
Citation: Su, J.-Y.; Kang, J.-L.; Jang,

S.-S. An Actor-Critic Algorithm for

the Stochastic Cutting Stock Problem.

Processes 2023, 11, 1203. https://

doi.org/10.3390/pr11041203

Academic Editor: Xiong Luo

Received: 23 March 2023

Revised: 8 April 2023

Accepted: 10 April 2023

Published: 13 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

processes

Article

An Actor-Critic Algorithm for the Stochastic Cutting
Stock Problem
Jie-Ying Su 1, Jia-Lin Kang 2,* and Shi-Shang Jang 1,*

1 Department of Chemical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan
2 Department of Chemical and Materials Engineering, National Yunlin University of Science and Technology,

Yunlin 64002, Taiwan
* Correspondence: jlkang@yuntech.edu.tw (J.-L.K.); ssjang@mx.nthu.edu.tw (S.-S.J.)

Abstract: The inventory level has a significant influence on the cost of process scheduling. The
stochastic cutting stock problem (SCSP) is a complicated inventory-level scheduling problem due to
the existence of random variables. In this study, we applied a model-free on-policy reinforcement
learning (RL) approach based on a well-known RL method, called the Advantage Actor-Critic, to
solve a SCSP example. To achieve the two goals of our RL model, namely, avoiding violating the
constraints and minimizing cost, we proposed a two-stage discount factor algorithm to balance these
goals during different training stages and adopted the game concept of an episode ending when an
action violates any constraint. Experimental results demonstrate that our proposed method obtains
solutions with low costs and is good at continuously generating actions that satisfy the constraints.
Additionally, the two-stage discount factor algorithm trained the model faster while maintaining a
good balance between the two aforementioned goals.

Keywords: reinforcement learning; stochastic cutting stock problem; advantage actor-critic; discount
factor; continuous action space

1. Introduction

The cutting stock problem (CSP) is the common problem of minimizing trim loss when
cutting stock materials into pieces of required sizes to meet customer demand. It has been
considered in a wide range of industrial applications, including paper, metal, and glass
manufacturing. The CSP is an integer linear programming problem that can be formulated
as follows:

min
n

∑
j=1

gjxj, (1)

s.t.
n
∑

j=1
aijxj ≥ di, i ∈ {1, 2, . . . , m},

xj ∈ Z+.
(2)

The i-th item has a demand di (i ∈ {1, 2, . . . , m}) given by the customer. Items are
produced to meet demand by cutting stock materials in predefined cutting patterns. The
j-th cutting pattern is defined by the vector aj = [a1j, a2j, . . . , aij] (j ∈ {1, 2, . . . , n}), where
aij indicates the number of i-th items produced when a stock material is cut by the j-th
pattern; gj is the trim loss of the j-th pattern. The objective of the problem is to determine
the number of stock materials to be cut by the j-th pattern, which is denoted as xj, to meet
the demand while minimizing total trim loss [1–3].

In production scheduling for chemical industries, the inventory level directly affects
production costs. For the stochastic CSP (SCSP), the demand is a random variable that
is unknown prior to production [4,5]. Due to the presence of random event factors, the
SCSP can be considered as a complex inventory-level scheduling problem. A performant

Processes 2023, 11, 1203. https://doi.org/10.3390/pr11041203 https://www.mdpi.com/journal/processes

https://doi.org/10.3390/pr11041203
https://doi.org/10.3390/pr11041203
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/processes
https://www.mdpi.com
https://orcid.org/0000-0002-3125-691X
https://doi.org/10.3390/pr11041203
https://www.mdpi.com/journal/processes
https://www.mdpi.com/article/10.3390/pr11041203?type=check_update&version=2

Processes 2023, 11, 1203 2 of 13

algorithm for solving such a problem may minimize costs such as waste, inventory, and
back-order costs, which are critical for companies. However, in traditional deterministic
mathematical methods such as integer programming, calculation time increases rapidly
as the amount of data increases, and random variables make such problems difficult to
solve [6]. Reinforcement learning (RL) is a novel method for rapidly providing an optimal
scheduling solution when handling non-deterministic problems. However, RL is doubtful
when dealing with constrained problems.

Only one previous study applied RL methods to solve the CSP. Pitombeira-Neto and
Murta [7] presented a model-free off-policy approximate policy iteration algorithm for
solving the SCSP example. Their algorithm approximated the action-value function using
two basis functions, namely, the polynomial and Fourier basis function. Their results
showed the scheduling performance of RL and ensured that actions did not violate the
constraints. However, for each of the two basis functions, a set of parameter matrices of
unknown sizes must be tuned prior to training. Excessive mathematizations, exhaustive
random iterations, and requirements for prior knowledge led to both huge training and
calculation times, making this model impractical for industrial application. Some studies
have solved the knapsack problem, which is a common optimization problem similar to
the CSP, using RL approaches. Gu et al. proposed a RL algorithm with a pointer network
to solve the single-knapsack problem [8]. Sur et al. solved the multiple-knapsack problem
using a RL agent trained by the A3C algorithm [9].

The goal of this study was to adopt Advantage Actor-Critic (A2C) for continuous
action space to solve the SCSP example considered in [7] for easier and more reproducible
implementation in industries. In this example, seven items are produced by cutting raw
materials with fixed amounts and sizes according to 15 cutting patterns. The goal is
to determine the number of times to apply each pattern to satisfy the constraints and
simultaneously minimize the sum of the trim loss, back-order cost, and inventory cost.
There is a hyperparameter called the discount factor (γ) that significantly affects the training
of a RL agent, which has a value between zero and one. The discount factor determines
the extent to which future rewards should be considered. The closer it is to zero, the fewer
time steps of future rewards are considered. Therefore, to achieve an effective balance
between the two goals of avoiding violating the constraints and minimizing cost, we
proposed a two-stage discount factor algorithm for training a RL model. Experimental
results demonstrate that our proposed two-stage discount factor algorithm can accelerate
model training significantly. Our model learns the SCSP and constraints accurately to
provide actions continuously that satisfy the constraints and minimize cost.

The remainder of this paper is organized as follows. Section 2 describes the details of
the problem to be solved and the proposed approach. Section 3 presents the results of our
experiments. Section 4 summarizes the conclusions of this study.

2. Materials and Methods
2.1. Problem Statement

We considered the SCSP example presented in [7]. In this problem, there are 30 pieces of
1500 cm long raw material and 15 cutting patterns that may be used to cut the raw material
into seven different items with random demand. The goal of the problem is to determine the
number of times to apply each pattern to minimize the sum of the trim loss, back-order cost,
and inventory cost. The lengths of the items are listed in Table 1. The compositions and trim
losses of patterns are listed in Table 2. The total demand for all items is defined as dtotal, which
follows a discrete uniform probability distribution between dmin and dmax. The demand for
individual items is defined by a vector d = [d1, d2, . . . , di] (i ∈ {1, 2, . . . , m}), which follows
a multinomial distribution based on the total demand and probability distribution vector p.
The values of dmin, dmax, and p are listed in Table 3. The demand vector d can be formulated
as follows:

dtotal = DiscUnif(dmin, dmax), (3)

Processes 2023, 11, 1203 3 of 13

d = Multinomial(dtotal , p). (4)

Table 1. Lengths of seven items.

Item 1 2 3 4 5 6 7

Lengthli(cm) 115 180 267 314 880 1180 1200

Table 2. Compositions and trim losses of 15 patterns.

Item\Pattern 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 10 13 3 3 2 2 1 1 0 0 0 0 0 0 0
2 0 0 1 1 2 0 1 1 0 0 0 0 0 0 1
3 0 0 0 0 0 0 0 0 1 1 1 2 2 3 0
4 1 0 0 3 0 0 0 0 0 0 1 0 3 2 4
5 0 0 1 0 1 0 0 0 0 0 1 1 0 0 0
6 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0
7 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0

Trim loss gj
(cm)

36 5 95 33 30 70 5 25 33 53 39 86 24 71 64

Table 3. Probability distribution of the demand for seven items.

Item 1 2 3 4 5 6 7 dmin dmax

Probability (p) 0.3 0.2 0.2 0.1 0.1 0.05 0.05 40 50

2.2. Reinforcement Learning

RL is a decision-making method that solves problems described as Markov decision
processes. A RL system involves an agent interacting with an environment. In each step,
the agent observes the state of the environment and then determines the action to be taken.
The environment then returns the next state and a reward (Figure 1). The sets of states,
actions, rewards, and next states at time step t are presented in the following form: (st, at, rt,
st+1). The (st, at, rt, st+1) sequence of an episode with several time steps is called a trajectory.
The goal of the agent is to maximize the reward. Therefore, RL attempts to develop a policy
for choosing an optimal action based on states [10–12].

Processes 2023, 11, x FOR PEER REVIEW 3 of 14

∈ {1, 2, …, m}), which follows a multinomial distribution based on the total demand and

probability distribution vector p. The values of dmin, dmax, and p are listed in Table 3. The

demand vector d can be formulated as follows:

Table 1. Lengths of seven items.

Item 1 2 3 4 5 6 7

Length ��(cm) 115 180 267 314 880 1180 1200

Table 2. Compositions and trim losses of 15 patterns.

Item\Pattern 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 10 13 3 3 2 2 1 1 0 0 0 0 0 0 0

2 0 0 1 1 2 0 1 1 0 0 0 0 0 0 1

3 0 0 0 0 0 0 0 0 1 1 1 2 2 3 0

4 1 0 0 3 0 0 0 0 0 0 1 0 3 2 4

5 0 0 1 0 1 0 0 0 0 0 1 1 0 0 0

6 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0

7 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0

Trim loss g� (cm) 36 5 95 33 30 70 5 25 33 53 39 86 24 71 64

Table 3. Probability distribution of the demand for seven items.

Item 1 2 3 4 5 6 7 dmin dmax

Probability (p) 0.3 0.2 0.2 0.1 0.1 0.05 0.05 40 50

2.2. Reinforcement Learning

RL is a decision-making method that solves problems described as Markov decision

processes. A RL system involves an agent interacting with an environment. In each step,

the agent observes the state of the environment and then determines the action to be taken.

The environment then returns the next state and a reward (Figure 1). The sets of states,

actions, rewards, and next states at time step t are presented in the following form: (st, at,

rt, st+1). The (st, at, rt, st+1) sequence of an episode with several time steps is called a trajec-

tory. The goal of the agent is to maximize the reward. Therefore, RL attempts to develop

a policy for choosing an optimal action based on states [10–12].

Figure 1. Diagram of a reinforcement leaning system.

The methods of RL can be divided into value-based and policy-based. The main dif-

ference is whether an explicit policy is trained. In value-based learning, there is no explicit

policy to be trained, and actions are selected based on a value function instead. In policy-

������ = DiscUnif(����, ����), (3)

� = �����������(������, �). (4)

Figure 1. Diagram of a reinforcement leaning system.

The methods of RL can be divided into value-based and policy-based. The main
difference is whether an explicit policy is trained. In value-based learning, there is no
explicit policy to be trained, and actions are selected based on a value function instead. In
policy-based learning, an explicit policy is built to determine actions directly. RL can also
be divided into on-policy and off-policy learning. The main difference is whether the policy
that is improved, which is called the target policy, is the same as the policy that is used to
select actions, which is called the behavior policy. In on-policy learning, the target policy
and behavior policy are the same, meaning only current data can be used for training. In

Processes 2023, 11, 1203 4 of 13

off-policy learning, the target policy and behavior policy may be different; hence, historical
data can also be used for training [13,14].

2.3. Advantage Actor-Critic
2.3.1. Discrete Action Space

A2C is an on-policy method for RL that combines value-based and policy-based
learning and is composed of two neural networks called the actor and critic. The actor
represents the policy that determines actions and is trained by minimizing the actor loss,
which increases the probability of taking actions with large advantage values [15,16]. This
process is formulated as:

Actor loss = − 1
B

B

∑
k=1

A(st,k, at,k)× logpθ(at,k
∣∣st,k), (5)

A(st,k, at,k) = Q(st,k, at,k)−V(st,k), (6)

Q(st,k, at,k) = rt,k + γV(st+1,k), (7)

where B is the batch size; A(st,k, at,k) is the advantage value of taking action at,k at state
st,k, which can be estimated using Equation (6); Q(st,k, at,k) is the Q value representing the
expected future rewards of taking action at,k at state st,k, which can be calculated based
on the reward rt,k, discount factor γ, and the next state value, as shown in Equation (7);
V(st,k) is the state value of state st,k; and γ is the discount factor, which is between zero and
one. The closer the discount factor is to one, the more time steps of future rewards that
are considered. It should be noted that the advantage value can be calculated using the
state value, reward, and discount factor, indicating that only one network must be trained
to estimate the state value, which is called the critic network. pθ(at,k

∣∣st,k) represents the
probability of taking action at,k at state st,k outputted by the actor. Therefore, the actor loss
can be expressed as:

Actor loss = − 1
B ∑B

k=1(rt,k + γV(st+1,k)−V(st,k))× logpθ(at,k
∣∣st,k). (8)

The critic is updated based on the temporal difference (TD). Therefore, the critic loss is
formulated as:

Critic loss =
1
B ∑B

k=1(rt,k + γV(st+1,k)−V(st,k))
2. (9)

Additionally, entropy loss can be used during the training of actors and critics. Entropy
loss allows an actor to maintain the ability to explore at the beginning of training, thereby
avoiding falling into local optima. The entropy loss is formulated as follows:

Entropy loss =
β

B ∑B
k=1 ∑I

j=1 pθ

(
(a = j)t,k

∣∣∣st,k

)
× logpθ

(
(a = j)t,k

∣∣∣st,k

)
. (10)

where β is the entropy beta, which modulates the effect of entropy loss on training.

2.3.2. Continuous Action Space

For a discrete action space, the actor network in A2C traditionally outputs the prob-
abilities of actions. A2C is also a promising method for handling a continuous action
space. Instead of outputting the probabilities of actions, the actor network outputs two
scalars, each of which has the same size as the number of actions. One scalar represents the
mean value µ of the Gaussian distribution, and the other represents the variance σ2. When
addressing a continuous action space, the critic loss is the same as that in the discrete A2C

Processes 2023, 11, 1203 5 of 13

(see Equation (9)). The actor and entropy losses must be slightly different from those in the
discrete A2C and are formulated as:

Actor loss = − 1
BI ∑B

k=1 ∑I
j=1 A(st,k, at,k)× (−

(
aj,t,k − µj,t,k

)2

2σj,t,k
2 − log

√
2πσj,t,k

2), (11)

Entropy loss =
−β

BI ∑B
k=1 ∑I

j=1 log
√

2πeσj,t,k
2. (12)

2.4. Environment

Our environment system for RL contains states, actions, rewards, constraints, and a
variable which is called “done” and is used to solve the SCSP.

• The state si,t, represents the inventory of item i (i ∈ {1, 2, . . . , 7}). The initial state (i.e.,
the initial inventory) follows a discrete uniform probability distribution between 0
and 35, which can be formulated as:

si,0 = DiscUnif(0, 35). (13)

The state transition function is given by Equation (14). The next state is determined
by the current state, action, and random demand, which is only known after executing an
action.

si,t+1 = max

(
0, si,t +

15
∑

j=1
aijxjt − di,t+1

)
j ∈ {1, 2, . . . , 15}, xj,t ∈ Z+

(14)

• An action denoted as xjt represents the number of times to apply pattern j.
• To estimate the reward, the cost is first calculated using Equation (15), where gj is the

trim loss of pattern j, the value of which is provided in Table 2, and [x]+ = max(0,x).
The values and definitions of h+i and h−i are provided in Table 4. The cost consists of
the trim loss, inventory cost, and back-order cost. The reward is a function of the cost
and is calculated by dividing the cost by 500, as shown in Equation (16). This reward
function indicates that when the cost is greater than 500, a reward of less than one is
returned, and when the cost is equal to 500, a reward with a value of one is returned.
The reward function was designed in this manner for the following reasons:

1. Based on the results presented in [7], a cost of approximately 500 is sufficiently
low for this SCSP example.

2. The training of the critic and actor networks may be unstable if the variance of
the loss is large. Therefore, the reward should be approximately equal to one.

c(st, xt, dt+1) =
15

∑
j=1

0.1× gjxjt +
7

∑
i=1

h+i [sit +
15

∑
j=1

aijxjt − di,t+1]

+

+
7

∑
i=1

h−i [di,t+1 − (sit +
15

∑
j=1

aijxjt)]

+

(15)

rt = 500/c(st, xt, dt+1) (16)

Table 4. Parameters of the environment system.

Parameter Value Statement

h+i 0.01 li
Inventory holding cost per item, where li is the

length of item i.

h−i li
Back-order cost per item, which is the cost of not

satisfying the demand.
smax 70 Maximum inventory for each item at one time.
xmax 30 Number of available stock material at one time.

Processes 2023, 11, 1203 6 of 13

• There are two constraints on actions in the target environment system, as described
below. First, the inventory of any item at any time cannot exceed the maximum
inventory. Second, the total number of patterns to be used must be less than the
number of available stock materials.

si,t +

15
∑

j=1
aijxjt ≤ smax

15
∑

j=1
xj ≤ xmax

(17)

• The value of the variable donet depends on whether action xt violates the constraints
(Equation (18)). The donet takes on a value of one if the current episode ends or a value
of zero if the episode continues, and then the state is updated by the state transition
function (Equation (13)). We adopted the game concept of an episode ending when
an action violates any constraint and continuing when all constraints are satisfied to
improve the ability of the model to deal with the constraints. For a discount factor
close to one, the greater the number of future steps, the higher the accumulated reward,
resulting in a training target that continuously provides actions that meet constraints.

donet =

{
1, i f xt violate the constraints

0, else
(18)

2.5. Proposed Method
2.5.1. Two-Stage Discount Factor

When calculating the critic loss, which is based on the TD, the discount factor is critical
for determining the extent to which future rewards should be considered. The closer the
discount factor is to zero, the fewer time steps of future rewards are considered. With a
value of zero, the actor can only consider the current step.

There are two goals for our agent to achieve:

1. Avoiding violating the constraints;
2. Minimizing cost.

According to these different goals, we define an adaptive discount factor in two stages,
as shown in Equation (19). First, we set a high discount factor, meaning many future steps
are considered. When the constraints are satisfied for multiple time steps, accumulated
rewards increase. Therefore, the model is trained to satisfy the constraints continuously
in this stage. When the average number of steps of continuous actions that satisfy the
constraints is greater than 200, the discount factor is adjusted to 0.1. At this stage, the goal
of the agent is to take an action that minimizes the cost.

γ =

{
0.1, a f ter average number o f steps ≥ 200

0.9, else
(19)

2.5.2. Proposed Process

The structures of the critic and actor neural networks are presented in Figure 2. The
state is not directly inputted into the actor and critic. Instead, we use a base fully connected
network for feature extraction. The critic network is composed of two fully connected
layers with a rectified linear unit (ReLU) activation function and a fully connected layer
with no activation function. The critic output is the estimated state value corresponding to
the input state and has dimensions of B × 1, where B represents the batch size. The actor is
divided into two networks, where one outputs the mean value µ of the number of each
pattern to use, which follows a Gaussian distribution, and the other outputs the variance
σ2. Both outputs have dimensions of B × 15. Both actor networks are composed of two
fully connected layers with a ReLU activation function and one fully connected layer with
a Softmax activation function

Processes 2023, 11, 1203 7 of 13

Processes 2023, 11, x FOR PEER REVIEW 7 of 14

network for feature extraction. The critic network is composed of two fully connected lay-

ers with a rectified linear unit (ReLU) activation function and a fully connected layer with

no activation function. The critic output is the estimated state value corresponding to the

input state and has dimensions of B × 1, where B represents the batch size. The actor is

divided into two networks, where one outputs the mean value µ of the number of each

pattern to use, which follows a Gaussian distribution, and the other outputs the variance

�2. Both outputs have dimensions of B × 15. Both actor networks are composed of two fully

connected layers with a ReLU activation function and one fully connected layer with a

Softmax activation function

Figure 2. Structures of the actor and critic neural networks.

The proposed process diagram is presented in Figure 3 and Algorithm 1 summarizes

the steps of the proposed method. The proposed framework is composed of two parallel

processes.

1. Interaction for data collection (solid line in Figure 3): At the beginning of an episode,

the initial state is sampled and observed by the actor, and the actor then outputs the

mean value and variance for sampling an action from a Gaussian distribution. After

executing a sampled action, the environment returns the next state, reward, and

whether the episode is finished. If the episode is finished, indicating that the con-

straints are violated, then the next episode starts, and an initial state is sampled. Oth-

erwise, the next state is observed by the actor to take the next action.

2. Training of the critic and actor (green dashed line in Figure 3): After each of the 32

steps of interaction between the actor and environment, the total loss, which is com-

posed of critic, policy, and entropy losses (Equation (20)), is calculated and used to

update both the actor and critic networks. It should be noted that if the episode ends

at time step t, the state value of time step t + 1 must be zero. Otherwise, training will

not converge. Furthermore, we propose a two-stage discount factor algorithm, as

shown in the orange box in Figure 3. Once the average number of steps over the

previous hundred training episodes is greater than 200, the discount factor is ad-

justed to 0.1. Before this point, the discount factor is 0.9.

Total loss = [
1

B
� �V�,� − �r�,� + γV���,���

�
��

���

]

+ [
1

B × 15
�(r�,� + γV���,� − V�,�

�

���

) �(
�μ�

�,�,�
− x�,�,��

�

2σ�
�,�,�

�

��

���

+ log �2πσ�
�,�,�

�)] + [−β ×
1

B × 15
� �

log�2πσ�
�,�,�

�
� + 1

2

��

���

�

���

]

(20)

Figure 2. Structures of the actor and critic neural networks.

The proposed process diagram is presented in Figure 3 and Algorithm 1 summarizes the
steps of the proposed method. The proposed framework is composed of two parallel processes.

Processes 2023, 11, x FOR PEER REVIEW 8 of 14

Figure 3. Proposed process diagram.

Algorithm 1 Proposed A2C Model for a Continuous Action Space with a Two-stage Discount Factor

Initialize actor network πθ and critic network Qθ with random parameters θ

Input β=1 × 10−4, B = 32

Initialize discount factor γ = 0.9

Initialize memory M

Initialize total game steps g�, total rewards r�, total cost c� = 0

for each episode:

 Initialize the initial state s0

 While:

 Get �t, �2t = πθ(st)

 Take an action at = int(sample from a Gaussian distribution with mean �t and variance �2t)

 Execute action at and observe reward rt, next state st+1, and donet

 Store (st, at, rt, st+1, donet) in M

 g� += 1

 r� += r�

 c� += r�/500

 Update state st ← st+1

 if donet:

 Calculate the average number of steps g���� and mean cost c�� over the last 100 episodes

 if g���� ≥ 200:

 γ = 0.1

 if the number of data in M = B:

 Calculate the total loss by Equation (20).

 Update critic and actor by minimizing the total loss

end for

PyTorch was used to implement the proposed algorithm. In addition to our proposed

model, we trained a model with a discount factor of 0.9 and another model with a discount

factor equal to 0.1 for comparison. The discount factor of 0.9 indicates that many steps of

future rewards are considered, and a discount factor of 0.1 indicates that few steps of fu-

ture rewards are considered. The models were trained with a fixed total number of train-

ing steps (1,500,000 steps) instead of a fixed total number of training episodes. The number

Figure 3. Proposed process diagram.

1. Interaction for data collection (solid line in Figure 3): At the beginning of an episode,
the initial state is sampled and observed by the actor, and the actor then outputs
the mean value and variance for sampling an action from a Gaussian distribution.
After executing a sampled action, the environment returns the next state, reward,
and whether the episode is finished. If the episode is finished, indicating that the
constraints are violated, then the next episode starts, and an initial state is sampled.
Otherwise, the next state is observed by the actor to take the next action.

2. Training of the critic and actor (green dashed line in Figure 3): After each of the
32 steps of interaction between the actor and environment, the total loss, which is
composed of critic, policy, and entropy losses (Equation (20)), is calculated and used
to update both the actor and critic networks. It should be noted that if the episode
ends at time step t, the state value of time step t + 1 must be zero. Otherwise, training
will not converge. Furthermore, we propose a two-stage discount factor algorithm,
as shown in the orange box in Figure 3. Once the average number of steps over the
previous hundred training episodes is greater than 200, the discount factor is adjusted
to 0.1. Before this point, the discount factor is 0.9.

Processes 2023, 11, 1203 8 of 13

Total loss = [1
B

32
∑

k=1

(
Vt,k −

(
rt,k + γVt+1,k

))2
]

+[1
B×15

B
∑

k=1
(rt,k + γVt+1,k −Vt,k)

15
∑

j=1
(
(µ′j,t,k−xj,t,k)

2

2 σ′j,t,k2

+ log
√

2π σ′j,t,k2)] + [−β× 1
B×15

B
∑

k=1

15
∑

j=1

log(2π σ′j,t,k2)+1
2]

(20)

Algorithm 1. Proposed A2C Model for a Continuous Action Space with a Two-stage
Discount Factor

Initialize actor network πθ and critic network Qθ with random parameters θ
Input β = 1 × 10−4, B = 32
Initialize discount factor γ = 0.9
Initialize memory M
Initialize total game steps gT, total rewards rT, total cost cT = 0
for each episode:

Initialize the initial state s0
While:

Get µt, σ2
t = πθ(st)

Take an action at = int(sample from a Gaussian distribution with mean µt and
variance σ2

t)
Execute action at and observe reward rt, next state st+1, and donet
Store (st, at, rt, st+1, donet) in M
gT += 1
rT += rT
cT += rT/500
Update state st ← st+1
if donet:

Calculate the average number of steps gT and mean cost cT over the last
100 episodes

if gT ≥ 200:
γ = 0.1

if the number of data in M = B:
Calculate the total loss by Equation (20).
Update critic and actor by minimizing the total loss

end for

PyTorch was used to implement the proposed algorithm. In addition to our proposed
model, we trained a model with a discount factor of 0.9 and another model with a discount
factor equal to 0.1 for comparison. The discount factor of 0.9 indicates that many steps
of future rewards are considered, and a discount factor of 0.1 indicates that few steps of
future rewards are considered. The models were trained with a fixed total number of
training steps (1,500,000 steps) instead of a fixed total number of training episodes. The
number of steps in each episode may vary according to the ability of the model to handle
the constraints. Therefore, the total number of training episodes for each model may vary.
Every model was executed on a PC with an i7-9700 3.00 GHz CPU and 32 GB of RAM.

3. Results and Discussion
3.1. Training

The results of training are discussed in terms of the average number of steps (Figures 4
and 5) and mean cost (Figures 6 and 7). Each point in Figures 4–7 represents the result
of averaging over the previous 100 episodes. The training of the model with a discount
factor of 0.1 is slower than that of the other two models obviously, resulting in much
larger training episodes, making it difficult to present those results together with others.

Processes 2023, 11, 1203 9 of 13

Therefore, the results of the model with a discount factor of 0.1 are presented separately
from the other two models in Figures 5 and 7.

Processes 2023, 11, x FOR PEER REVIEW 9 of 14

of steps in each episode may vary according to the ability of the model to handle the con-

straints. Therefore, the total number of training episodes for each model may vary. Every

model was executed on a PC with an i7-9700 3.00 GHz CPU and 32 GB of RAM.

3. Results and Discussion

3.1. Training

The results of training are discussed in terms of the average number of steps (Figures

4 and 5) and mean cost (Figures 6 and 7). Each point in Figures 4–7 represents the result

of averaging over the previous 100 episodes. The training of the model with a discount

factor of 0.1 is slower than that of the other two models obviously, resulting in much larger

training episodes, making it difficult to present those results together with others. There-

fore, the results of the model with a discount factor of 0.1 are presented separately from

the other two models in Figures 5 and 7.

Figure 4. Average number of steps for the last 100 training episodes with the two-stage discount

factor (blue) and discount factor = 0.9 (yellow), where γ is the discount factor.

Figure 4. Average number of steps for the last 100 training episodes with the two-stage discount
factor (blue) and discount factor = 0.9 (yellow), where γ is the discount factor.

Processes 2023, 11, x FOR PEER REVIEW 10 of 14

Figure 5. Average number of steps for last 100 training episodes for discount factor = 0.1.

Figure 6. Mean costs for the last 100 training episodes for the two-stage discount factor (blue) and

discount factor = 0.9 (yellow).

Figure 5. Average number of steps for last 100 training episodes for discount factor = 0.1.

3.1.1. Average Number of Steps

The higher the average number of steps, the better the ability of the agent to provide
actions that satisfy the constraints continuously. Figures 4 and 5 reveal a gradual increase
in the average number of steps, indicating that the agent learns to take actions satisfying
the constraints. The two-stage discount factor model (blue line in Figure 4) was trained the
fastest with an average number of steps greater than 7000 after training. The model with a
discount factor of 0.9 (yellow line in Figure 4) was trained slightly slower with an average

Processes 2023, 11, 1203 10 of 13

number of steps of approximately 200 after training. The model with a discount factor of
0.1 (Figure 5) was trained the slowest with an average number of steps of approximately 15
after training. When the training episode is around 25,000, the average steps of the two-
stage discount factor had significant improvement, which is better than the single discount
factor. Furthermore, the partially enlarged view in Figure 4 shows the results before the
21,000th episode with an average number of steps between 0 and 200. The average number
of steps reached 200 at approximately the 20,000th episode, where the discount factor was
adjusted from 0.9 to 0.1 for training the two-stage discount factor model. A higher discount
factor considers more future rewards, indicating that the higher the average number of
steps, the higher the accumulated reward—the target for RL training. Thus, the model with
a discount factor of 0.9 demonstrated a greater ability to provide actions that continuously
satisfy constraints than the model with a discount factor of 0.1. Our two-stage discount
factor model was trained to prioritize constraint satisfaction in the first stage, enabling it to
learn more efficiently to minimize costs in the second stage. This approach allowed us to
overcome the bottleneck of the average number of steps and achieve excellent results.

Processes 2023, 11, x FOR PEER REVIEW 10 of 14

Figure 5. Average number of steps for last 100 training episodes for discount factor = 0.1.

Figure 6. Mean costs for the last 100 training episodes for the two-stage discount factor (blue) and

discount factor = 0.9 (yellow).

Figure 6. Mean costs for the last 100 training episodes for the two-stage discount factor (blue) and
discount factor = 0.9 (yellow).

3.1.2. Mean Cost

The results presented in Figure 6 (blue line) demonstrate the excellent performance of
our proposed method that the two-stage discount factor model reaches a sufficiently low
mean cost of approximately 550 with a high average number of steps. For the model with a
discount factor of 0.9, Figure 4 reveals that the agent learned to take actions satisfying the
constraints. However, Figure 6 (yellow line) reveals that the mean cost does not decrease
with training, indicating that this model cannot achieve a low cost while satisfying the
constraints. For the model with a discount factor of 0.1, Figure 7 reveals a gradual decrease
in the mean cost, indicating that this model leaks when dealing with the constraints but
has the potential to reduce costs.

Overall, these results demonstrate that adjusting the value of the discount factor
according to the training goals in different training stages can increase the speed of training
and achieve both the goals of continuously providing actions that satisfy the constraints
and minimizing cost. The model with a discount factor equal to 0.9 considers more steps of
future rewards. Therefore, the results indicate that this model satisfies the constraints, but
with a high cost, which proves that this model is dedicated to taking actions that satisfy the

Processes 2023, 11, 1203 11 of 13

constraints continuously. With a discount factor of 0.1, the model considers fewer steps of
future rewards; hence, the results indicate that this model provides actions with low costs
but struggles to satisfy constraints, demonstrating that this model is devoted to adopting
actions that minimize costs.

Processes 2023, 11, x FOR PEER REVIEW 11 of 14

Figure 7. Mean of cost for the last 100 training episodes for discount factor = 0.1.

3.1.1. Average Number of Steps

The higher the average number of steps, the better the ability of the agent to provide

actions that satisfy the constraints continuously. Figures 4 and 5 reveal a gradual increase

in the average number of steps, indicating that the agent learns to take actions satisfying

the constraints. The two-stage discount factor model (blue line in Figure 4) was trained

the fastest with an average number of steps greater than 7000 after training. The model

with a discount factor of 0.9 (yellow line in Figure 4) was trained slightly slower with an

average number of steps of approximately 200 after training. The model with a discount

factor of 0.1 (Figure 5) was trained the slowest with an average number of steps of approx-

imately 15 after training. When the training episode is around 25,000, the average steps of

the two-stage discount factor had significant improvement, which is better than the single

discount factor. Furthermore, the partially enlarged view in Figure 4 shows the results

before the 21,000th episode with an average number of steps between 0 and 200. The av-

erage number of steps reached 200 at approximately the 20,000th episode, where the dis-

count factor was adjusted from 0.9 to 0.1 for training the two-stage discount factor model.

A higher discount factor considers more future rewards, indicating that the higher the

average number of steps, the higher the accumulated reward—the target for RL training.

Thus, the model with a discount factor of 0.9 demonstrated a greater ability to provide

actions that continuously satisfy constraints than the model with a discount factor of 0.1.

Our two-stage discount factor model was trained to prioritize constraint satisfaction in

the first stage, enabling it to learn more efficiently to minimize costs in the second stage.

This approach allowed us to overcome the bottleneck of the average number of steps and

achieve excellent results.

3.1.2. Mean Cost

The results presented in Figure 6 (blue line) demonstrate the excellent performance

of our proposed method that the two-stage discount factor model reaches a sufficiently

low mean cost of approximately 550 with a high average number of steps. For the model

with a discount factor of 0.9, Figure 4 reveals that the agent learned to take actions satis-

fying the constraints. However, Figure 6 (yellow line) reveals that the mean cost does not

Figure 7. Mean of cost for the last 100 training episodes for discount factor = 0.1.

3.2. Testing

By testing the three models for 100 episodes, we obtained the results listed in Table 5,
which reveal that our proposed model achieves the highest average number of steps and
lowest cost. Surprisingly, our model continuously provides actions that satisfy constraints
for over 10,000 interactions with a mean cost of 462.75, indicating that the proposed method
is promising for balancing the tradeoff between different goals. The discount factor with
a value of 0.1 yields the smallest average number of steps, indicating that it struggles to
satisfy constraints. The discount factor with a value of 0.9 yields the largest mean cost,
indicating that it only provides suboptimal feasible solutions.

Table 5. Test results for the average number of steps and mean cost for the two-stage discount factor,
discount factor = 0.9, and discount factor = 0.1.

Average Number of Steps Mean Cost

Two-stage discount factor 24,419 462.75
Discount factor = 0.9 342 1263.45
Discount factor = 0.1 24 986.5

Second, we tested the two-stage discount factor model over 10 simulations with
1000 steps per episode and averaged the results over previous steps. Because the other
two models were unable to provide actions for 1000 steps continuously, this test was only
applicable to the two-stage discount factor model. The results were compared to the results
of two RL models, namely, the polynomial and Fourier models, which were proposed in [7],
as well as a myopic policy, which is a reasonable heuristic for the SCSP in practice. We
obtained the results presented in Figure 8 (blue line), where the final average cost of our
proposed model is 456.3. The myopic policy (yellow line) has a final average cost of 2186.5,
whereas the polynomial (orange line) and Fourier (green line) models have final average
costs of 441.3 and 363.4, respectively. These results demonstrate that the proposed method

Processes 2023, 11, 1203 12 of 13

significantly outperforms the myopic policy and is similar to the polynomial. Although our
model has an average cost that is slightly higher than the Fourier, our model has several
additional advantages.

Processes 2023, 11, x FOR PEER REVIEW 13 of 14

3. Intelligibility: We proposed a two-stage discount factor algorithm to adjust the hy-

perparameter of the A2C model dynamically, so our proposed model is based on a

common RL method, making it simple to understand and implement.

Figure 8. Average cost over 10 simulations for 1000 steps (log scale) for our proposed model (blue

line), the polynomial (orange line), Fourier (green line), and myopic policy (yellow line) models [7].

Bands represent 95% bootstrap confidence intervals for 10 simulations.

4. Conclusions

In this study, we proposed an A2C model, which is a RL method, for a continuous

action space with a two-stage discount factor algorithm to solve a SCSP example. Our

proposed method successfully solved the SCSP and obtained low-cost solutions. Our

model has several advantages, including the ability to satisfy the constraints, repeatabil-

ity, practicality, short training time, and intelligibility.

The two-stage discount factor algorithm trains the A2C model rapidly and achieves

a suitable balance between the two goals of avoiding violating the constraints and mini-

mizing cost. These promising results demonstrate the potential of the proposed method

for application to other stochastic constrained optimization problems found in a variety

of industries. Furthermore, based on the outstanding performance of the Fourier model

proposed by [7], it is expected that adding the Fourier approach to the actor network

might improve the results of our model, which would be implemented in the future.

Author Contributions: Conceptualization, J.-Y.S. and J.-L.K.; methodology, J.-Y.S. and J.-L.K.; soft-

ware, J.-Y.S. and J.-L.K.; validation, J.-Y.S., J.-L.K., and S.-S.J.; formal analysis, J.-Y.S. and J.-L.K.;

investigation, J.-Y.S.; resources, S.-S.J.; data curation, J.-Y.S.; writing—original draft preparation, J.-

Y.S.; writing—review and editing, J.-L.K. and S.-S.J.; visualization, J.-Y.S.; supervision, S.-S.J.; project

administration, J.-L.K. and S.-S.J.; funding acquisition, S.-S.J. All authors have read and agreed to

the published version of the manuscript.

Funding: The research was supported by Grant NSTC 111-2221-E-007-002 from the National Science

and Technology Council of the Republic of China.

Institutional Review Board Statement:

Informed Consent Statement:

Data Availability Statement: Data sharing not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Figure 8. Average cost over 10 simulations for 1000 steps (log scale) for our proposed model (blue
line), the polynomial (orange line), Fourier (green line), and myopic policy (yellow line) models [7].
Bands represent 95% bootstrap confidence intervals for 10 simulations.

1. Ability to satisfy the constraints: The results for the average number of steps demon-
strate the excellent ability of our proposed model to satisfy the constraints without
excessive random iterations used in the literature to ensure that the actions satisfy
the constraints.

2. Repeatability, practicality, and short training time: Our method has a small number of
hyperparameters to be tuned, which makes it repeatable, practical, and easy to train.
Furthermore, the proposed two-stage discount factor algorithm can reduce training time.

3. Intelligibility: We proposed a two-stage discount factor algorithm to adjust the hy-
perparameter of the A2C model dynamically, so our proposed model is based on a
common RL method, making it simple to understand and implement.

4. Conclusions

In this study, we proposed an A2C model, which is a RL method, for a continuous
action space with a two-stage discount factor algorithm to solve a SCSP example. Our
proposed method successfully solved the SCSP and obtained low-cost solutions. Our
model has several advantages, including the ability to satisfy the constraints, repeatability,
practicality, short training time, and intelligibility.

The two-stage discount factor algorithm trains the A2C model rapidly and achieves a
suitable balance between the two goals of avoiding violating the constraints and minimizing
cost. These promising results demonstrate the potential of the proposed method for
application to other stochastic constrained optimization problems found in a variety of
industries. Furthermore, based on the outstanding performance of the Fourier model
proposed by [7], it is expected that adding the Fourier approach to the actor network might
improve the results of our model, which would be implemented in the future.

Processes 2023, 11, 1203 13 of 13

Author Contributions: Conceptualization, J.-Y.S. and J.-L.K.; methodology, J.-Y.S. and J.-L.K.; soft-
ware, J.-Y.S. and J.-L.K.; validation, J.-Y.S., J.-L.K. and S.-S.J.; formal analysis, J.-Y.S. and J.-L.K.;
investigation, J.-Y.S.; resources, S.-S.J.; data curation, J.-Y.S.; writing—original draft preparation,
J.-Y.S.; writing—review and editing, J.-L.K. and S.-S.J.; visualization, J.-Y.S.; supervision, S.-S.J.; project
administration, J.-L.K. and S.-S.J.; funding acquisition, S.-S.J. All authors have read and agreed to the
published version of the manuscript.

Funding: The research was supported by Grant NSTC 111-2221-E-007-002 from the National Science
and Technology Council of the Republic of China.

Data Availability Statement: Data sharing not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Gilmore, P.C.; Gomory, R.E. A linear programming approach to the cutting-stock problem. Oper. Res. 1961, 9, 849–859. [CrossRef]
2. Israni, S.; Sanders, J. Two-dimensional cutting stock problem research: A review and a new rectangular layout algorithm. J.

Manuf. Syst. 1982, 1, 169–182. [CrossRef]
3. Cheng, C.H.; Feiring, B.R.; Cheng, T.C.E. The cutting stock problem—A survey. Int. J. Prod. Econ. 1994, 36, 291–305. [CrossRef]
4. Krichagina, E.V.; Rubio, R.; Taksar, M.I.; Wein, L.M. A dynamic stochastic stock-cutting problem. Oper. Res. 1998, 46, 690–701.

[CrossRef]
5. Alem, D.J.; Munari, P.A.; Arenales, M.N.; Ferreira, P.A.V. On the cutting stock problem under stochastic demand. Ann. Oper. Res.

2010, 179, 169–186. [CrossRef]
6. Ikonen, T.J.; Heljanko, K.; Harjunkoski, I. Reinforcement learning of adaptive online rescheduling timing and computing time

allocation. Comput. Chem. Eng. 2020, 141, 106994. [CrossRef]
7. Pitombeira-Neto, A.R.; Murta, A.H. A reinforcement learning approach to the stochastic cutting stock problem. EURO J. Comput.

Optim. 2022, 10, 100027. [CrossRef]
8. Gu, S.; Hao, T.; Yao, H. A pointer network based deep learning algorithm for unconstrained binary quadratic programming

problem. Neurocomputing 2020, 390, 1–11. [CrossRef]
9. Sur, G.; Ryu, S.Y.; Kim, J.; Lim, H. A Deep Reinforcement Learning-Based Scheme for Solving Multiple Knapsack Problems. Appl.

Sci. 2022, 12, 3068. [CrossRef]
10. Hubbs, C.D.; Li, C.; Sahinidis, N.V.; Grossmann, I.E.; Wassick, J.M. A deep reinforcement learning approach for chemical

production scheduling. Comput. Chem. Eng. 2020, 141, 106982. [CrossRef]
11. Kaelbling, L.P.; Littman, M.L.; Moore, A.W. Reinforcement learning: A survey. J. Artif. Intell. Res. 1996, 4, 237–285. [CrossRef]
12. Zhu, L.; Cui, Y.; Takami, G.; Kanokogi, H.; Matsubara, T. Scalable reinforcement learning for plant-wide control of vinyl acetate

monomer process. Control Eng. Pract. 2020, 97, 104331. [CrossRef]
13. Shao, Z.; Si, F.; Kudenko, D.; Wang, P.; Tong, X. Predictive scheduling of wet flue gas desulfurization system based on reinforce-

ment learning. Comput. Chem. Eng. 2020, 141, 107000. [CrossRef]
14. Arulkumaran, K.; Deisenroth, M.P.; Brundage, M.; Bharath, A.A. Deep reinforcement learning: A brief survey. IEEE Signal Process.

Mag. 2017, 34, 26–38. [CrossRef]
15. Peng, B.; Li, X.; Gao, J.; Liu, J.; Chen, Y.N.; Wong, K.F. Adversarial advantage actor-critic model for task-completion dialogue

policy learning. In Proceedings of the 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
Calgary, AB, Canada, 15–20 April 2018; pp. 6149–6153.

16. Mnih, V.; Badia, A.P.; Mirza, M.; Graves, A.; Lillicrap, T.; Harley, T.; Kavukcuoglu, K. Asynchronous methods for deep
reinforcement learning. In Proceedings of the International Conference on Machine Learning, Stockholm, Sweden, 10–15 July
2018; pp. 1928–1937.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1287/opre.9.6.849
https://doi.org/10.1016/S0278-6125(82)80027-7
https://doi.org/10.1016/0925-5273(94)00045-X
https://doi.org/10.1287/opre.46.5.690
https://doi.org/10.1007/s10479-008-0454-7
https://doi.org/10.1016/j.compchemeng.2020.106994
https://doi.org/10.1016/j.ejco.2022.100027
https://doi.org/10.1016/j.neucom.2019.06.111
https://doi.org/10.3390/app12063068
https://doi.org/10.1016/j.compchemeng.2020.106982
https://doi.org/10.1613/jair.301
https://doi.org/10.1016/j.conengprac.2020.104331
https://doi.org/10.1016/j.compchemeng.2020.107000
https://doi.org/10.1109/MSP.2017.2743240

	Introduction
	Materials and Methods
	Problem Statement
	Reinforcement Learning
	Advantage Actor-Critic
	Discrete Action Space
	Continuous Action Space

	Environment
	Proposed Method
	Two-Stage Discount Factor
	Proposed Process

	Results and Discussion
	Training
	Average Number of Steps
	Mean Cost

	Testing

	Conclusions
	References

