of the AdaDelta optimizer is shown in Figure 1.
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In the convergence process, according to the image observation of the node motion
trajectory, it is known that the convergence process from outside to inside has a great step
length in the initial iteration, which undoubtedly greatly improves the optimization speed
and makes it easier for the gradient descent algorithm to find the range where the minimum
value exists; it gradually slows down the iteration step length when approaching the target,
reduces the number of values taken, and improves the iteration efficiency. The convergence
nodes are represented by x1 and x2 in the plane.

Additionally, in order to avoid excessive accumulation of second-order momentum
and ending the full training process early, the optimizer algorithm does not accumulate all
historical gradients but only focuses on the descent gradients in the past time window [24].
The optimization algorithm expression is as follows. Where α is the learning rate, ω
is the parameter to be optimized, m is the first-order momentum, and V is the second-
order momentum.

ωt+1 = ωt − α•mt/
√

Vt (2)

For learning efficiency and recognition ability, the C-Alex model uses the Charis
activation function, which is an improved function based on Sigmoid, retaining some
intervals to buffer the growth rate, but the Charis activation function, as a segmented
function, is in a non-saturated state compared to the Sigmoid function as a saturated
activation function, reducing the probability of error in the output due to the disappearance
of the gradient. At the same time, it is guaranteed to have a high growth rate in the case
of large positive output values [25]. From the analysis of the experimental data in [26], it
is found that the Charis activation function has a higher recognition accuracy than other
activation functions under the condition that the training material is very small. Especially
for the recognition of the same object, it has an advantage in the tracking of an object with
a small amount of sampling.

4. Model Evaluation Parameter Criteria

Four mainstream metrics were used for model evaluation: precision, accuracy, re-
call [27], and F1-source. Accuracy represents the percentage of the total number of correct
predictions; precision represents the ratio of the number of steel cracks correctly detected
by the model to the number of predicted steel cracks; recall represents the percentage
of all steel surface crack targets correctly predicted in the sample and F1-score combines
precision and recall with certain weights according to actual needs as a comprehensive
model evaluation metric in a specific environment.

The main parameter criteria for the evaluation metrics are TP (Truth_Positive), FP
(False_Positive), TN (Truth_Negative) and FN (False_Negative) [28]. Where TP represents
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the number of positive examples predicted as positive by the model, FP represents the
number of negative examples predicted as positive by the model, FN represents the number
of positive examples predicted as negative by the model, and TN represents the number of
positive examples predicted as negative by the model.

The expressions for the evaluation metrics of accuracy, recall, precision and trade-off
accuracy are as follows, respectively.

Accuracy =
(TP + TN)

(TP + TN + FP + FN)
(3)

Recall =
TP

TP + FN
(4)

Precision =
TP

TP + FP
(5)

F1-Score: β is the weight bias variable, representing the weight of the recall rate is β
times the accuracy rate.

In the actual application scenario of the railroad industry, when calculating the trade-
off accuracy, the corresponding weight assignment can be made to each experimental
data by adjusting the β value of trade-off accuracy so that the trade-off accuracy has a
higher evaluation share [29]. When β is 1, the accuracy rate has the same share as the
recall rate; when β is greater than 1, the recall rate has more weight in the feedback in the
experiment and when β is less than 1, the accuracy rate has more weight in the feedback in
the experiment [30].

When only testing the model, the accuracy rate and recall rate have the same status,
that is, the F1 score is approximate to the accuracy rate. In the specific scenarios of the actual
railway industry, the negative effects and painful costs caused by steel crack accidents
are often far greater than the low costs caused by missing defects. This situation makes
the frequency of error detection in the model exceed that of missed detection under the
condition of the same error rate, that is, make appropriate pursuit for the recall rate,
strengthen the generalization ability of the model, so as to reduce the possibility of missing
detection. At the same time, the weight of Recall in the F1-score is higher than that
of Precision.

5. Comparative Study of Model Characteristics
5.1. Research Perspective

In order to explore the multifaceted performance of different neural network models
in different railroad industrial application scenarios, it is tested in this study that the effect
of three neural network models on the recognition of conventional steel cracks and sporadic
fine distributed steel cracks under the condition of small data sets, and the advantages and
characteristics of the three models are analyzed for application.

5.2. Data Description and Analysis

The large volume of data in the study reduces the possibility of a connection between
the three types of datasets, making the test set fully encapsulated compared to the training
and validation sets, and ensuring the quality of the test set for model evaluation.

The model Hyper parameter settings and datasets properties of the first part are shown
in Table 1. The dataset type is conventional steel cracking.

Table 1. Hyper parameter settings for the first part of the study model.

Model Batch Initial Learning Rate Optimizer Training Cycles

Yolov5 16 0.01 SGD 100
VGG16 16 0.01 RMSProp 100
C-Alex 16 0.01 AdaDelta 100
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The total number of positive examples in the training set is 2500, and the best training
example model is taken as the study model to explore the best balance between recall
and accuracy by weighing the accuracy as the main index. The confidence threshold
(Confidence) of the corresponding model is determined when the F1-score takes the maxi-
mum value, and the data of the model passing the test set under this condition are shown
in Table 2.

Table 2. Various evaluation parameters of the three models.

Model Precision Accuracy Recall F1-Score Confidence Score

Yolov5 0.9875 0.9924 0.9974 0.9924 0.63
VGG16 0.9770 0.9761 0.9752 0.9761 0.83
C-Alex 0.9851 0.9883 0.9916 0.9885 0.71

The accuracy of all three models in the test set is higher than 97%, indicating that for
steel surface cracks, all three types of models have good recognition ability. Using F1-score
as the comprehensive evaluation criterion for the models, the Yolov5 model outperforms
the other two models when the confidence level corresponds to the peak of the trade-off
accuracy. The F1-score peaks at a confidence level of 0.63 in the Yolov5 model and the best
balance of accuracy and recall is formed at this confidence level when the accuracy rate is
98.75% and the recall rate is 99.74%. As the confidence level gradually adjusted downward,
more samples and noise are selected, causing the recall rate to trend slowly upward, with
the precision rate decreasing the most between the confidence level of 0.4 threshold and
0.5 threshold. It is shown in Figure 2 that the relationship between the recall rate and
precision rate is in the Yolov5 model.
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Figure 2. Relationship between recall rate and precision rate.

It can be found in Figure 2 that the precision rate is inversely related to the recall rate
when the confidence level decreases. In the statistics of features versus confidence, it is
found that positive examples with positive predictions have much higher confidence than
negative examples being detected as positive.
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According to the relevant evaluation criteria formula with the recognition image, when
the positive examples with positive prediction results are the same, the feedback of the
model to the negative examples is an important factor affecting the two types of evaluation
parameters. The less the feature content carried in the image, the lower the confidence when
it is predicted as a positive example. When the confidence level decreases, the observation
of sample prediction types shows that FN decreases, FP increases significantly, and TP in
the recall rate decreases in the proportion of the total examples with a correct prediction,
leading to a decrease in the recall rate. It is shown in Figure 3 that the negative examples
(FP) are predicted as positive by the Yolov5 model when the confidence is lower than 0.5.
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Figure 3. Negative example predicted as positive by Yolov5.

In this negative example, the overall gray difference of the picture is large, which
is easy to be regarded as a positive example by the model object. However, compared
with the real positive example picture of a steel crack, the negative example has fewer
characteristics in the gray area concentration, which will lead to its error detection as a
positive example only when the confidence is lower than the threshold.

Accuracy is an important indicator to assess the model’s ability to identify under noise
interference such as light. The C-Alex model and the Yolov5 model have similar accuracy
rates while ensuring higher recall, reflecting the lower risk of error and missed steel crack
detection for both models trained on large data volumes. VGG16 has a higher confidence
level than the other two models when the trade-off accuracy reaches its peak, showing
that the model trade-off VGG16 model has a higher confidence level than the other two
models at the peak of the trade-off accuracy, showing a higher feature recognition ability
for a single common cracked steel crack sample at the peak of the model trade-off accuracy.
It can be seen in Figure 4 the relationship between accuracy and confidence in the VGG16
network model.

Due to the low content of example features of the error detection case, the content of
negative examples of positive predictions will decrease as the confidence level rises, making
TP have a larger share of the accuracy rate, thus making the accuracy rate proportional to
the confidence level relationship when the confidence level increases.

Several evaluation parameters of the Yolov5 model and the C-Alex model are close
to each other, and when both models obtain the maximum value of the trade-off accuracy,
the accuracy and recall of Yolov5 are higher than that of C-Alex, while the confidence is
lower than that of the C-Alex model. Observing the images of both models before and after
pooling, it is found that the C-Alex model has a more obvious noise presence sporadically
distributed around the samples before pooling, and the noise is significantly reduced and
the sample features are amplified after the images go through multiple max-pooling layers,
which indicates that the C-Alex model is better than the Yolov5 model in terms of resistance
to noise interference. The comparison of the C-Alex model before and after pooling the
images several times was shown in Figures 5 and 6, respectively.
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Figure 5. The image before pooling.

After comparing the two sets of plots it can be more obviously found that after the
image goes through Alex’s max pooling layer, most of the noise is eliminated and the max
pooling layer effectively reduces the interference of noise on the sample, improves the
recognition accuracy and increases the quality of the recognized sample.

The super-reference settings and dataset attributes for the second part are shown
in Table 3 using a small volume dataset. Noise such as light has a large impact on the
sporadically distributed steel crack pictures, and the model needs to extract its features
accurately to screen the impact of the difference in gray value caused by light reflection.
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Table 3. Model Hyper parameter settings in the second part of the study.

Model Batch Initial Learning Rate Optimizer Training Epochs

Yolov5 4 0.01 SGD 10
VGG16 4 0.01 Rmsprop 10
C-Alex 4 0.01 AdaDelta 10

The total number of positive examples in the training set is 300, and the training period
is 10 rounds. The sample size and training period of the datasets is much less than the
normal training mode, making the final round of training the best training sample model.

Considering the railroad industrial application scenario, the impact of industrial steel
crack error detection is often lower than that of missed detection, this part of the study
makes a moderate bias of the trade-off accuracy toward the recall rate based on the pro-
portion of positive example volume. For the noise with uncertainty, the positive example
judgment should be an appropriately increased β value in the trade-off accuracy, so that
the confidence level corresponding to the peak of the trade-off accuracy is reduced com-
pared with the initial one, in order to quantitatively increase the probability of successful
identification. It can be shown in Table 4 that the data of the model passes the test set when
the F1 score reaches the peak.

Table 4. Parameters evaluated for each of the three models through the test set.

Model Precision Accuracy Recall F1-Score Confidence Score

yolov5 0.86 0.9 0.84 0.93 0.31
VGG16 0.69 0.74 0.89 0.82 0.58
C-Alex 0.96 0.93 0.9 0.92 0.54

The data in the table shows that the C-Alex model under the training condition of a
small number of datasets has obvious advantages over the other two models in the accuracy
rate. The recall rate of short-term training feedback is higher, which reflects that the C-Alex
model has strong short-term learning ability and can extract image features more quickly.
The Yolov5 model is better than the VGG16 model in this research scenario due to its more
complex structure and other factors.

The VGG16 and C-Alex models are also served as improvements to the Alex model,
and in combination with the model structure, the AdaDelta optimization algorithm and
Charis activation function of C-Alex can improve the learning ability and learning efficiency.
In the steel crack recognition training comparison test with the original model, the C-Alex
model is higher than the original model in terms of accuracy, precision and recall, reflecting
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the overall effect of the research improvement is more obvious, in which the accuracy rate
of the improved model is more than 16.1% higher than the original model.

The restriction of data sets reduces the confidence of the three models. Combined with
the conclusion of the article [31], it is found that the Charis activation function has stronger
feedback on image features, which is convenient for mapping the image eigenvalue to the
next layer. The simulation process of planar feature mapping under the influence of the
activation function was shown in Figure 7.
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In the identification of localized and dispersed steel cracks, the structure of the VGG16
model gives it a more prominent advantage in this area, with the highest confidence level
among the three models when the trade-off accuracy reaches its peak, showing that the
model has a higher extraction rate of localized and subtle features and can better classify
noise from positive examples.

6. Conclusions and Outlook
6.1. Conclusions

With the rapid development of deep learning in recent years, its extensive applica-
tion value has also been reflected. Many scientific research teams have applied artificial
intelligence recognition technology to the field of the railway industry. In this research, an
artificial intelligence recognition method based on steel surface cracks is proposed. Three
models are selected and some models are improved to carry out multi-angle research;
the multi-scene performance and model characteristics of the three models in steel crack
recognition are analyzed in multiple directions. The conclusions of the study are as follows.

1. All three neural network models can effectively identify steel surface cracks with
accuracy and trade-off accuracy higher than 97.5%, and the confidence level when the
trade-off accuracy reaches the peak is higher than 0.6.

2. The Yolov5 model has better recognition ability under the training of large datasets,
and the VGG16 model can extract the detailed features of the image more accurately
and reduce the interference of noise effectively.

3. The C-Alex model is able to extract image features faster than the other two models
under the training conditions with a small sample size of the datasets and shows a
higher transfer efficiency of the features.

4. The artificial intelligence steel crack detection method, which uses the grayscale
value set performance state and the grayscale difference threshold as the basis for
judgment, significantly reduces the parameter content, shortens the calculation time,
and improves the data transfer efficiency. Test experiments prove that this method
can effectively detect steel surface cracks.

According to the reference [32], at present, various artificial intelligence recognition
technologies based on different models are applied in the railway industry with an average
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accuracy of 90%, which has good recognition performance. This research has been improved
on the basis of previous studies. Under the condition of large volume data sets, the accuracy
exceeds the average level, which meets the demand for steel crack detection accuracy in
the railway industry field and has good application prospects.

6.2. Outlook

This research has made improvements on the basis of previous studies, using a variety
of neural network models for testing and comparison, which has certain application value
and potential. However, the artificial intelligence recognition method used in this study
still has some error detections. In future research on artificial intelligence recognition of
railway steel cracks, the artificial intelligence recognition method of multi-model composite
detection will be adopted in combination with the model characteristics to make corre-
sponding improvements in terms of error detection and missing detection [33], further
improve the recognition speed, analyze and use the characteristics of different models to
complement each other, and improve the overall recognition ability and efficiency. In the
future, we will expand the application scenarios of AI recognition technology, so that AI
technology can better serve the industrial field.
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