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Abstract: This paper introduces and studies a new discrete distribution with one parameter that
expands the Poisson model, discrete weighted Poisson Lerch transcendental (DWPLT) distribution.
Its mathematical and statistical structure showed that some of the basic characteristics and features
of the DWPLT model include probability mass function, the hazard rate function for single and
double components, moments with auxiliary statistical measures (expectation, variance, index of
dispersion, skewness, kurtosis, negative moments), conditional expectation, Lorenz function, and
order statistics, which were derived as closed forms. DWPLT distribution can be used as a flexible
statistical approach to analyze and discuss real asymmetric leptokurtic data. Moreover, it could
be applied to a hyperdispersive data model. Two different estimation methods were derived, i.e.,
maximal likelihood and the moments technique for the DWPLT parameter, and some advanced
numerical methods were utilized for the estimation process. A simulation was performed to examine
and analyze the performance of the DWPLT estimator on the basis of the criteria of the bias and
mean squared errors. The flexibility and fit ability of the proposed distribution is demonstrated via
the clinical application of a real dataset. The DWPLT model was more flexible and worked well
for modeling real age data when compared to other competitive age distributions in the statistical
literature.

Keywords: probability mass function; statistical model; Lerch transcendent function; dispersed data;
simulation; statistics and numerical data; chi-squared test

1. Introduction

In life testing and reliability analysis situations, it is often difficult to measure the life of
a device or component on a continuous scale. For example, in survival analysis, the number
of days that a patient survived after treatment or of recorded hours/days representing
the time from remission to relapse is a random discrete variable. Similarly, in reliability
experiments, the life of a device receiving a number of shocks before failure or of an on/off
switching machine whose longevity depends on the number of times the device is turned
on/off is discrete. In all these cases, lifetime and age cannot be measured on a continuous
scale but are simply computed, so discrete distributions are better options for modeling
therm.

In the past few decades, many papers focusing on discrete distributions have been
presented for modeling lifetime data in many fields, such as insurance, engineering, agri-
culture, and the medical, physical, and biological sciences. A continuous random variable
may be characterized by, for example, its cumulative distribution function, probability
density function, moments, hazard rate functions, and reversed hazard rate functions. The
discrete analog of the continuous model is mainly constructed on the basis of the principle
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of preserving one or more characteristic properties of the continuous characteristic. Thus,
there are various techniques of discretizing a continuous model depending on the property
we want to preserve.

In stress-force models and analysis, the system or component encounters random
stress during its function and has an inherent variable force that allows for it to work only
when the force is greater than the stress. Its chance of success is called reliability. If the
force and stress distributions are known, reliability can usually be obtained using normal
transformation techniques. However, when the functional relationships of force and tension
are complex, such analytical techniques are intractable. In this case, the exact solution is
not available, and an alternative technique must be adopted to roughly approximate the
actual reliability, for example, (i) Monte Carlo simulation approaches, (ii) Taylor series
methods, (iii) numerical integration techniques, and (iv) discretization techniques. For
more details, see Yari and Tondpour [1]. Here, a discretization approach was applied to
create a flexible discrete probabilistic model with one parameter. Because of the flexibility
of the discretization approach, it has been used by many authors in the statistical literature
to produce adaptive discrete models; for instance, discrete Rayleigh distribution by Roy [2],
discrete Burr and discrete Pareto distributions by Krishna and Pundir [3], the generalization
of geometric distribution by Gomez-Déniz [4], discrete inverse Weibull distribution by Jazi
et al. [5], discrete Burr Type III distribution by Al-Huniti and Al-Dayian [6], the discrete
generalized exponential distribution of the second type by Nekoukhou et al. [7], discrete
inverse Rayleigh distribution by Hussain and Ahmad [8], two-parameter discrete Lindley
distribution by Hussain et al. [9], discrete Lindley distribution by Abebe and Shanker [10],
new discrete Lindley distribution by Al-Babtain et al. [11], new three-parameter discrete
Lindley distribution by Eliwa et al. [12], and new extended geometric distribution by
Almazah et al. [13].

This study focuses on an extension of Poisson distribution. The Poisson model is used
extensively for modeling count data in a range of different scientific fields. For this reason,
many researchers have studied its properties, extensions, and modifications, and proposed
generalizations to modify and increase the initial distribution proposed by Poisson [14].
Although the mean of a Poisson distribution equalling its variance is useful in specific
situations, this often limits the ability of the distribution to accurately model practical
data. To weaken this assumption and overcome the limitations of Poisson distribution,
several authors have developed different discrete distributions for modeling asymmetri-
cally dispersed count data. Castillo and Pérez-Casany [15] proposed a weighted Poisson
distribution for over- and underdispersion situations from the concept of the weighted dis-
tribution introduced by Fisher [16] in conjunction with Poisson distribution. The weighted
Poisson distribution overcomes the inherent limitation of scattering equivalence and can
model multimodal data. Another valuable property of this distribution is its ability to
model and describe truncated data (see Dietz and Bhning [17]). Moreover, several general
properties of the weighted Poisson distribution were examined by Kokonendji et al. [18],
who expanded on the paper published by Castillo and Perez-Casany [15], and specifically
on how the shape of the weight function relates to the dispersion of the resulting weighted
Poisson distribution.

Given the significance of weighted Poisson distribution, a new elastic extension was
established in the discrete weighted Poisson–Lerch transcendent (DWPLT) model, which is
weighted Poisson distribution w(x) = x!

(x+1)(x+2) from the discrete Burr–Hatke model (see
El-Morshedy et al. [19]). Thus, the resulting model is DWPLT distribution. The cumulative
distribution function (CDF) of the DWPLT model can be expressed as follows:

F(x; a) = 1−
ax+3

[
(a− 1)Φ(a, 1, x + 3) + 1

x+2

]
a + (1− a) log(1− a)

; x = 0, 1, 2, 3, · · · , (1)

where x is any value belonging to the positive domain of discrete random variable X,
0 < a < 1 is a scale parameter of the DWPLT model, and Φ(a, s, z) = ∑∞

k=0
ak

(z+k)s is
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the Lerch transcendent function that can be computed with HurwitzLerchPhi[a, s, z] in
Mathematica software (see Wolfram Research [20]). The corresponding probability mass
function (PMF) to Equation (1) is as follows:

Pr(X = x; a) =
ax+2

[a + (1− a) log(1− a)](x + 1)(x + 2)
; x = 0, 1, 2, 3, · · · . (2)

Equation (2) can be derived via a survival discretization approach as follows:

Pr(X = x; a) = S(x; a)− S(x + 1; a); x = 0, 1, 2, 3, · · ·

where S(x; a) = 1− F(x; a). It is easy to show that Pr(X=x+1;a)
Pr(X=x;a) = a (x+1)

x+3 < 1; then, the PMF
is the decreasing function in x.If random variables X1 and X2 are independent and have
the DWPLT model, PMF for Y = X1 + X2 and Z = X1 − X2 can be formulated as follows,
respectively:

Pr(X1 + X2 = k; a) =
k

∑
n=0

Pr(X1 = n; a)Pr(X2 = k− n; a)

=
a4+k

[a + (1− a) log(1− a)]2
k

∑
n=0

1
Ω(n, k)

(3)

and

Pr(X1 − X2 = k) =
∞

∑
n=0

Pr(X2 = n)Pr(X1 = k + n)

=
ak[Θ(a, k) + Υ(a, k)]

[a + (1− a) log(1− a)]2 k(k2 − 1)
, (4)

where k = 0, 1, 2 · · · ,

Ω(n, k) = (n + 1)(n + 2)(k− n + 1)(k− n + 2),

Θ(a, k) = a4 (k + 1)Φ(a2, 1, k + 1) + a4 (1− k)Φ(a2, 1, k + 2),

Υ(a, k) = a2 (k + 1) + (1 + k + a2 (1− k)) log(1− a2).

In medical and engineering fields, the distribution of two random variables Y = X1 + X2
and Z = X1−X2 is very important. In engineering, random variable Y or Z can be referred
to as the sum of two signals from two different sources or the sum of stresses from two
sources on a component/machine. In medicine, random variable Y or Z can be, for example,
the effect of two diseases on a specific organ in the human body. Assuming that random
variable X had DWPLT distribution, the hazard rate function (HRF) is as follows:

h(x; a) =
a[

(a− 1)Φ(a, 1, x + 2) + 1
x+1

]
(x + 1)(x + 2)

; x = 0, 1, 2, 3, · · · , (5)

where h(x; a) = Pr(X=x;a)
1−F(x−1;a) . Figure 1 shows the PMF and HRF plots for different values of

the DWPLT parameter.
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Figure 1. PMF and HRF plots.

The shape of the PMF and HRF always decreases. Moreover, PMF can be applied
to discuss and evaluate asymmetric unimodal data. Suppose that V1 and V2 are inde-
pendent DWPLT variables with parameters a1 and a2, respectively. Then, the HRF of
U = min(V1, V2) is given as follows:

hU(x; a1, a2) =
Pr(min(V1, V2) ≥ x)− Pr(min(V1, V2) ≥ x + 1)

Pr(min(V1, V2) ≥ x)

=
Pr(V1 ≥ x)Pr(V2 = x) + Pr(V1 = x)Pr(V2 ≥ x)− Pr(V1 = x)Pr(V2 = x)

Pr(V1 ≥ x)Pr(V2 ≥ x)

=
a1

[
(a2 − 1)Φ(a2, 1, x + 2) + 1

x+1

]
+ a2

[
(a1 − 1)Φ(a1, 1, x + 2) + 1

x+1

]
[
(a1 − 1)Φ(a1, 1, x + 2) + 1

x+1

][
(a2 − 1)Φ(a2, 1, x + 2) + 1

x+1

]
(x + 1)(x + 2)

,

where Pr(X1 = x, X2 = x) 6= 0. Since the PMF of X decreased in x, X had decreasing
reversed HRF (DRHRF). Let F be the DWPLT life distribution, and the corresponding PMF
be denoted by sequence fk, k ≥ 0. Then, this sequence has DRHRF.

2. Statistical Properties
2.1. Moments and Auxiliary Statistical Measures

Descriptive statistics is an invaluable tool used in data analysis, as it allows for sum-
marizing and interpreting large datasets, providing a concise overview of the key points.
Descriptive statistics provide quantifiable information about the data such as the mean,
median, variance, standard deviation, skewness, and kurtosis range that can be presented
in graphical form. This enables us to quickly identify patterns and trends within the data,
allowing for more accurate conclusions to be drawn. Additionally, descriptive statistics
can be used to identify outliers in the data, thus providing an even more comprehensive
understanding of the dataset. Assuming that random variable X had the DWPLT model,
the probability generating function (PrGF) could be expressed as follows:

E(sX) =
∞

∑
k=0

sk Pr(X = k; a)

=
a2

a + (1− a) log(1− a)

∞

∑
k=0

(a s)k

(k + 1)(k + 2)

=
a s + (1− a s) log(1− a s)
s2 [a + (1− a) log(1− a)]

. (6)
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The corresponding moment generating function (MGF) to Equation (6) is as follows:

E(etX) =
a et + (1− a et) log(1− a et)

e2 t [a + (1− a) log(1− a)]
. (7)

The first four moments of X are as follows:

E(X) =
−2a + (a− 2) log(1− a)

a + (1− a) log(1− a)
,

E(X2) =
−3a2 + 4a + (a2 − 5a + 4) log(1− a)

a(1− a) + (1− a)2 log(1− a)
,

E(X3) =
−4a3 + 13a2 − 8a + (a3 − 10a2 + 17a− 8) log(1− a)

a(1− a)2 + (1− a)3 log(1− a)
,

E(X4) =
−5a4 + 32a3 − 41a2 + 16a + (a4 − 19a3 + 51a2 − 49a + 16) log(1− a)

a(1− a)3 + (1− a)4 log(1− a)
.

For the moments, symbolic software such as Maple was used. On the basis of
the PMF and the law of mathematical expectation, the moments were derived in
closed forms. Variance, skewness, and kurtosis can also be derived in closed forms:

Var(X) = E(X2) − (E(X))2, Skewness(X) = E(X3)−3E(X2)E(X)+2[E(X)]3

[Variance(X)]3/2 , and

Kurtosis(X) = E(X4)−4E(X2)E(X)+6E(X2)[E(X)]2−3[E(X)]4

[Variance(X)]2
. Figure 2 shows descriptive statistics

of the proposed model on the basis of various values of the distribution parameter.
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Figure 2. Descriptive statistics of DWPLT distribution.

The expectation value was less than the value of the variance for all parameter
spaces/domains. Thus, the proposed distribution could be used to model overdispersed
data. This important feature can be applied to discuss and evaluate actual data. Moreover,
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it can be used as a flexible probability model for analyzing positively skewed leptokurtic
data. The first-order negative moment (NeM) for any 0 < a < 1 and b > 0 is as follows:

E[(X + b)−1] =
a2 Φ(a, 1, b) + ab− a + (2a− 1 + b− ab) log(1− a)

[a + (1− a) log(1− a)](b− 1)(b− 2).
(8)

In general, the theory behind the existence of negative moments (NeMs) is very difficult
and not as complete as that involving positive moments. However, NeMs have many
applications, especially in communication networks and the Fourier transforms of function
density.

2.2. Conditional Expectation

Conditional distribution is a statistical concept that describes the probability of an
event occurring when another event has already occurred. This type of distribution is
useful in examining the probability of outcomes that are dependent on a specific event.
Conditional distribution is used in a variety of applications, including predictive analytics,
forecasting, and decision making. This type of probability is calculated by dividing the
probability of the two events occurring together by the probability of the first event occur-
ring alone. Conditional distribution can also be used to analyze the relationship between
two variables. This type of analysis can help in understanding how a change occurs. Con-
sidering that random variable X had the DWPLT model, the conditional expectations for
X|X ≤ x and X|X > x are as follows, respectively:

E(X|X ≤ x) =
1

F(x)

x

∑
t=0

t Pr(X = t; a)

=
(a− 2)ax+3Φ(a, 1, x + 3) + ax+3

x+2 − 2a + (a− 2) log(1− a)
F(x; a){a + (1− a) log(1− a)} (9)

and

E(X|X > x) =
1

1− F(x + 1)

∞

∑
t=x+1

t Pr(X = t; a)

=
ax+3{2Φ(a, 1, x + 3)−Φ(a, 1, x + 2)}
{1− F(x + 1; a)}{a + (1− a) log(1− a)} . (10)

Once the value of the model parameter had been calculated, the conditional expectation
was reported to the DWPLT model.

2.3. Order Statistic (OrSc)

In statistics, the nth OrSc of a statistical sample is equal to its n-th smallest value.
Order statistics (OrSs) and rank statistics are among the most basic approaches to non-
parametric statistics and inferences. Important special cases of the OrSs are the minimal
and maximal values, median, and other quantiles of a sample. OrSs are the estimation
basis for upper- or lower-score data, and all types of censored data (left, right, climatic,
interval, random, progressive). Thus, the possibility of using corresponding CDF and PMF
for recorded/ordered observations is intriguing, especially in medical and engineering
fields. Suppose that X1, X2, · · · ,Xn is a random sample from the DWPLT model, and let
X1:n, X2:n,· · · ,Xn:n be their corresponding order statistics. Then, the CDF of the i-th order
statistics Xi:n for an integer value of x is as follows:
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Fi:n(x; a) =
n

∑
k=i

(
n
k

)
F(x; a)k [1− F(x; a)]n−k

=
n

∑
k=i

k

∑
j=0

Θ(n,k)
(j) [1− F(x; a)]n−k+j

=
n

∑
k=i

k

∑
j=0

Θ(n,k)
(j)

 ax+3
[
(a− 1)Φ(a, 1, x + 3) + 1

x+2

]
a + (1− a) log(1− a)


n−k+j

, (11)

where Θ(n,k)
(j) = (−1)j

(
n
k

)(
k
j

)
and Fi:n(−1) = 0. The PMF of the ith order statistics can be

listed as

Pr(Xi:n = x; a) = Fi:n(x; a)− Fi:n(x; a); x = 0, 1, 2, 3, · · · (12)

According to the PMF of the i-th order statistics, some descriptive statistics can be derived
on the basis of the L-moment concept.

2.4. Lorenz Curve

Variability in a statistical series can be measured via various scales such as the Lorenz
curve (LoC), which is the cumulative percentage curve. Generally, Lorenz curves are
applied to measure the variance/variability in the distribution of income and wealth.
Hence, the LoC is a measure of deviation in the actual distribution of the statistical series
from the line of the isoquant. The extent of this deviation is the Lorenz modulus. If the
distance between the LoC and the isoquant curve is greater, there is more inequality or
variance in the series and vice versa. Assuming that random variable X had DWPLT
distribution, the LoC function of X is defined as follows:

L(i) =
1

∑∞
j=0 j Pr(X = j; a)

i

∑
j=0

j Pr(X = j; a)

=
(1− a)ai+3Φ(a, 1, i + 3)− ai+3

i+2 + a + (1− a) log(1− a)
−2a + (a− 2) log(1− a)

; i = 0, 1, 2, 3, · · · (13)

The advantages of the LoC are that it is attractive and gives a rough idea of the extent of
dispersion. Further, LoC facilitates comparing two or more series/chains. Its disadvantages
are as follows: with the use of the LoC, one can only have a relative idea of the dispersion
of a given distribution compared to the isotropy line. Moreover, it does not provide any
numerical variance values for the given distribution.

3. Estimation Methods: Unbiased and Consistent Estimators

In this section, two different estimation approaches are derived and discussed in detail:
maximal probability and the moment method. The main objective of studying different
estimation approaches is to find the best estimator for data analysis to perfect modeling
and predictions.

3.1. Maximal Likelihood Estimation

Maximal likelihood estimation (MLE) is a method of estimating unknown parameters
by selecting values that maximize the likelihood of observing a given set of data. This
technique is often used in various types of statistical modeling such as regression and
classification. It is a popular approach due to its simplicity and easy implementation. At
its core, MLE is a mathematical approach for finding the probability distribution of an
unknown variable on the basis of a given sample of data. This is achieved by finding the
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maximal value of the likelihood function, which is based on the probability distribution of
the given data. The likelihood function is computed by taking the product of the probability
of the observations in the dataset. MLE is used in many areas of study, including economics,
biology, engineering, and computer science. In economics, it is used for predictions of the
probability of future events based on past observations. In biology, it is used to estimate
gene frequencies and the relationships between genes. In this section, we determine
the MLE of the DWPLT parameter according to a complete sample. X1, X2, · · · , Xn was
assumed to be a random sample of size n from DWPLT distribution. The log-likelihood
function (L) is as follows:

L(x; a) = log a
n

∑
i=1

(xi + 2)−
n

∑
i=1

log[a + (1− a) log(1− a)]−
n

∑
i=1

log(xi + 2)−
n

∑
i=1

log(xi + 2). (14)

To estimate model parameter a, first partial derivative ∂L(x;a)
∂a should be as follows:

∂L(x; a)
∂a

=
1
a

n

∑
i=1

(xi + 2) +
n

∑
i=1

log(1− a)
a + (1− a) log(1− a)

,

Then, the resulting equation equates to zero, namely, it becomes a “normal equation”
that cannot be solved analytically.So, an iterative procedure such as Newton–Raphson is
required to solve it numerically.

3.2. Moment Estimation

Moment estimation (MoE) is a nonparametric statistical approach utilized to estimate
the parameters of a population or a probability model. This technique is often applied
when the moments of a probabilistic model/system or model are in closed view. Random
variable X had DWPLT distribution. Then, the value of the estimator â could be derived
via solving the following equation for a:

−2a + (a− 2) log(1− a)
a + (1− a) log(1− a)

− ∑n
i=1 xi

n
= 0. (15)

The estimator of the model could not be expressed in a closed expression. Thus, a digital
approach had to be applied.

4. Estimator Performance: Simulation Results

Simulation studies are a popular and effective method of testing estimator performance
in a variety of scenarios. By running several simulations, it is possible to approximate real-
world performance and gain insight into how well the estimator could function in the field.
The first step of a simulation study is to establish the parameters of the experiment. This
involves setting up criteria for the data to be sampled, including sample number and size,
and the sampling process. Once the parameters are established, the next step is to generate
a simulated dataset that matches the specified criteria. This dataset should have features
that are as close as possible to the features of real-world data. Once the dataset is generated,
the estimator can be applied to the data. Depending on the type of estimator, different
metrics may be used to measure the performance of the estimator. These metrics include
bias, root mean squared error, and mean absolute error. In this segment, the performance
of the MLE and MoE was tested under different schemes for the DWPLT parameter as
follows: Scheme I: (∀ a = 0.1 | n1 = 20, n2 = 50, n3 = 100, n4 = 150, n5 = 300, n6 = 500, n7 =700,
n8 = 1000); Scheme II: (∀ a = 0.4 | n1 = 20, n2 = 50, n3 = 100, n4 = 150, n5 = 300, n6 = 500,
n7 =700, n8 = 1000); Scheme III: (∀ a = 0.7 | n1 = 20, n2 = 50, n3 = 100, n4 = 150, n5 = 300,
n6 = 500, n7 =700, n8 = 1000); Scheme IV: (∀ a = 0.9 | n1 = 20, n2 = 50, n3 = 100, n4 = 150,
n5 = 300, n6 = 500, n7 =700, n8 = 1000). Numerical assessments were performed depending
on the bias and mean squared errors (MSE). First, we generated N =10000 samples of the
DWPLT model; the results are listed in Tables 1 and 2, and substantiated in Figures 3 and 4.
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Table 1. Simulation results for DWPLT parameters using the MLE method.

Scheme I (a = 0.1) Scheme II (a = 0.4)

n Bias MSE Bias MSE

20 0.65434672 0.46384901 0.43678491 0.34579056
50 0.55763945 0.37466489 0.33578994 0.28456410

100 0.37655988 0.26654540 0.24234667 0.17746939
150 0.21457409 0.15646744 0.13456397 0.10099874
300 0.14673813 0.10397464 0.09478516 0.07756379
500 0.07846543 0.01547531 0.00466599 0.00298575
700 0.00847645 0.00376549 0.00016859 0.00008946

1000 0.00006455 0.00002135 0.00000344 0.00000037

scheme III (a = 0.7) scheme IV (a = 0.9)

Bias MSE Bias MSE

20 1.28766550 0.74578902 0.83462601 0.62399457
50 0.98464654 0.56458012 0.66357910 0.42095752

100 0.67351458 0.31254684 0.37847655 0.28546781
150 0.38734698 0.17455449 0.21824765 0.13683602
300 0.21985857 0.07387475 0.12049875 0.07488585
500 0.12857676 0.00354784 0.08465547 0.00110487
700 0.08957654 0.00018366 0.00015424 0.00028475

1000 0.00023248 0.00004571 0.00000154 0.00000114

Table 2. Simulation results for DWPLT parameters using the MoE method.

Scheme I (a = 0.1) Scheme II (a = 0.4)

n Bias MSE Bias MSE

20 0.68456473 0.49365504 0.44984619 0.36204875
50 0.57735547 0.38835547 0.36825548 0.29344648

100 0.39465473 0.28143054 0.25846510 0.18834750
150 0.22287464 0.16637550 0.13876450 0.10274654
300 0.15344649 0.11846548 0.09535378 0.09547785
500 0.08876354 0.01610476 0.00524367 0.00217455
700 0.00345674 0.00437386 0.00022467 0.00002356

1000 0.00009365 0.00003765 0.00000673 0.00000019

scheme III (a = 0.7) scheme IV (a = 0.9)

Bias MSE Bias MSE

20 1.13664785 0.68465541 0.76388994 0.58635531
50 0.90354789 0.51873654 0.61048655 0.39746571

100 0.61546489 0.28465483 0.32286556 0.27454547
150 0.35478436 0.14438761 0.18455675 0.12445678
300 0.19354465 0.05645831 0.11957650 0.09877577
500 0.10456738 0.00273568 0.07754891 0.00465587
700 0.07745831 0.00004654 0.00003456 0.00065972

1000 0.00003865 0.00000314 0.00000064 0.00000946
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Figure 3. Simulation results for DWPLT parameters using the MLE method.
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Figure 4. Simulation results for DWPLT parameters using the MoE method.

According to the simulation results and performance of n → +∞, the MSE and
bias decreased, and an unbiased estimator was thereby achieved for large samples under
consistency. Thus, both the maximal likelihood approach and method of moments could
be used to effectively estimate model parameters.

5. Data Analysis: Kidney Dysmorphogenetics

In this section, we illustrate the flexibility of the DWPLT model by using real med-
ical data. Here, we examine the fitting capability of the DWPLT distribution with other
competitive distributions, namely, geometric (Geo) , discrete Rayleigh (DR) (see Roy [2]),
discrete inverse Rayleigh (DIR), (see Hussain and Ahmad [8]), discrete Bilal (DBL; see
Altun et al. [21]), Poisson (Poi; see Poisson [22]), discrete Pareto (DPa; see Krishna and
Pundir [3]), one-parameter discrete flexible (DF-I; see Eliwa and El-Morshedy [23]), dis-
crete log-logistic (DLogL; see Para and Jan [24]), discrete inverse Weibull (DIW; see Jazi
et al. [5]), discrete Lomax (DLo; see Para and Jan [25]), binomial (Bin) , discrete Burr Type
II (DB-II; see Para and Jan [25]), one-parameter discrete Lindley (DL-I), two-parameter
discrete Lindley (DL-II), three-parameter discrete Lindley (DL-III), Poisson Lindley (PoiL;
see Shanker and Mishra [26]), natural discrete Lindley (NDL; see Almazah et al. [27]),
discrete inverted Topp-Leone (DITL; see Eldeeb et al. [28]), and discrete gamma Lindley
(DGL; see El-Morshedy et al. [29]) distributions. The fitted models were compared using
the criteria of negative maximized log-likelihood (−L), Akaike information criterion (Ac),
corrected Akaike information criterion (CAc), Hannan–Quinn information criterion (Hc),
Bayesian information criterion (Bc), and the chi-squared (Chi2 ) test with its corresponding
P-value (Pv) based on the degree of freedom (Dm). The Ac is a mathematical approach for
evaluating and discussing the suitability of a distribution for the real data from which it
was generated. In statistics, the Ac is applied to compare different possible distributions
and models, and to select the most appropriate distribution/model for the data. The stan-
dard correction of Akaike’s information criterion assumes the same predictors for training
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and validation, thus underestimating the prediction error of random predictors. The CAc
was derived for regression models containing a mixture of random and fixed predictors.
Both Ac and CAc are estimators of the prediction error and thus the relative quality of
statistical distributions for a given set of real data. The Hc is a measure of the suitability of
statistical distribution that is often applied as a criterion for distribution selection among a
limited set of models; it is not based on the log-likelihood function, but is related to the Ac.
The Hc is an alternative to Ac in some positions in practical fields. In statistics, the Bc or
Schwarz information criterion is for distribution selection among a finite set of distributions
where models with a lower Bc are generally preferred. It is partly based on the probability
function and is closely related to the Ac. When fitting distributions, it is possible to increase
the probability by adding parameters, but this may result in overfitting. Bc, Ac, and CAc
try to solve this problem by proposing a partial term for the number of parameters in the
distribution. The penalty duration is greater in Bc than that in Ac for samples larger than 7.
Bc was derived and developed by Gideon E. Schwarz. who provided a Bayesian argument
for its adoption. Lastly, chi-squared is a statistical suitability test utilized to determine
whether a variable is likely to have come from a specified distribution. It is often applied to
assess whether sample data are representative of the entire population. The chi-squared
quality-of-fit test, in other words, is a kind of Pearson chi-squared test. Statisticians can
apply it to test whether the observed distribution of a categorical variable differs from their
expectations.

The kidney dysmorphogenetic dataset was taken from the study of Chan et al. [30]. It
was discussed and analyzed by several authors in the statistical literature; for more details,
see citations on Google Scholar for Chan et al. (2010). The data are: 0, 1, 0, 0, 3, 2, 0, 1, 0, 4, 0,
0, 1, 0, 3, 0, 0, 0, 2, 0, 1, 0, 0, 0, 1, 8, 2, 3, 0, 5, 0, 0, 0, 0, 7, 0, 10, 0, 0, 1, 0, 0, 0, 2, 11, 0, 6, 0, 0, 1, 0,
8, 0, 0, 7, 0, 1, 2, 0, 4, 0, 0, 0, 0, 1, 0, 9, 3, 0, 0, 0, 6, 2, 0, 1, 0, 2, 0, 4, 0, 11, 0, 0, 2, 0, 4, 0, 1, 3, 0, 0,
2, 0, 0, 5, 0, 1, 0, 0, 0, 0, 0, 2, 1, 0, 3, 0, 0, 0, 0, 1. The raw shape of kidney dysmorphogenetic
data was explored using nonparametric sketches: relative frequency visualization, box
plot, score diagrams, and strip representation. According to the previous nonparametric
plots, kidney dysmorphogenetic data were not symmetric, and some extreme values were
reported (see, Figure 5).
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Figure 5. Nonparametric data plots.

MLEs, standard errors (SEs), upper (U) and lower (L) confidence intervals (CIs) for
the parameters, and goodness-of-fit measures (GOFMs) for kidney dysmorphogenetic data
are reported in Tables 3–5.
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Table 3. GOFM for the dataset—Part I.

Observed Expected Frequencies

X Frequencies DWPLT Geo DR DIR DBL Poi DPa

0 65 63.34 45.98 10.89 60.89 32.08 27.39 65.84
1 14 19.78 26.76 26.62 33.99 37.10 38.08 18.27
2 10 9.26 15.58 29.45 8.12 21.66 26.47 8.16
3 6 5.20 9.06 22.29 3.00 10.63 12.26 4.51
4 4 3.25 5.28 12.63 1.42 4.84 4.26 2.82
5 2 2.17 3.07 5.54 0.78 2.12 1.19 1.91
6 2 1.53 1.79 1.91 0.47 0.91 0.27 1.37
7 2 1.11 1.04 0.53 0.31 0.38 0.05 1.02
8 1 0.83 0.61 0.12 0.21 0.16 0.01 0.79
9 1 0.64 0.35 0.02 0.15 0.07 0.00 0.63
10 1 0.49 0.21 0.00 0.11 0.03 0.00 0.51
11 2 2.40 0.27 0.00 0.55 0.02 0.02 4.17

Total 110 110 110 110 110 110 110 110

a
MLEa

Sea
L.C.Ia
U.C.Ia

0.937
0.028
0.881
0.992

0.582
0.030
0.522
0.641

0.901
0.009
0.883
0.919

0.554
0.049
0.458
0.649

0.643
0.020
0.604
0.682

1.390
0.112
1.171
1.611

0.268
0.034
0.201
0.336

−L 169.32 178.77 277.78 186.55 207.44 246.21 171.19
Ac 340.64 359.53 557.56 375.09 416.87 494.42 344.38
Bc 343.34 362.23 560.26 377.79 419.57 497.12 347.08

CAc 340.68 359.57 557.59 375.13 416.91 494.46 344.42
Hc 341.74 360.63 558.65 376.19 417.97 495.52 345.48

Chi2 2.548 19.109 306.515 40.456 61.37 89.277 3.430
Dm 4 4 4 2 3 3 4
Pv 0.636 <0.001 <0.001 <0.001 <0.001 <0.001 0.489

Table 4. GOFM for the dataset—Part II.

Observed Expected Frequencies

X Frequencies DWPLT DF-I DLogL DIW DLo Bin DB-II

0 65 63.34 45.26 63.19 63.91 61.62 27.94 64.74
1 14 19.78 29.09 20.10 20.69 21.02 38.44 19.18
2 10 9.26 16.51 8.64 8.05 9.69 26.29 8.48
3 6 5.20 8.89 4.66 4.23 5.28 11.92 4.63
4 4 3.25 4.70 2.86 2.59 3.19 4.03 2.86
5 2 2.17 2.49 1.92 1.75 2.09 1.08 1.92
6 2 1.53 1.34 1.39 1.26 1.44 0.24 1.37
7 2 1.11 0.73 1.02 0.95 1.04 0.05 1.01
8 1 0.83 0.41 0.79 0.74 0.77 0.00 0.78
9 1 0.64 0.23 0.62 0.59 0.59 0.00 0.61
10 1 0.49 0.14 0.50 0.49 0.46 0.00 0.49
11 2 2.40 0.21 4.31 4.75 2.81 0.01 3.93

Total 110 110 110 110 110 110 110 110

a
MLEa

Sea
L.C.Ia
U.C.Ia

0.937
0.028
0.881
0.992

0.623
0.031
0.563
0.684

0.780
0.136
0.514
1.046

0.581
0.048
0.488
0.675

0.152
0.089

0
0.345

170.608
0.831

168.979
172.237

0.278
0.045
0.189
0.366
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Table 4. Cont.

Observed Expected Frequencies

X Frequencies DWPLT DF-I DLogL DIW DLo Bin DB-II

b
MLEb

Seb
L.C.Ib
U.C.Ib

−
−
−
−

−
−
−
−

1.208
0.159
0.895
1.520

1.049
0.146
0.763
1.335

1.830
0.952

0
3.698

0.008
0.012

0
0.032

1.053
0.167
0.725
1.381

−L 169.32 182.29 171.72 172.94 170.48 247.74 171.14
Ac 340.64 366.58 347.43 349.87 344.96 499.48 346.28
Bc 343.34 369.28 352.84 355.27 350.36 504.88 351.68

CAc 340.68 366.61 347.55 349.99 345.07 499.59 346.39
Hc 341.74 367.67 349.62 352.07 347.15 501.67 348.47

Chi2 2.548 31.702 4.033 6.445 3.238 94.729 2.587
Dm 4 4 3 3 3 2 2
Pv 0.636 <0.001 0.258 0.092 0.356 <0.001 0.274

Table 5. GOFM for the dataset—Part III.

Observed Expected Frequencies

X Frequencies DWPLT DL-I DL-II DL-III NDL PoiL DITL DGL

0 65 63.34 40.29 46.03 46.01 41.96 44.14 52.94 46.01
1 14 19.78 29.83 26.77 26.77 28.80 28.00 28.29 26.76
2 10 9.26 18.36 15.57 15.58 17.57 16.7 12.09 15.57
3 6 5.20 10.34 9.06 9.06 10.05 9.57 5.99 9.06
4 4 3.25 5.52 5.27 5.27 5.52 5.34 3.34 5.27
5 2 2.17 2.85 3.07 3.07 2.95 2.92 2.03 3.07
6 2 1.53 1.44 1.79 1.78 1.54 1.57 1.31 1.78
7 2 1.11 0.71 1.04 1.04 0.79 0.84 0.89 1.04
8 1 0.83 0.35 0.60 0.60 0.40 0.44 0.63 0.60
9 1 0.64 0.17 0.35 0.35 0.20 0.23 0.46 0.35
10 1 0.49 0.08 0.20 0.20 0.10 0.12 0.35 0.20
11 2 2.40 0.06 0.25 0.27 0.12 0.13 1.68 0.29

Total 110 110 110 110 110 110 110 110 110

a
MLEa

Sea
L.C.Ia
U.C.Ia

0.937
0.028
0.881
0.992

0.436
0.026
0.385
0.488

0.581
0.045
0.492
0.670

0.582
0.005
0.493
0.671

0.542
0.026
0.491
0.594

1.087
0.109
0.873
1.301

2.281
0.221
1.849
2.714

0.582
0.045
0.493
0.670

b
MLEb

Seb
L.C.Ib
U.C.Ib

−
−
−
−

−
−
−
−

0.001
0.058

0
0.116

358.728
11, 863.370

0
2.3× 104

−
−
−
−

−
−
−
−

−
−
−
−

0.351
0.065
0.223
0.479

c
MLEc

Sec
L.C.Ic
U.C.Ic

−
−
−
−

−
−
−
−

−
−
−
−

0.001
20.698

0
22.691

−
−
−
−

−
−
−
−

−
−
−
−

−
−
−
−

−L 169.32 189.11 178.77 178.77 185.98 183.11 174.95 178.77
Ac 340.64 380.22 361.53 363.53 373.96 368.23 351.89 361.53
Bc 343.34 382.92 366.93 371.63 376.66 370.93 354.59 366.93

CAc 340.68 380.26 361.65 363.76 373.99 368.26 351.93 361.65
Hc 341.74 381.32 363.72 366.82 375.05 369.32 352.99 363.72

Chi2 2.548 34.635 19.091 19.096 29.505 24.824 12.065 19.092
Dm 4 4 3 2 4 4 3 4
Pv 0.636 <0.001 <0.001 <0.001 <0.001 <0.001 0.007 <0.001



Processes 2023, 11, 1195 14 of 16

The DPa, DLogL, DIW, DLo and DB-II distributions worked quite well beside DWPLT.
However, the DWPLT distribution was the best among all tested models. Figure 6 shows
that the MLEs were unique because the estimator was monomorphic. We could not draw
the contour diagram because the proposed model had only one parameter. Thus, the
log-likelihood profile was sufficient to substantiate our claim.

Figure 6. L profile of the DWPLT parameter based on the dataset.

Figure 7 shows our empirical results reporting that DWPLT was more fit to analyze
the data set I.
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Figure 7. Cont.
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Figure 7. Estimated PMFs for the dataset.

The moment estimator showed that the maximal-likelihood and moment estimators
were equal and unique.

6. Results and Future Work

In this article, a new one-parameter discrete model was proposed, DWPLT, which is
considered a generalization to the Poisson distribution. Some basic distributional character-
istics of the presented distribution were derived in closed forms and are discussed. The
DWPLT model was capable of modeling positively skewed leptokurtic data and describing
hyperscattered data. Moreover, the hazard rate function decreased on the basis of the
model parameter. Two estimation methods were applied to obtain the best estimator for the
DWPLT parameter. Both approaches worked very well for this purpose across simulation
schemes. The practical significance of the DWPLT distribution was demonstrated using
a real medical dataset, and it was compared to other competitive lifetime distributions.
The DWPLT model had more flexibility in fitting the dataset than that of the mentioned
models. Lastly, DWPLT distribution could be useful in many applications, such as environ-
mental studies, reliability theory, and actuarial and medical sciences. As future work, the
regression model and time series analysis will be discussed.
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