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Abstract: The timely and effective fault diagnosis method is critical to the operation of the air-
conditioning system and energy saving of buildings. In this study, a novel fault diagnosis method
was proposed. It is combined with the signal demodulation method and machine learning method.
The fault signals are demodulated by the demodulation method based on time-frequency analysis and
principal component analysis (DPCA). The modulation characteristics of the principal component and
DPCA sets with stronger features are obtained. Compared with time domain sets, the correct rate was
increased by 16.38%. Then, as a machine learning method, the Visual Geometry Group—Principal
Component Analysis (VGG-PCA) model is proposed in this study. The application potential of this
model is discussed by using evaluation indexes of fault diagnosis performance and two typical faults
of air conditioning systems. Compared with the other two convolution neural network models, the
correct rate was increased by 17.1% and 20.32%, and the running time was reduced by 69.25% and
64.53%, respectively. A large number of tests are used to investigate the optimal range of model
parameters. This provides the reference and guarantee for further model optimization.

Keywords: air-conditioning system; machine learning; signal demodulation; fault diagnosis

1. Introduction

With the development of the economy and society, the energy consumption of air-
conditioning systems has increased. Reducing the energy consumption of the system has
become the focus of scholars all over the world. As some studies showed, 15% to 30% of
the energy is wasted in commercial buildings due to the failure of the air conditioning
system. Typical failures include condenser blockage [1] and spindle wear. The refrigerant
in the system will return to the compressor [2] and even burn the motor [3] in these failures.
Higher maintenance costs are spent and carbon emissions and energy consumption are
increased in this case [4]. It is necessary to develop efficient fault diagnosis strategies for air
conditioning systems.

The fault diagnosis methods of air conditioning systems are mainly divided into the
quantitative model method, qualitative model method and data-driven method. As a
typical data-driven method, Principal Component Analysis (PCA) and neural network
(NN) play a leading role in fault diagnosis of air conditioning systems [5]. PCA is a
typical linear data dimensionality reduction method in statistics [6,7]. By mapping the
original high-dimensional data into a low-dimensional space, data features are extracted,
its dimensions are reduced, and calculation efficiency is improved. It is used in the field of
signal and fault diagnosis [8]. Liu et al. [9] proposed a statistical method based on PCA and
the exponentially-weighted moving average (EWMA) to diagnose the refrigerant filling
fault in the variable refrigerant flow (VRF) system. The data from different types of VRF
systems are used to verify the effectiveness of the PCA-EWMA method. Song et al. [10]
applied PCA to the motor and obtained the modulation characteristics of the motor under
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normal and fault conditions by demodulating the motor signal. Maha et al. [11] used PCA
for feature extraction and data dimensionality reduction of telecom company customer
data and evaluated the dimensionality reduction effect. Xu et al. [12] developed a new
strategy for centrifugal water chillers by combining the wavelet analysis method and the
PCA method. Compared with the traditional strategy, the fault detection rate and accuracy
are improved. Guo et al. [13] proposed a new method. The Satizky-Golay method is used
to preprocess the data set. To train the PCA model, the data set is used. Fu et al. [14]
proposed an expert-based multivariate decoupling method. The fault diagnosis ability of
the PCA method is enhanced through expert knowledge, and the new method is verified
by a typical air handling process. Song et al. [15,16] applied the PCA method to the field
of signal demodulation. The demodulation method based on time-frequency analysis
and principal component analysis (DPCA) is proposed. The demodulation accuracy and
computational efficiency of the new method are improved. The new method is verified by
simulation, centrifugal pump and propeller experiments based on PCA’s feature extraction
performance and data dimensionality reduction ability. In this study, the PCA method is
applied in the generation of feature sets and the construction of a diagnosis model.

As a typical machine learning [17–19] technology, NN has been widely used in various
fields [20–23]. Zhou et al. [2] proposed an online diagnosis method of compressor return
liquid fault of VRF system based on a back-propagation neural network, with online
diagnosis accuracy up to 99.48%. Qiang et al. [19] tested 25 machine learning models
for refrigerant leakage fault, and the extremely randomized trees model has the best
performance, with the highest accuracy of 95.73%. Wang et al. [3] proposed a decision
tree model to detect and diagnose the return liquid fault of the scroll compressor in the
multi-split system. Sun et al. [24] proposed a hybrid fault diagnosis model combining
support vector machine (SVM) wavelet denoising and improved maximum correlation and
minimum redundancy algorithm. The problem of identifying the refrigerant charging fault
is solved in the VRF system. Shi et al. [25] developed an efficient fault diagnosis model.
The model is applied in refrigerant charging fault diagnosis of the VRF system to sort
features. Han et al. [26] proposed a hybrid diagnosis model based on a genetic algorithm
and SVM. The model is applied to diagnose the faults of water chillers. The effectiveness
of the hybrid model was proved by evaluating the correct rate, hit rate and false alarm
rate. Zhao et al. [27] used pattern recognition in the fault diagnosis of refrigerators, and
used the support vector data description method for fault classification. Compared with
the PCA method, it has better performance. Yan et al. [28] proposed a hybrid method of
the autoregressive model based on the auto-regressive (AR) model and SVM. The new
method uses the high-dimensional parameter space constructed by ARX and subdivides
the parameter space by SVM. The advantages of the model are verified by experiments.
Convolution neural networks (CNN) is a feedforward NN with depth structure. It is
robustly processing two-dimensional pictures and has the advantages of local connection
and weight sharing. Yan et al. [29] applied CNN to water chillers and compared it with
an automated fault detection method based on machine learning. It features a more
straightforward structure and better classification precision. Miyata et al. [30] proposed
a new method for fault diagnosis of heat source system based on CNN. An accuracy of
98.7% is obtained through training and testing. As a typical CNN method, the Visual
Geometry Group (VGG) model has the advantages of local perception and weight sharing
with processing two-dimensional images. This study applies the VGG method in the
fault diagnosis model to achieve efficient and accurate identification of air-conditioning
system faults.

A novel fault diagnosis method based on the Visual Geometry Group—Principal
Component Analysis (VGG-PCA) model and the DPCA method is proposed in this paper.
It can diagnose air conditioning system faults and reduce the consumption of building
energy. The DPCA method is used to strengthen the characteristics of sample sets. Through
a large number of experimental data and model evaluation methods, the VGG-PCA model is
optimized and evaluated. In Section 1, the DPCA method, VGG-PCA model and evaluation
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methods are introduced. In Section 2, the experimental platform and relevant parameters
used in this study are introduced. In Section 3, the results of the model operation are
evaluated. In Section 4, the optimization strategy of model parameters is discussed. Finally,
the conclusion is drawn and summarized in Section 5.

2. Research Method

The fault diagnosis strategy structure of air conditioning systems is based on DPCA
and machine learning as shown in Figure 1. A fault test was carried out to collect operation
data. Then, the data are preprocessed and feature strengthened. To reduce the impact of
random error on model training and testing, the loaded data are mixed and standardized.
The data are randomly divided into training sets, verification sets and test sets.
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Figure 1. Fault diagnosis strategy schematic diagram.

With the DPCA method, the data feature is strengthened. The DPCA method can
convert the original signal into a time-frequency distribution matrix. Modulation features
of signals are enhanced and extracted, and the correct rate of fault diagnosis is improved.
Then the fault diagnosis model is established based on machine learning. The learning
effect is evaluated by the model evaluation system. For a large number of data and high-
dimensional feature variables, the PCA method is added to the model. By the PCA method,
the main data features are retained, and the amount of computation and running time is
reduced. According to the model evaluation results, the model parameters are adjusted,
and the model structure and diagnosis performance are optimized.
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2.1. DPCA Method

DPCA is a signal demodulation method, which mainly includes four parts: raw signal
acquisition, STFT, PCA, and modulation feature extraction [15]. With the DPCA method,
the signal features are enhanced and extracted, the features of fault image samples are more
obvious, and the recognition degree of sample sets is improved. The principle of the DPCA
method is shown in Figure 2. STFT method is applied to the original signal to obtain the
time-frequency distribution function of noise or vibration signal, as shown in Equation (1).
As a window function, the Hanning window is selected.

Sx( f , t) =
∞∫
−∞

x(τ)h(t− τ)e−jωτdτ (1)

where x(τ) is the original signal; h(t− τ) is a Window function; e is a natural constant; j is
a unit imaginary number.

After the time-frequency distribution function is obtained, the amplitude spectral
density function of the modulated signal is solved using Equation (2), and then the time-
frequency distribution matrix is obtained, as shown in Equation (3). Through the lowest lim-
iting frequency in Equation (3), the dimension of the time-frequency distribution function
is reduced, and the accuracy of feature frequency extraction is improved. The computation
and running time of extracting modulation characteristic frequency are reduced.

S( f , t) =
2 ∗ |Sx( f , t)|

LFFT
(2)

where Sx( f , t) is a time-frequency distribution function; LFFT is the fast Fourier transform
length of a window function.

S(t, f ) =


S(t1, ft) S(t2, ft) · · · S(tn, ft)

S(t1, ft + ∆ f ) S(t2, ft + ∆ f ) · · · S(tn, ft + ∆ f )
...

...
...

...
S(t1, fm) S(t2, fm) · · · S(tn, fm)

 (3)

where ft is the minimum limiting frequency; fm is the frequency of the modulated signal.
PCA method is divided into four parts: covariance matrix solution, eigenvalue de-

composition, eigenvalue selection, and principal component reconstruction. First, the
covariance matrix is calculated according to the time-frequency distribution matrix, as
shown in Equation (4).

Scov = cov(S(t, f )) (4)

where cov() represents the covariance operator.
Then the eigenvalues and eigenvectors of the matrix are obtained by the eigenvalue

decomposition method, as shown in Equation (5).

[V, U] = eig(Scov) (5)

where V is the eigenvalue matrix and U is the eigenvector matrix.

V =


λ1 0 · · · 0

0 λ2
. . .

...
...

. . . . . . 0
0 · · · 0 λm

 (6)
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where λi is the matrix eigenvalue.

U = [µ1,µ2, · · · ,µm] (7)

where µi is the matrix characteristic vector.
Then order of eigenvalue is selected according to the difference spectral value. As

shown in Equation (8), δi is the difference spectrum value. It represents the proportion of
the energy distribution. The order of the eigenvalue is selected based on the maximum
value of the difference spectrum.

k ≥ i
∣∣∣max(δi=(λi−λi+1))

(8)

where k is the order of the characteristic value, δi is the difference spectrum value.
Finally, the principal component is reconstructed using the selected first K-order

eigenvalues and eigenvectors to obtain the principal component modulated signal, as
shown in Equation (9). Then the signal is processed with a fast Fourier transform to obtain
the characteristic frequency of the modulated signal components. Compared with time-
domain images, image features and recognition are enhanced, and the fault diagnosis
correct rate is higher. This will be discussed in Section 4.2.

PPCi(t) = P(t, f )ui (9)

Processes 2021, 9, x FOR PEER REVIEW 5 of 15 
 

 

1 2[ , , , ]m=U μ μ μ  (7)

where iμ  is the matrix characteristic vector. 
Then order of eigenvalue is selected according to the difference spectral value. As 

shown in Equation (8), iδ  is the difference spectrum value. It represents the proportion 
of the energy distribution. The order of the eigenvalue is selected based on the maximum 
value of the difference spectrum. 

1max( ( ))i i i
k i δ λ λ += −≥  (8)

where k  is the order of the characteristic value, iδ  is the difference spectrum value. 
Finally, the principal component is reconstructed using the selected first K-order ei-

genvalues and eigenvectors to obtain the principal component modulated signal, as 
shown in Equation (9). Then the signal is processed with a fast Fourier transform to obtain 
the characteristic frequency of the modulated signal components. Compared with time-
domain images, image features and recognition are enhanced, and the fault diagnosis cor-
rect rate is higher. This will be discussed in Section 4.2. 

PPC )( ,) ( ii P tt f= u  (9)

 
Figure 2. DPCA method principle schematic diagram. 

2.2. VGG-PCA Model 
CNN is a typical deep feedforward artificial neural network. Inspired by biological 

perception mechanism, it was proposed in 1998 and widely used in the field of fault diag-
nosis. CNN has the characteristics of local connection and weight sharing, so the network 
structure is optimized and the risk of model over-fitting is reduced. The robustness and 
operational efficiency of processing two-dimensional images are improved. CNN mainly 
includes a convolution layer, pooling layer, full connection layer and softmax layer. The 
principle of the convolution layer is shown in Equation (10). As shown in Figure 1, in the 
fault diagnosis of the air conditioning system, the original signal is processed and the de-
modulation spectrum is obtained by using the DPCA method. Image features are ex-
tracted in the convolution layer. In the pooling layer, features are filtered and dimen-
sioned. The robustness of features and the speed of model calculation are improved. Then, 
the fault diagnosis is realized by image classification through the full connection layer and 
the softmax layer. 

Figure 2. DPCA method principle schematic diagram.

2.2. VGG-PCA Model

CNN is a typical deep feedforward artificial neural network. Inspired by biological
perception mechanism, it was proposed in 1998 and widely used in the field of fault
diagnosis. CNN has the characteristics of local connection and weight sharing, so the
network structure is optimized and the risk of model over-fitting is reduced. The robustness
and operational efficiency of processing two-dimensional images are improved. CNN
mainly includes a convolution layer, pooling layer, full connection layer and softmax layer.
The principle of the convolution layer is shown in Equation (10). As shown in Figure 1,
in the fault diagnosis of the air conditioning system, the original signal is processed and
the demodulation spectrum is obtained by using the DPCA method. Image features
are extracted in the convolution layer. In the pooling layer, features are filtered and
dimensioned. The robustness of features and the speed of model calculation are improved.
Then, the fault diagnosis is realized by image classification through the full connection
layer and the softmax layer.
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X =
(n− f + 2p)

s
+ 1 (10)

where X is the output matrix size, n is the input matrix size, f is the convolution kernel
size, s is the step size, and p is the padding.

VGG is a typical CNN model. Compared with other CNN models, the volume of
the convolution kernel is smaller, the network structure is deeper, and it possesses better
generalization ability. Convergence requires fewer iterations. In fault diagnosis of air
conditioning systems, accurate and fast fault identification is important. VGG model has
a higher accuracy of fault feature mining and generalization than others. It provides a
guarantee for this. Therefore, the VGG model is selected as the machine learning framework
in this study. The number of hidden layers is related to the image characteristics of the
sample set, the temporal and spatial complexity of the model, and the classification of the
sample set. Corresponding to the type of fault, the output node is two. Through empirical
methods, the number of hidden layers is selected. The VGG model includes 13 layers of
convolution layer, five layers of pooling layer, three layers of full connection layer and
one softmax layer, which are responsible for feature extraction and classification tasks.
To prevent the model from over-fitting, the PCA method is introduced into the model to
reduce the dimension of image features. Applying the PCA method in the model, the main
information is retained, the number of features is simplified, and the efficiency of model
diagnosis is improved. By analyzing the difference spectral values of two types of fault
signals, the number of the principal component in the PCA method is determined to be two.
In Section 4.3, the diagnosis results of the VGG-PCA model will be discussed. Referring
to the parameter selection strategy proposed in Section 5, the relevant parameters of the
model are determined. The learning rate is 0.001, the batch size is 128, the epochs are 20,
and the activation function is a Rectified Linear Unit.

2.3. Evaluation Index of Fault Diagnosis Performance

(1) Fault diagnosis correct rate

The correct rate (CR) is the proportion of correctly classified samples to the total
samples in the model’s training, verification and testing. It is used to evaluate the overall
performance of the fault diagnosis model.

(2) Fault diagnosis loss rate

The loss rate is defined as the degree of deviation between the prediction made by the
model and the true value. Negative correlation between loss rate and CR. The loss function
selected in this model is sparse categorical cross-entropy, and the fault category label is
serial number code.

(3) Fault diagnosis running time

Runtime time is then taken by a fault diagnosis model to complete the diagnosis
process, which objectively reflects the efficiency of the model and is closely related to the
time complexity of the model.

3. System Description and Fault Experiments
3.1. System Description and Experimental Condition

The experimental platform is composed of an air conditioning system, control system,
sensor and signal acquisition system in this paper. The schematic diagram is shown
in Figure 3. The parameters of the scroll compressor are shown in Table 1. In the air
conditioning system, the R134A refrigerant is filled. To monitor and regulate the refrigerant
flow in the system, a needle valve and a vortex flowmeter are arranged in the system.
The control system consists of a central controller and a regulating knob. Through the
central controller, the system mode (refrigeration and heating) and the air volume of the
evaporation tank are controlled. This experiment is a refrigeration condition, and the air
volume is in gear one.
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Table 1. Parameters of scroll compressor.

Parameter Value

Shaft frequency [Hz] 54
Displacement [cc/r] 27
Rated speed [r/min] 3240

Rated power [W] 800
Rated voltage [V] 60

Refrigerant R134a

The sensor and signal acquisition system is composed of a vibration acceleration
sensor, noise sensor, notebook computer and data acquisition instrument. Through the
vibration acceleration sensor and microphone installed at each position of the compressor,
the vibration and noise signals are collected. As a vibration acceleration sensor, PCB
PIEZOTRONICS is adopted. Three sensors are arranged in the x, y and z directions of
the compressor, with sensitivities of 10.38, 10.23 and 9.94 mV/m/s2. SKC condenser
microphone is used as noise sensor. It is arranged beside the scroll compressor with a
sensitivity of 51.6 mV/Pa. YIHENG 16-channel data acquisition instrument is used as the
acquisition instrument, and the experimental sampling rate is 5120 HZ. Finally, 800 data
samples of two faults were collected and divided into three groups. 75% of the samples
were used as training sets to train the fault diagnosis model proposed in this study. 25%
is taken as test sets, and the comprehensive performance of the model is evaluated by
evaluation indicators. In addition, 20% of training sets are selected as validation sets to
optimize the model parameters.

3.2. Faults Setup Method

(1) Main shaft wear failure

As the core component and power source of the scroll compressor, the main shaft will
wear or even break during improper operation. The operation of scroll compressor and
air conditioning system is affected. During this failure test, the faults are simulated by
grinding the main shaft.

(2) Condenser blockage fault

The performance of the condenser possesses a significant impact on the operating
efficiency of the air conditioning system. The fan of the condenser cools and dissipates heat
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through air cooling. Improper operation may cause foreign matters to enter the fan and
cause blockage. This will cause the refrigerant to return to the compressor in the system,
thus causing mechanical failure. The fault is simulated by blocking the fan and reducing its
air inlet area in this study.

4. Results and Discussion

All codes run on a notebook computer, operating system 64-bit Windows 10, processor
Intel Core i5-7300, running memory 24 G.

4.1. Data Preprocessing

The data preprocessing is composed of four parts in this study: sample sets feature
enhancement, data mixing, data normalization, and PCA dimension reduction. Feature
frequencies in the original data are extracted by the DPCA method, and sample sets with
stronger features are loaded into the VGG-PCA model. Then the data of sample sets are
mixed, which can prevent the occurrence of model jitter and over-fitting. To improve the
CR of the model and prevent gradient explosion, sample sets are normalized. Through the
PCA method, the main features of sample sets are extracted, dimensions of features are
reduced. The running time of the model is reduced, and the running efficiency is improved.
In Section 4.3, PCA results will be discussed.

4.2. DPCA Method Performance Evaluation

In this study, the feature enhancement method is used for sample sets preprocessing,
namely the DPCA method, to compare the impact of different sample sets on the perfor-
mance of the VGG-PCA model. As a control group, time-domain images are obtained
from the same data. Time-domain sets are created and compared with DPCA sets. After
training and testing in the VGG-PCA model. PCA results are shown in Figure 4, and the
sample distribution range is represented by the ellipse. Through the PCA result of time
domain sets. The data sample coincidence rate of the two faults is high, and the two kinds
of faults cannot be identified by time domain image. The PCA result of DPCA sets is shown
in Figure 4b. The two faults are identified effectively, and the sample coincidence rate is
reduced. This offers a guarantee for the VGG-PCA model’s parameter optimization.
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Through the PCA method, the sample sets dimension is reduced. The model is loaded
with two sample sets for training, testing, and verification. Model parameters are described
as follows: the loss function is sparse categorical cross-entropy, the model training batch
is 128, and the number of training times is 20. The relationship between training CR,
validation CR, training loss, validation loss and training times of the two sample sets are
shown in Figure 5. The training CR and validation CR of the two sample sets are positively
correlated with the training times. DPCA sets are 10% higher than time domain sets in
training CR and validation CR. As shown in Figure 5c,d, the training loss and validation
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loss of the two sample sets are negatively correlated with the training times. Compared
with time domain sets, DPCA sets possesses lower training loss and validation loss. With
the increase in training times, the loss difference between the two sample sets is increased.

After the model diagnosis is completed, the CR and running time are obtained by
using the evaluation function. The CR of the model with DPCA sets is 97.76%, and the CR
of the model with time domain sets is 84%. The running time is 92.92 and 86.47, respectively.
Compared with time domain sets, the CR of the DPCA sets model is 16.38% higher. This
shows that the CR of the VGG-PCA model is improved by using the DPCA method.
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4.3. VGG-PCA Model Performance Evaluation

In this study, the machine learning method is applied to the fault diagnosis of the
air conditioning system, namely the VGG-PCA method. To compare the fault diagnosis
performance of different machine learning methods, the VGG16 model and the CNN
model are used for fault diagnosis. VGG16 model is a model with 16 weight layers. It
was proposed by the Visual Geometry Group of Oxford University and possesses good
image classification ability. The CNN model is composed of two convolution layers, two
pooling layers and two full connection layers. As a control group, the CNN model has a
shallow network structure. This shows the importance of deeper network structures for the
performance of the VGG-PCA model. To more clearly compare the diagnostic performance,
the parameters of the three models are the same. The learning rate is 0.001, the batch size is
128, the epochs are 20, and the proportion of verification sets in training sets is 20%. The
influence of unrelated variables is reduced. The training and verification results of the
three models are shown in Figure 6. Compared with VGG16 and CNN models, higher
CR and lower loss are owned by the VGG-PCA model, and the model performance is in
the leading position in training and testing. As shown in Figure 7, compared with the
other two models, the CR of the VGG-PCA model was enhanced by 17.1% and 20.32%,
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and the running time of 69.25% and 64.53% was saved. This shows that good diagnostic
performance is owned by the VGG-PCA model. The running time has been shortened and
the CR has been improved.
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5. Model Parameter Optimization Strategy

In this section, the optimal parameter range is obtained through testing and analysis.
The selected parameters include epochs, batch size and learning rate. Then, the proposed
parameter optimization method is applied to the VGG-PCA model.
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5.1. Fault Diagnosis Results of VGG-PCA Model with Different Epochs

The working times of the learning algorithm are defined by epochs. With the inap-
propriate epochs, the model will be under-fitted or over-fitted, and the fault diagnosis
performance will decrease. Therefore, it is important to select appropriate epochs. The
effect of different epochs on the CR and running time is shown in Figure 8. The CR is 52.23%
with the 1 epoch, and a large amount of running time is consumed. With the increase of
epochs, the CR rises rapidly and maintains a high level, and the running time rises slowly.
Therefore, the reasonable epochs range is 10 to 30. The CR is guaranteed and the time cost
is saved. In this study, the epochs are 20.
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5.2. Fault Diagnosis Results of VGG-PCA Model with Different Batch Sizes

Batch size is the number of samples selected for one training, and the optimization
degree and speed of the model are affected by it. Figure 9 shows the model diagnosis
performance with the different batch sizes. The batch size range is 16 to 256. If the batch
size is too small or large, more time will be spent on model fault diagnosis. The reasonable
batch size range is 64 to 160. In this range, less running time and better CR of the model are
possessed. The batch size is 128 in this study.
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5.3. Fault Diagnosis Results of VGG-PCA Model with Different Learning Rates

In this section, the influence of the learning rate on fault diagnosis performance of
the VGG-PCA model is analyzed. With an excessive or small learning rate selected, the
diagnostic performances of the model will be reduced. Figure 10 shows the effect of
different learning rates on the diagnostic performance of the model. For better observation,
the learning rate is set with exponential growth, ranging from e−10 to e−0.5 (4.5 × 10−5 to
0.60653). In the range of e−10 to e−5.75, the CR is stable at a high level. The CR decreases
rapidly with the e−5.75 learning rate. If the learning rate is greater than e−5.75, the CR
decreases slowly, and stabilizes at 44.2%. The better fault diagnosis performance of the
model is obtained with the range in e−10 to e−5.75. In this range, the learning rate is feasible.
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6. Conclusions

A novel fault diagnosis method for the air conditioning system is established by the
DPCA method and the VGG-PCA model. The DPCA method is applied in the field of
image feature enhancement. Through the model evaluation method and two typical faults,
the effectiveness of the method was verified. To optimize the selection of parameters,
a parameter selection strategy for the model is developed. The main conclusions are
as follows:

(1) To enhance image features, the DPCA method is applied in this study. DPCA
sets with stronger features are obtained, the two faults sample coincidence rate is reduced.
Compared with time domain sets, the model’s CR increased by 16.38%.

(2) VGG-PCA model possesses good diagnostic performance. Data dimension is
reduced with the PCA method. Compared with the VGG16 model and CNN model, the
CR is increased by 17.1% and 20.32%, and the running time is reduced by 69.25% and
64.53%, respectively.

(3) Through a large number of tests, the reference range of epochs, batch size and
learning rate of the VGG-PCA model has been obtained. The model parameter optimization
strategy is as follows: the range of epochs is 10 to 30, the range of batch size is 64 to 160,
and the range of learning rate is e−10 to e−5.75.

In subsequent research, the PCA method will be combined with more machine learning
models to explore more efficient fault diagnosis strategies. To discuss the application
potential of the model, more experiments of the air conditioning system were carried out.
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