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Abstract: Mobile robot is an automatic vehicle with wheels that can be moved automatically from
one place to another. A motor is built in its wheels for mobility purposes, which is controlled using
a controller. DC motor speed is controlled by the proportional integral derivative (PID) controller.
Kinematic modeling is used in our work to understand the mechanical behavior of robots for
designing the appropriate mobile robots. Right and left wheel velocity and direction are calculated
by using the kinematic modeling, and the kinematic modeling is given to the PID controller to gain
the output. Motor speed is controlled by the PID low-level controller for the robot mobility; the speed
controlling is done using the constant values Kd, Kp, and Ki which depend on the past, future, and
present errors. For better control performance, the integral gain, differential gain, and proportional
gain are adjusted by the PID controller. Robot speed may vary by changing the direction of the
vehicle, so to avoid this the Social Spider Optimization (SSO) algorithm is used in PID controllers.
PID controller parameter tuning is hard by using separate algorithms, so the parameters are tuned
by the SSO algorithm which is a novel nature-inspired algorithm. The main goal of this paper is to
demonstrate the effectiveness of the proposed approach in achieving precise speed control of the
robot, particularly in the presence of disturbances and uncertainties.

Keywords: PID controller; DC motor; kinematic modeling; Social Spider Optimization (SSO); Cuckoo
Search Optimization (CSO); MATLAB

1. Introduction

Robotics is one of the engineering branches that deal with modeling, controlling,
and utilization of robots. Robotics manipulators comprise two billion industries [1–4].
Although they have a lot of advantages; they suffer from disadvantages such as lack of
mobility. The first challenge in robotics is locomotion itself, i.e., how a robot moves and
what effective locomotion method can be used as an alternative locomotion mechanism [5].
RPA is a robotic process automation to allow the company employees to arrange the robot
to know about the other application for handling a triggering response, manipulating
data, computer software, and communicating with another digital system [6–8]. The robot
benefits from improved flexibility and is able to perform different applications and tasks,
which are more accurate than manual work. Those artificial machines can be employed in
any dangerous work that is likely to result in injuries. This, in addition, makes the working
environment safer [9–11].
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Meanwhile, the WMRs (wheeled mobile robots have great energy proficiency which
leads to their simple mechanical design, and their dynamics are also simpler compared
to the legged robots as they have to make contact with the ground for mobility purposes.
Compared to wheeled robots, the double-wheel robot has many benefits [12]. Compared to
stable wheeled robots, they are hard to control; however, compared to legged robots they
are simple to control [13–16]. It also computes the orientation and position of the robot
manipulator’s end effector which is related to the manipulator base as a function of joint
variable [17]. The basic function of the robot is to give the direction from starting to the
destination of the robot using a collision-free motor [18]. The acceleration and deceleration
of the robot are important in path planning, the path can be generated using the Cartesian
coordinate system [19]. The synchronous robot path is tracked by using the PI controller
with the help of a feed-forward compensator. From the above observation, this research
inspired develop of the speed regulator for the direct current motor speed control, which is
connected to the wheels of a mobile robot [20].

The use of various optimization strategies to fine-tune the proportional integral deriva-
tive control’s parameters is investigated. The DC motor, which is widely used in numerous
technical applications, is the system under investigation. According to the simulation’s
results, the control’s overshoot and rising and settling times were performed satisfacto-
rily [21]. To fine-tune the gains in the feedback controller, a novel fitness function with
multiple objectives is developed for advanced particle swarm optimization. The nonlinear
Euler–Lagrange model is used to validate the state-space model. The APSO technique uses
the traditional Lyapunov approach [22]. Using the Gauss pseudo-spectral approach, park-
ing trajectory planning is represented as an optimum control issue that is then converted
into a nonlinear programming problem. For parking trajectory tracking, the velocity and
front-wheel swing angle are collected as control signals. To confirm the efficiency of the
suggested hierarchical control approach, actual vehicle testing is conducted [23].

1.1. Background

The flexibility and simplicity of nature-inspired optimization algorithms, such as
swarm-based algorithms, enable them to be applied without structural modifications to
scientific and engineering problems. An original nature-roused metaheuristic improvement
calculation, called Sail Fish Optimizer, which is propelled by a gathering of chasing sailfish
has been proposed. In Ref. [24], the authors show promising outcomes on five certifiable
optimization issues demonstrating that the SFO is relevant for issue resolution with com-
pelled and obscure search spaces. The authors [25] introduced a self-tuning mechanism for
the improvement of the performance of the implemented PID-fuzzy method. By utilizing
the PSO algorithm, the variables tuning issue of the PID-type FLC framework is fixed and
methodically solved. The superiority and efficiency of implemented PSO optimized FLC
method using DC drive have been illustrated.

1.2. Inspiration

In the previous twenty years, swarm knowledge and another sort of developmental
figuring strategy have drawn much examination interest. Swarm knowledge is mostly
worried about the philosophy to demonstrate the conduct of social creatures and creepy
crawlies for issue fixing. Analysts contrived improvement calculations by imitating the
conduct of insects, honey bees, fireflies, microorganisms, and different living beings.

1.3. Motivation

Spiders have been a significant research topic among generally seen creatures in bionic
design for a long time. Most research identified with spiders is centered on the emulation of
their strolling pattern for robot design. A potential justification is that a greater part of the
spiders noticed are singular, which implies that they spend the vast majority of their lives
without communicating with others of their species. Nevertheless, of the 35,000 species
of spider noticed and portrayed by researchers, a few spiders are social. In light of the
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social spiders, another global optimization technique has been described for advancement
issues. This is the special attribute that separates the social spiders from different organic
entities as they normally trade data effectively, which minimizes the data loss somewhat
but expands the energy utilized per correspondence activity.

1.4. Literature Review

The authors [26] proposed a metaheuristic algorithm for global optimization, encour-
aged by the extroverted habits of the social spiders, particularly their foraging behavior:
the Social Spider Algorithm (SSA). The Social Spider Optimization (SSO) algorithm has
been suggested and based on the participating habits of social spiders [27,28]. Individuals
imitate a team of spiders in the SSO algorithm that communicate the organic regulations of
a participating colony with two different spiders, one is female and another is male. SSO al-
gorithm designs every spider on a gender basis, which is a distinct feature from the majority
of swarm intelligence algorithms. Hence, the algorithm reasonably imitates the partici-
pating action of the swarms and integrates computational mechanisms to prevent crucial
imperfections usually found in other algorithms. In Ref. [29], the authors utilized the SSO
method to educate artificial neural networks to tune the vector machine’s specifications.

The controlling range of the automated device depends on the purpose of the device.
Li et al. In Ref. [30], the wheeled robot is developed to a requested position by the proposed
adaptive visual serving method, whereas the unknown depth data is simultaneously
recognized. Using the experimental and simulation outcome, the proposed method is
verified. The major disadvantage of the established method is that it is impossible to
implement the visual serving task with the progress of depth identification without desired
images. Yoo et al. [31] developed a distributed connectivity that preserves synchronized
tracking problems for a variety of diffident non-holonomic robots which occurs within a
limited communication range. New distributed error surface is this paper’s main objective;
it deals with initial connectivity pattern preservation and synchronized tracking.

A new conflict resolution method is introduced by Shahriari et al. [32] for the many
mobile robots while providing their motion liveness. The method is minimizing the robot’s
overall time of travel using optimization methods by the mathematical formulation to
solve the conflicts in their motion. Algorithms are used for cluttering the environment to
overcome the executing computational cost, and a creative approach is developed over the
atmosphere clustering into separate sub-problems that can be fixed by programming in
parallel method. Simulations were conducted and the experimental outcomes confirmed
that the proposed method is suitable for real-time uses. Chouhan et al. [33] presented
comprehensive research on the stability and control of the mobile robot with a double
wheel by the Sugano fuzzy logic method. The major disadvantage of the proposed approach
is that the results obtained are not precise.

Shen et al. [34] proposed a method of adaptive control system for differently operated
WMR with skidding and slipping dynamics and mass center of unknown and uncertain.
Simultaneously challenging issues can be addressed in this paper. First, by the uncertain
load impact, the WMR is established along with the uncertain mass concern. Second, to
avoid the output constraints difficulty, an intermediate variable is introduced to change
the problem of underlying constraint into without constraint. Third, by the skill of norm
bounding, a WMR model, without the precise information, is developed with the user-
friendly control method, which ultimately achieves bounded tracking of uniformity, and
the Lyapunov method has proved this theoretically and numerically by experimental and
simulation results. However, the impact of tracking control performance was not discussed
in this paper.

Zhai et al. [6] discussed the tracking of path navigation issues of adaptive-sliding mode
for WMR in the inertia uncertainties and external disturbances are presented. Multiple
wheeled robots distributed tracking problem is going to be investigated. Maintaining
multiple robots to move in a desired formation geometry is important and it is done by the
formation control, it is one of the finest topics in the control and robotics field for many
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decades. Liang et al. [35] proposed new leader-following creation path navigation control
systems for non-holonomic mobile robots with onboard cameras, except the use of velocity
and position measurements.

Zafer et al. [36] uses the Cuckoo Search (CS) method and a novel time domain analysis
method, a new tuning method of the PID controller. The performance of the PID controller
utilizing cuckoo search has been compared to that of PID controllers modified using various
algorithms and objective functions. Furthermore, the adjusted controller’s disturbance
rejection and robustness performance against parametric uncertainties were measured
individually. The proposed controller and PID controllers, adjusted using the PSO and
ABC algorithms, consumed a lot of energy. The proposed method vastly enhances the
PID-tuning optimization technique.

Mamizadeh et al. [37] modeled and simulated the boost converter’s COA-based
optimization under varying loads in the MATLAB/Simulink environment. Qibing et al. [38]
proposed an algorithm used to create PID controllers. The controllers supplied by the
proposed SSO algorithm show the superiority over typical Ziegler–Nichols PID (ZN PID).
The suggested approach has a higher convergence rate and accuracy than PSO and the
conventional Cuckoo Search. Singh et al. [39] used the most recent metaheuristic algorithms
which enhance the response of the PID controller. As a result, a PID tuning tool is created
to tune the PID controller for diverse engineering applications utilizing versions of the
Cuckoo Search algorithm. Sheshnarayan et al. [40] propose a new way of designing a
PID-PSS for damping low-frequency oscillations. The CSO algorithm has been utilized
to optimize the PID-PSS controller for damping out low-frequency oscillation (LFO) by
reducing the weighted sum of the IAE and ITAE. The performance of the system using this
suggested CS-PID-PSS is compared to that of conventional all methods.

Yaacob et al. [41] presents an optimization approach for tweaking the parameters of
a PID controller to get the best output. Finding appropriate PID controller parameters
is a difficult task, and the best-offered methods or procedures may result in improved
performance. The artificial intelligence optimization strategy is seen as a complement to
traditional methods for improving the performance of PID controllers. As a result, PID
controller design approach is designed so it can handle engineering challenges with Social
Spider Optimization (SSO).

Wahab et al. [42] ststudyhe four requirements for objective functions which are com-
pared to suitable alternatives, and the best one is chosen based on design optimization.
The PID controller’s parameters, Kp, Ki, and Kd, must be carefully chosen because they
affect the system’s transient response. Nonlinearities, which are common in industrial
plants, can be reduced by using the optimal combination of parameters. Sabir et al. [43]
considered the task of developing an optimal PID controller for solar tracker-system DC
motors. Because of its faster convergence rate, minimal variation, and standard deviation
of design parameters obtained, CSA outperforms PSO and FFA, according to the study.
In terms of performance, FFA and CSA outperform PSO for the problem domain under
investigation.

To improve the AVR control system’s transient responsiveness and acquire the best
controller gain values, a new goal function is presented. PSO and CS techniques are
introduced in this study for tuning the settings of a PID controller for AVR system control.
The suggested method’s simulation results are capable and demonstrate its usefulness.
Shi et al. [44] proposed a Social Spider Optimization that is competitive. The spiders are
regrouped and the population variety is raised in CSSO to improve the performance of
SSO. The competitive mating mechanism is presented, and a learning technique is applied
for the newborn spider, which is inspired by spiders’ competitive mating behavior. The
CSSO is used to improve the PID controller’s settings, and the simulation results suggest
that CSSO’s performance in PID controller optimization is promising.

The objective of this paper is to control the speed of a wheeled mobile robot and for
the tracking of the wheeled mobile robot. First of all, the speed has been controlled by
utilizing the PID controller. Then, Social Spider Optimization-based and Cuckoo Search
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Optimization-based PID controllers have been utilized to control the speed of the wheeled
mobile robot and then, tracking of wheeled mobile robots has been done.

2. Proposed Methodology

The robots can move from one place to another automatically, they may be classified as
mobile robots and industrial robots. In the case of the mobile robots, they can freely move
on the workspace, but the industrial robots are moved around the particular workspace in
the field. The design procedures include the designing of robot platforms. A DC motor
is designed and it is placed in the wheels of the robot for robotic mobility. The drive
structure consists of wheels, the wheels are fixed on the right and left sides of the robots.
The DC motor is used to control the motion of the robots and the modeling is shown in
Figure 1 [45–48]. The speed characteristics may vary while moving the vehicles in forward,
backward, and in a circle. So, this can be controlled through the Social Spider algorithm of
the PID controller, the gain parameters are tuned through the corresponding algorithm.
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Figure 1. Proposed methodology.

2.1. Contribution of This Work

• Kinematic modeling of mobile robot
• Modeling of DC motor
• Designing of Social Spider-based PID controller for controlling speed
• Tracking of wheeled mobile robot

2.2. Mathematical Modeling of Mobile Kinematics

In the robot system, mobile kinematics mathematical modeling is a major role in the
control method. Robot velocity is taken by the kinematic modeling and it is changed into a
coordinate vector generalized by below Equations (1)–(3).

xt + ∆ = xt + Vin ∆ Cos θ t (1)

yt + ∆ = yt + Vin ∆ Sin θ t (2)

θt + ∆ = θt + ω ∆ (3)
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From the velocity of each wheel, the robot velocity is taken by below Equations (4) and (5):

Vin = r
(

ωR + ωL
2

)
(4)

ω = r
(

ωR −ωL
L

)
(5)

The first step is to take the wheel velocity from the mobile robot parameters, L is the
robot wheel axial distance and r is the wheel radius. After describing mobile robot velocity,
it will be obtained from the velocity of the wheel. These all depend on the robot base. The
base of the robot is discrimination drive in this research. To control the robot’s weight, a
plastic chassis is used as the torque of the motor can be affected by the robot’s weight [38].
For driving the mobile robot using dual DC motors [49–52], a directly fixed the motor with
an optical encoder is used for the motor shaft velocity control with the PID controller. Based
on kinematic modeling, the mobile robot parameters are given as follows.

2.3. Motion Model

Robot and inertial coordinate systems describe the position of a differentially derived
mobile robot. Let the inertial frame be denoted as (XI, YI) and the robot frame be (XR, YR).
The inertia-frame Cartesian coordinate method is used for the position of the robot. The
robot similarity can be represented using the basic transformation matrix as follows in
Equations (6)–(8).

X1 = R(θ) Xr. (6)

R(θ)
[
xr yr θr

]
T, (7)

R(θ) =

Cos θ −Sin θ 0
Sin θ Cos θ 0

0 0 1

 (8)

The differential drive two-wheeled robot is independently driven. The robot moves
forward when the motor wheels are operating at the same direction and speed. A robot
right turn is obtained by driving the right wheel at a lower rate and the left wheel at a
high rate and a left turn is obtained by turning the right wheel at a lower rate and the left
wheel at a high rate. It assumed the wheel of the robot would not slide. Non-holonomic
constraint is used to express this Equation (9).

x Sin θ − y Cos θ = θ (9)

Normally, the motion of the robot motor is controlling the angular velocities ωL and ω
of the left and right wheel, respectively.

2.4. Kinematic Modeling of Robot Mobility

Without considering mass and force, object motion is described by the kinematics
which is a division of mechanics [4]. The input needed for the robot mobility are the
orientation θ and V linear velocity. The robot rate of change in X direction is x and in
Y direction is y, which is written by the Equations (10) and (11).

x′ = V Cos(θ), (10)

y′ = V Sin(θ), (11)
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Robot angular velocity is given by the Equation (12).

θ′ = ω =
Vright −Vle f t

L
. (12)

In the below Equation (13)

Vright—right wheel velocity
Vle f t—left wheel velocity

V =
Vright + Vle f t

2
. (13)

Substitute Equation (13) in Equations (10) and (11).

x′ =
Vright + Vle f t

2
Cos(θ), (14)

y′ =
Vright + Vle f t

2
Sin(θ). (15)

Fixed coordination of robot velocity V is given by Equation (16).

V =

√(
x′2 + y′2

)
, (16)

From Equations (14) and (15)

V =

√√√√((Vright + Vle f t

2
Cos(θ))

2

+ (
Vright + Vle f t

2
Sin(θ))

2
)

, (17)

V =
Vright + Vle f t

2
, (18)

Vright =

(
V +

L
2

ω

)
, (19)

Vle f t =

(
V − L

2
ω

)
. (20)

Equations (10)–(12) used for the right and left wheel velocities are used to create X′,
Y′ and ω output [53]. The actual orientation θ is used to compute the error to create the
system as a closed loop.

The robot’s direction can be decided using four cases, which explains the relationship
between the direction and velocity they are,

I. When, Vr = VL the robot will remain ideal. ω is zero and infinity is R.
II. When, Vr = −VL the robot moves through a straight line so the value of R is zero.
III. When, VL = 0, the robot left wheel is turned about R = 1/2 radius
IV. When, Vr = 0, the robot right wheel is turned about R = 1/2 radius

2.5. DC Motor Modeling

SEM and XRD analytical approaches are often employed for the classification of differ-
ent nano additives. DC machines are considered for their flexibility. By the combinations
of separately excited and shunt-series field windings, they are considered to show a wide
range of characteristics for both steady state and dynamics [54]. DC motors are used where
there is a need for accurate output motor control and a wide range of motor speed.
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The normal DC motor and permanent magnet DC motor are the same in their basic
formation. The working principle of permanent magnet DC motor is also similar to that of
the DC motor, i.e., force is created by placing a conductor in the magnetic field.

The DC motor speed can be increased to any extent to deliver high performance and
easy control. The direct current engine speed can be regulated by several conventional and
numeric controllers.
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The model of DC motor is shown in Figure 2. The DC motor transfer function of open
loop and dynamic equation is

S(Js + b) θ(s) = KI(s) (21)

P(S) =
s θ (s)
V(s)

(22)

P(s) =
K

(Js + b)(Ls+) + K2

[
rad/ sec

V

]
(23)

where,

J = rotor moment inertia
b = Constant viscous friction of the motor
Ke = Electromotive force at constant
Kt = Motor torque at constant
R = Resistance
L = Inductance
V = Motor terminal voltage
I = Circuit current flow

2.6. PID Controller

PID controller is used for the control system of the industry; it has a control loop
feedback system and the PID stands for proportional integral derivative controller. The
error value is continuously calculated by the PID controller; it is measured by the variation
between the desired and measured values. The controller is used to control errors by
adjusting the control variables such as controlling the power supplied to the heating
element, varying the position of a control valve. Kp, Ki, and Kd are the proportional
coefficient, derivative, and integral controller [55].

U(t) = KP e(t) + KI

∫ τ

0
e(τ)d(τ) + KD

de(t)
dt

. (24)
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In the above Equation (24)

U(t) = Control signal
E(t) = Error signal
Kp = Proportional gain
Ki = Integral gain
Kd = Derivative gain

Figure 3 represents the PID controller for DC Motor Speed Control.
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2.7. PID for DC Motor Speed Control

Many modern controlling methods such as variable structure control, optimal control,
nonlinear control, etc., are available there for DC motor speed control; however, these
methods have difficult theories and implementation. Therefore, the PID algorithm is used
here for the direct current motor speed control. Error present is P, I is the past error, and the
term D is the predicted future error. Figure 3 shows the block diagram of PID Controller.
The PID controller with its three parameters performs both steady state and transient
response which provides simple and efficient solutions for many controlling problems.
By the PID parameters, the motor rotational speed can be controlled [56–61]. The PID
controller is tuned by Kp, Ki, and Kd based on the DC motor transfer function and its
individual parameters.

The PID controller design should be merged into the system. Figure 4 represents the
speed control of DC motor using PID controller. The transfer function of PID controller is:

C(S) = KP +
Ki
S

+ KdS. (25)
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2.8. SSO Algorithm-Based Optimization of PID Controller
2.8.1. Problem of PID Controller

Presently, many industries are using PID controllers because their structure is simple and
their principles are easily understandable compared to other controllers. As explained above,
the PID controllers are determined by their parameters [62–66]. Meanwhile, it also has its own
problem, because of its robustness and simplicity, problems in tuning its parameters occur.

2.8.2. Social Spider Algorithm

Spiders are known for their vibratory and sensitive stimulation. They capture prey
as per the vibration which occurs on the web. The vibration source is easily attacked
if the vibration is in the range of defined frequency. The prey-produced vibrations are
differentiated by the social spider web from the other spider vibrations [67–69]. All the
spiders on the web can receive the vibrations. This unique character differentiates the social
spiders from the other spiders, which reduces the loss of evidence to certain degrees rather
than raising the energy used for communication action.

Unique forging behavior of social spiders is the motive of this paper. The foraging
behavior of social spiders describes the spiders’ cooperative movement against the position
of food source. The spiders find the direction of the food source by making the vibrations
on the web. The Social Spider algorithm contains the natural behavior of a spider.

The problem of search space optimization is the spider web in SSA. The web position has
appropriate results for the problem of optimization and each result defines the appropriate
position on the web. The web acts as the medium of transmitting information for the vibration
produced by spiders [26]. Each spider has its own position. The solution quality is depending
on the objective function described by the food source finding ability at the position. On the
web, the spiders freely move anywhere but they are not supposed to leave the web as, if the
position is changed, it may cause unfeasible solutions, causing optimization problems. If a
spider changes its position, it produces a new vibration, and that new vibration is propagated
throughout the web and the nearest spider receives the data based on the vibrations received.
Figure 5 represents the flow chart of social spider optimization algorithm.
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2.9. CSO Algorithm-Based Optimization of PID Controller

This algorithm is developed with the help of cuckoo bird reproduction and it is
mentioned as nature inspired metaheuristic algorithm. In CS algorithms, the possible
solutions are considered as an important thing [70–72]. Usually, cuckoos lay their enriched
eggs in other cuckoo’s nests with the confidence of their offspring being raised by proxy
parents. Sometimes, the cuckoos find eggs in their nests which are unfit for them. Figure 6
represents the flow chart of cuckoo search optimization algorithm.
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3. Results and Discussion

The parameters of motor considered for the robot in the present work are tabulated as
below in Table 1.

Table 1. 12 V DC MOTOR PARAMETER.

Parameter Symbol Unit Motor

Motor inertia Jm kg/m2 0.0510

Torque constant Kt Nm/A 0.0630

Viscous damping bm Nm/rad/s 0.1880

EMF constant Kb V/rad/S 0.0630

Resistance Ra Ohms 0.57

Inductance La mH 0.97
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The desired voltage is 12 V. The PID controller is then used to control the desired
robot speed. It is done by testing the DC motor simulation with the wheel for KP = 3.88,
Ki = 3.5 and Kd = 0.77. This simulation result shows that the robot’s linear speed is equal to
1.734 m/s. This indicates that the PID controller is successfully regulating the DC motor
simulation to achieve the desired robot speed.

The Cuckoo Search Optimization-based PID controller is then used to control the
robot’s linear speed. It is done by testing the DC motor simulation with the wheel for
KP = 3.88, Ki = 3.5, and Kd = 0.77. In this particular case, the CSO algorithm found the
values of Kp, Ki, and Kd to be the optimal values for the PID controller. These values were
then used to simulate the DC motor with the wheel and the performance of the controller
was evaluated. If the performance is satisfactory, these values can be implemented in the
actual robot control system to achieve the desired linear speed control.

The Social Spider Optimization-based PID controller is then used to control the desired
robot linear speed. It is done by testing the DC motor simulation with the wheel for
KP = 3.88, Ki = 3.5, and Kd = 0.77. The result of this study shows that the designed controller
provides good control of the desired robot’s linear speed.

The comparison of closed-loop response of DC motor-1 with the SSO-based PID
controller, CSO-based PID controller, PID controller, as well as motor response without
controller is shown below in Figure 7, which shows that the SSO-based PID controller
outperforms the other controllers in terms of fast settling time and almost no overshoots.
The comparison of closed-loop response of DC motor 2 with SSO-based PID controller,
CSO-based PID controller, PID controller, and without controller is shown below in Figure 8,
which also shows the superiority of SSO-based controller design in all design specifications.

Once or if the desired robot speed is reached then we can test the Simulink model for
the entire robot system using four possible options for robot motion, these are:

Case 1: If the wheels rotate at the same speed, then the robot remains idle (Vr = VL)
as shown in Figures 9 and 10. If the right and left wheel velocity are equal, then the robot
motion will be ideal.

Case 2: When the wheels rotate at the same speed and opposite in direction, the robot
moves forward (Vr = −VL). Below Figures 11 and 12 show the simulation of the robot
moving forward. While moving straight the robot’s velocity will be 4.0323 m/s.
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Case 3: The robot turns towards right when Vr > VL.
If the velocity of the right wheel is greater than the left wheel then the robot turns right.

Below Figures 13 and 14 show the simulation of the robot turning right. While turning
right the robot velocity will be 2.016 m/s and the angular velocity will be 80.64 m/s.
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Case 4: Robot turns left when Vr < VL.
If the velocity of the left wheel is greater than the right wheel, then the robot turns left.

Simulation of wheels turning left is shown in below Figures 15 and 16. Velocity and angular
velocity of the robot while turning left will be 2.016 m/s and 80.64 m/s, respectively.
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4. Conclusions

This research work presents a novel approach to control the speed of a two-wheeled
mobile robot using a PID controller optimized by the Social Spider Optimization (SSO)
algorithm. The proposed system employs a DC motor for the mobility of the robot and
uses the PID controller to regulate the motor speed. The SSO algorithm is employed
to optimize the PID controller gain values for better performance compared to previous
works. The four cases discussed in this study demonstrate the versatility of the proposed
system in controlling the direction of the mobile robot. The simulation results obtained in
MATLAB show that the proposed system can effectively control the speed of the mobile
robot with improved settling time compared to traditional PID controllers and CSO-based
PID controllers. The proposed SSO-based PID controller provides a promising solution for
the control of mobile robots, and the results of this study demonstrate its effectiveness in
controlling the speed of a two-wheel mobile robot. Table 2 represents the comparison of
settling time of speed response of all the controllers.

Table 2. Comparison of Settling Time of Speed Response of All The Controllers.

Parameter Settling Time (s)

Without controller 33

PID controller 23

CSO-based controller 14

SSO-based controller 6

In this paper, SSO-based PID controller is showing the best results as it has been settled
at 6 ms whereas CSO-based PID response has been settled at 14 ms and PID controller
response has been settled at 23 ms. Therefore, we can conclude that the existing method
such as CSO algorithms is not perfect for our PID-based mobile robot speed control.
However, our proposed SSO algorithm is showing the best response and settled the speed
of the motor as the fastest of all the controllers. In the future, this work can be implemented
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to control the speed of WMR in a real-time environment by using both optimization
technique-based PID controllers. Moreover, the study suggests that other optimization
techniques such as Red Deer Optimization (RDO) can also be employed for PID controller
design and compared with the proposed SSO-optimized PID controller. This can provide
a better understanding of the performance of different optimization techniques for PID
controller design in mobile. Overall, the findings of this study highlight the importance
of optimization techniques in PID controller design for mobile robot control and pave the
way for further research in this field.
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Nomenclature

Abbreviations Explanation
WMR Wheeled Mobile Robot
DC Direct Current
PID Proportional integral derivative controller
FLC Fuzzy Logic Controller
ANFIS Adaptive Neuro-Fuzzy Interference System
MPC Model predictive controller
DOF Degree Of Freedom
SSO Social Spider Optimization
CSO Cuckoo Search Optimization
PSO Particle Swarm Optimization
ABC Ant Bee Colony
UAV Unmanned Aerial Vehicle
IAE Integral Absolute Error
ITAE Integral Time Absolute Error
LFO Low-Frequency Oscillator
PSS Power System stabilizer
ZN Ziegler–Nicol’s
FFA Fire Fly Algorithm
Kp Constant of Proportionality
Ki Integral Constant
Kd Derivative Constant
AVR Automatic Voltage Regulator
CS Cuckoo Search
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