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Abstract: The excessive utilization of additives in chemical reactions is a troublesome problem in
industrial processes, due to their adverse effects on equipment and processes. To acquire oxidative
functionalization of alkyl aromatics under additive-free and mild conditions, a large library of metal-
loporphyrins was applied to the oxygenation of alkyl aromatics as catalysts with H2O2 as an oxidant.
On the basis of systematic investigation of the catalytic performance of metalloporphyrins, it was
discovered that, surprisingly, only porphyrin irons(II) possessed the ability to catalyze the oxygena-
tion of alkyl aromatics with H2O2 under additive-free conditions and with satisfying substrate scope.
Especially with 5,10,15,20-tetrakis(2,6-dichlorophenyl) porphyrin iron(II) (T(2,6-diCl)PPFe) as the
catalyst, the substrate conversion reached up to 27%, with the selectivity of 85% to the aromatic
ketone in the representative oxygenation of ethylbenzene with H2O2 as oxidant and without any
additive used. The study of apparent kinetics and mechanisms in the optimal oxygenation system
was also conducted in detail. Based on thorough exploration and characterization, the source of
the superior catalytic performance of T(2,6-diCl)PPFe was acquired mainly as its planar structure,
the low positive charge in the metal center, and better solubility in the oxygenation mixture, which
favored the approach of reactants to the catalytic center, and the interaction between the metal center
and H2O2. The beneficial interaction between T(2,6-diCl)PPFe and H2O2 was verified through cyclic
voltammetry measurements and UV–vis absorption spectra. In comparison to previous studies, in
this work, an efficient, selective, and additive-free means was developed for the oxygenation of
alkyl aromatics under mild conditions, which could act as a representative example and a valuable
reference for industrial processes in oxygenation of alkyl aromatics, and a great advance in the
realization of oxygenation of alkyl aromatics under additive-free and mild conditions.

Keywords: metalloporphyrins; oxygenation; alkyl aromatics; hydrogen peroxide; aromatic ketone

1. Introduction

Selective oxygenation of petrochemical products is a fundamental change in the chemi-
cal industry, because of its maximum atom economy, shortest transformation path, and low
impact on the environment [1–3]. One of these reactions is the oxygenation of alkyl aromat-
ics, which results in the forming of a variety of significant and valuable oxygen-containing
molecules, such as ketones, aldehydes, alcohols, acids, and their derivatives. For instance,
ethylbenzene is a commercially important chemical material in industrial chemical synthe-
ses, as well as a typical compound of secondary benzylic C—H intermediate that can be
oxidized to acetophenone. Acetophenone is a common industrial intermediate synthesized
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by the Friedel-Crafts acylation procedure. The process has low reactivity and causes severe
equipment corrosion. Due to the inertness of C—H bonds, harsh conditions are frequently
required, such as high temperatures, powerful oxidants, and caustic additions, resulting
in poor selectivity, deep oxygenation, and increased environmental costs [4–6]. Efficient
and selective oxygenation of ethylbenzene to acetophenone has attracted much research
attention recently.

To achieve a satisfactory selectivity towards partially oxygenated products, transition-
metal complex catalysts and ecologically acceptable oxidants, such as molecular oxygen
(O2) [7,8], tert-butyl hydroperoxide (TBHP) [9,10], and hydrogen peroxide (H2O2), were
encouraged. Because using O2 requires high temperature and pressure conditions and
using TBHP produces huge amounts of liquid waste, H2O2 is used more frequently. For
instance, Bryliakov and co-workers employed chiral bis-amine-bis-pyridine manganese
complexes to catalyze the enantioselective hydroxylation of ethylbenzene and its derivates
with H2O2, and the yield of 1-Phenylethanol reached up to 50% [11]. Zhao and co-workers
carried out a bimetal catalyst with the metal center of Co and Ni reaching up to 80%
ethylbenzene conversion with the oxidant of TBHP [12]. Ha and co-workers reported
W-MnSBA-15 mesoporous catalysts with great catalytic activity and recyclability yielding
86% ethylbenzene conversion [13]. As for another oxidant oxygen, Nie and colleagues
reported benzylic C—H bond oxygenation employing nitrogen-doped carbon as a catalyst
in the presence of tert-butyl hydroperoxide, the obtained conversion of ethylbenzene was
99% with a selectivity of 93% towards aromatic ketone [14]. Song and co-workers reported
ethylbenzene and its derivates oxygenation using acetonitrile as the solvent rather than
caustic acetic acid employing copper phosphate and N-hydroxyphthalimide under O2
conditions. When ethylbenzene was utilized as a substrate, the yield of acetophenone
reached up to 93% [15]. In this work, 2 new symmetrical and unsymmetrical ligands were
connected to the diiron(III) metal center, and proved to have great catalytic activity towards
alkene and alkane (58% ethylbenzene conversion and 77% selectivity towards ketones) [16].
Almost all of the above-mentioned works used additives in the reaction, which were
corrosive in the chemical industry. In earlier work, we examined systematically the catalytic
system, using metalloporphyrins and molecular oxygen (O2) to oxidize aromatic benzylic
C—H bonds towards corresponding ketones and alcohols [17,18]. The alkyl aromatics’
oxygenation could be greatly sped up with effective catalytic systems, and the efficient
approach was achieved using heterogeneous catalytic systems. It was impossible to ignore
the fact that using heterogeneous catalysts resulted in a larger catalyst loading and a loss in
catalytic efficiency, which makes it more difficult to separate the catalysts, and uses more
energy to recover unconverted substrates.

Metalloporphyrins, as the representative compounds of Cytochrome P450, have
proven to be an ideal candidate for C—H bonds oxygenation because of the efficiently
active sites and environmental friendliness. Although a vast library of porphyrin-based
homogeneous and heterogeneous catalysts for oxygenation of aromatic benzylic C—H
bonds have been extensively studied, the development of an effective metalloporphyrin
catalyst for oxygenation of aromatic hydrocarbons to ketones that achieves high selec-
tivity and satisfying conversion under mild conditions, is still a work in progress. The
catalytic activity of metalloporphyrins, like that of native enzymes, is linked to structure,
which can be altered by central metal and porphyrin ligands, to satisfy the demands of
various catalytic reactivity. Inspired by our previous work employing simple metallopor-
phyrins, we investigated the oxygenation of alkyl aromatics employing metalloporphyrins
as catalysts and H2O2 as an oxidant systematically. The work is an efficient and selective
additive-free oxygenation of aromatic benzylic C—H bonds using H2O2 as an oxidant
catalyzed by simple metalloporphyrins (T(2,6-diCl)PPFe) under non-additive and mild
conditions, achieving better ethylbenzene conversion (up to 27.44%) and improved ketone
selectivity (up to 85%). Cyclic voltammetry measurements and UV-vis absorbance spectra
were used to demonstrate the interaction between T(2,6-diCl)PPFe and H2O2. This study is
not only a reference in the area of the relationship between the catalytic performance of
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alkyl aromatics and the structures of metalloporphyrins, but also a significant advancement
for the widespread use of metalloporphyrins as the catalyst.

2. Experimental Section

Chemicals, materials, characterization, instrumentation, and synthesis of metallopor-
phyrin, are all covered in the Supplementary Materials section.

2.1. Syntheses of Metalloporphyrins

Metalloporphyrins used in this study were synthesized using the standard process
described in the literature [19–22].

The following is a typical process for porphyrin ligands: to begin, 150 mmol of
substituted benzaldehyde was dissolved in propionic acid (550 mL). The solution was then
progressively injected with redistilled pyrrole (150 mmol) while it was heated to reflux
under a nitrogen atmosphere. The solution was then maintained, stirring and refluxing,
for another 2.0 h. After the solution had cooled to room temperature, 800 mL of methanol
was added to it. When methanol was added, a large amount of precipitate formed, which
was collected using filtration. The precipitate was washed 3 times with 100 mL methanol,
until the filtrate was clear. Finally, crude products were purified using a silica column with
cyclohexane and dichloromethane.

The following is a typical process for metalloporphyrins: porphyrin ligand (0.20 mmol)
and metal acetate (2.0 mmol) were dissolved using 100 mL DMF, and heated to reflux under
a nitrogen atmosphere. After 24.0 h, DMF was evaporated using rotary evaporation. The
solid residue was then dissolved in dichloromethane (60 mL), and washed 4 times with
water (4 × 150 mL). The crude products were further refined using a silica column with
cyclohexane and dichloromethane. Before usage, the metalloporphyrins were vacuum-
dried at 80 ◦C for 8.0 h. The Supplementary Materials section contains details on the
synthesis and characterization of porphyrins and metalloporphyrins.

2.2. Autoxidation of Ethylbenzene

Autoxidation of alkyl aromatics with H2O2 was studied using ethylbenzene as a model.
In the normal working procedure, a reaction tube (35 mL) was filled with ethylbenzene
(0.0106 g, 0.1 mmol) and H2O2 (0.8 mmol). The reaction tube was then stirred while being
heated to the designed reaction temperature. After 6.0 h, the resulting mixture and 1 mL of
naphthalene solution (internal standard) were transferred to a volumetric flask and diluted
to 5 mL with acetonitrile. Finally, GC and HPLC were used to examine the conversion
and selectivity of alkyl aromatics autoxidation. By comparing it to a standard sample, the
product was recognized qualitatively.

2.3. Catalytic Oxygenation of Ethylbenzene and Its Derivates

Initially, the catalytic efficiency of the metalloporphyrins was evaluated for ethyl-
benzene oxygenation in acetonitrile at 70 ◦C, and the optimal conditions were applied
to the other substrates. In a 35 mL reaction tube, 0.01 mmol of catalyst, 0.1 mmol of the
substrate, 0.8 mmol of H2O2, and CH3CN to complete 1 mL of volume, were sequentially
combined and stirred under nitrogen atmosphere, in a thermostated bath. After 6.0 h, the
resulting mixture and 1 mL of naphthalene solution (internal standard) were transferred to
a volumetric flask and diluted to 5 mL with acetonitrile. Finally, GC and HPLC were used
to examine the conversion and selectivity of ethylbenzene and its derivates oxygenation.

2.4. Kinetic Study

To investigate the catalytic characteristics of different metalloporphyrins, apparent
kinetic studies of ethylbenzene oxygenation were conducted under 50 ◦C, 60 ◦C, and
70 ◦C, using TPPFe, T(4-Br)PPFe, and T(2,6-diCl)PPFe as catalysts. The autoxidation of
ethylbenzene was conducted under 50 ◦C, 60 ◦C, and 70 ◦C. A reaction tube was filled
with solvent, catalyst, and substrates in the standard procedure. The reaction mixture
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was immediately cooled to 25 ◦C after stirring for 1.0, 1.5, 2.0, 2.5, and 3.0 h, under the
set condition. Finally, the resulting mixture and 1 mL of naphthalene solution (internal
standard) were accurately diluted to 5 mL with acetonitrile. The resulting solution was
injected into gas chromatography, to measure conversion and selectivity.

2.5. Products Analyses

The oxygenation products were examined using a Thermo Trace 1300 gas chro-
matographer equipped with a Flame Ionization Detector and a TG-5MS capillary column
(30 m × 0.32 mm × 0.25 µm). A Thermo Ultimate 3000 HPLC chromatographer with
Photodiode Array Detector and Amethyst C18-H liquid chromatography column (250 mm
× 4.6 mm × 0.25 µm) was used to examine aromatic carboxylic acids. For quantification,
an internal calibration technique was applied, in which calibration curves for all substrates
and products were used to establish the respective response factor. The internal standard
for GC analysis was naphthalene, while the internal standard for HPLC analyses was
2-naphthalene carboxylic acid. The samples were tested before and after the addition of
triphenylphosphine, which transforms the hydroperoxide to the corresponding alcohol, to
ensure a valid measurement of the alkyl hydroperoxides.

3. Results and Discussion
3.1. Characterizations

In addition to NMR and ESI-MS characterizations, UV-vis spectra were obtained in or-
der to confirm the structure of metalloporphyrins and their ligands (Figure 1). The success-
ful synthesis of metalloporphyrins was revealed by the absorption peak at 420 nm [23–26].
And the variations in the chemical structure and solubility of metalloporphyrins in DMF
were primarily responsible for the variations in the absorption intensity. Cyclic voltamme-
try in tetrabutylammonium hexafluorophosphate (TBAPF6) solution (0.025 mol/L in DMF)
was used to assess the performance of metalloporphyrins in electron transfer. At the proper
voltage, all of the metalloporphyrins under investigation showed clear oxidation potentials
and reduction potentials, which suggested that they had potential in electron transfer to
serve as catalysts in oxygenation reactions (Figure 2). Thermogravimetric analyses (TGA)
of matching metalloporphyrins were carried out under a nitrogen environment from 25 ◦C
to 800 ◦C, to examine the thermal stability. For almost all metalloporphyrins, no noticeable
mass loss occurred before 250 ◦C (Figure 3). The metalloporphyrins used in this study were
sufficiently stable in the catalytic environment.
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3.2. Preliminary Exploratory Research

Some early studies were carried out before conducting a full study on the oxygenation
of C—H bonds. The primary issue was establishing the proper reaction temperature. Two
catalysts, tetrakis(4-Bromine-phenyl) porphyrin iron(II) (T(4-Br)PPFe) and tetrakis(phenyl)
porphyrin iron(II) (TPPFe), were investigated, in ethylbenzene and cumene oxygenation.
Ketones and alcohols were found in the reaction. Because deep oxygenation occurred at
higher temperatures, oxygenation temperature was an important factor to consider. The
catalytic activity of metalloporphyrins was studied at temperatures ranging from 50 ◦C
to 70 ◦C, and the results are listed in Tables 1 and S1. Under autoxidation conditions, no
evidence of oxygenated compounds was discovered when the oxygenation temperature
was less than 70 ◦C. The catalytic activity of metalloporphyrins reached the best results
at 70 ◦C, with a conversion of 19.71%. TPPFe had a ketone selectivity of up to 70%, and
T(4-Br)PPFe had a ketone selectivity of 93% (Entry 10 and Entry 15 in Table 1). When triph-
enylphosphine was added to the resulting combination, there was no triphenylphosphine
oxide found, indicating that all hydroperoxide had been transformed to the equivalent
alcohol (Entry 16 and Entry 17 in Table 1). Table 1 also indicated that the metal center
was primarily responsible for the catalytic activity of metalloporphyrins in catalyzed oxy-
genation processes, and the porphyrin ligand lacked evident catalytic activity (Entry 18
and Entry 19 in Table 1). When the salts of Fe(II) were used as catalysts (Entry 20), no
oxygenated products were formed due to their poor dispersion, which was also strong
proof of the great catalytic performance of metalloporphyrins to some degree. Because
greater yields were obtained for all catalysts at 70 ◦C and no deep oxygenation products
were formed, oxygenation of ethylbenzene to corresponding ketones at 70 ◦C was a viable
option. In this study, the reaction temperature was set to 70 ◦C.
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Table 1. Preliminary exploration on alkyl aromatics oxygenation temperature employing ethylben-
zene as model substrate a.
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can catalyze substrate efficiently. As shown in Figure 4, both oxygenation and reduction 
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ing the substrate. Cyclic voltammetry curves results revealed that TPPFe and T(4-Br)PPFe 
had the lowest oxygenation potential and superior electron transport skills, which al-
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Entry Catalysts Temperature
(◦C)

Conversion
(%) Selectivity (%)

R1=O R1-OH R1-OOH R2-
COOH

1 - 50 <1% - - - -
2 - 55 <1% - - - -
3 - 60 <1% - - - -
4 - 65 <1% - - - -
5 - 70 <1% - - - -
6 TPPFe 50 12.50 74 26 - -
7 TPPFe 55 15.35 76 24 - -
8 TPPFe 60 17.15 77 23 - -
9 TPPFe 65 19.46 78 22 - -
10 TPPFe 70 19.71 79 21 - -
11 T(4-Br)PPFe 50 9.26 77 23 - -
12 T(4-Br)PPFe 55 12.08 80 20 - -
13 T(4-Br)PPFe 60 12.83 83 17 - -
14 T(4-Br)PPFe 65 13.66 87 13 - -
15 T(4-Br)PPFe 70 14.35 93 7 - -
16 TPPFe b 70 19.52 79 21 - -
17 T(4-Br)PPFe b 70 14.25 92 8 - -
18 TPP 70 <1% - - - -
19 T(4-Br)PP 70 <1% - - - -
20 Fe(OAc)2 70 <1% - - - -

a Reaction tube (35 mL), ethylbenzene (0.1 mmol, 0.0106 g), H2O2 (0.8 mmol), 6.0 h, 550 rpm. b Sample was
analyzed after the addition of triphenylphosphine.

3.3. Effect of Central Metal on Catalytic Oxygenation of Alkyl Aromatics

The central metal has a significant influence on the catalytic performance of simple
metalloporphyrin, which is the main source of metalloporphyrin catalyst. With TPP and
T(4-Br)PP as porphyrin ligands and 6 kinds of transition metals as representative central
metals, the effect of metal centers on the catalytic oxygenation of ethylbenzene was in-
vestigated. Tables 2, S2 and S3 revealed that only metalloporphyrins iron(II) exceeded all
other central metal complexes in terms of catalytic performance. The cyclic voltammetry
curves of several metalloporphyrins and UV–vis spectroscopy of the metalloporphyrins
with H2O2 were gathered to answer the question of why only metalloporphyrins iron(II)
can catalyze substrate efficiently. As shown in Figure 4, both oxygenation and reduction
currents developed, indicating that the corresponding metalloporphyrins transported elec-
trons smoothly, especially when forming high-valence Fe-oxo complexes and activating the
substrate. Cyclic voltammetry curves results revealed that TPPFe and T(4-Br)PPFe had the
lowest oxygenation potential and superior electron transport skills, which allowed electron
transfer to occur more quickly, resulting in high conversion.
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Table 2. Preliminary exploration on the effect of metal centers on alkyl aromatics oxygenation
employing ethylbenzene as model substrate a.
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Figure 4. Cyclic voltammetric curves for metalloporphyrins (a,b). 

Entry Catalysts Conversion (%) Selectivity (%)
R1=O R1-OH R1-OOH R2-COOH

1 TPPFe 19.71 79 21 - -
2 TPPCo <1% - - - -
3 TPPMn <1% - - - -
4 TPPNi <1% - - - -
5 TPPCu <1% - - - -
6 TPPZn <1% - - - -
7 T(4-Br)PPFe 14.35 93 7 - -
8 T(4-Br)PPCo <1% - - - -
9 T(4-Br)PPMn <1% - - - -

10 T(4-Br)PPNi <1% - - - -
11 T(4-Br)PPCu <1% - - - -
12 T(4-Br)PPZn <1% - - - -

a Reaction tube (35 mL), ethylbenzene (0.1 mmol, 0.0106 g), H2O2 (0.8 mmol), metalloporphyrins (10%, mol/mol),
70 ◦C, 6.0 h, 550 rpm.
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Figure 4. Cyclic voltammetric curves for metalloporphyrins (a,b). Figure 4. Cyclic voltammetric curves for metalloporphyrins (a,b).

UV–vis spectroscopy was used to monitor the metalloporphyrin reaction with H2O2.
The spectrum (Figures 5 and S1) initially showed a signal band at 420 nm, but when the
experiments were carried out using H2O2, a new band at 430 nm was found. The active
species in the reaction, Fe(III)OOH intermediates, had a characteristic band in the range of
430 nm, and the presence of PorFe(III)OOH was confirmed by ESI-MS, indicating that the
radical mechanism was valid. When compared to the reaction of metalloporphyrins iron(II)
and H2O2, the reaction of metalloporphyrins Co(II) and Mn(II) displayed fewer spectrum
changes, indicating lower catalytic activity of Co(II) and Mn(II). Metalloporphyrins Cu(II),
Zn(II), and Ni(II), showed no spectrum change when exposed to H2O2.
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Figure 5. UV-Vis absorption spectra of T(4-Br)PPFe (a); T(4-Br)PPCo (b); T(4-Br)PPMn (c); T(4-
Br)PPCu (d); T(4-Br)PPZn (e); T(4-Br)PPNi (f) with H2O2. 
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series of metalloporphyrins iron(II) with various substituent groups was investigated, em-
ploying ethylbenzene and cumene as a model substrate. Tables 3, S4, and S5, showed that 
all of the metalloporphyrins iron(II) used had a satisfactory catalytic performance on the 
transformation of both ethylbenzene and cumene to acetophenone, and the metallopor-
phyrins iron(II) with more notable steric hindrance substituent groups resulted in higher 
yields. T(2,6-diCl)PPFe was the most efficient, with a conversion rate of 27.44% and a se-
lective of 85% towards acetophenone. The greater yields of T(2,6-diCl)PPFe could be at-
tributed to its high acetonitrile solubility and plane structure, as shown in Figure S8. To 
evaluate the solubility, a series of metalloporphyrins iron(II) was dissolved in 10 mL ace-
tonitrile. Figure S4 shows that the solution was colorless for T(2-Cl)PPFe, T(2-CH3)PPFe, 

Figure 5. UV-Vis absorption spectra of T(4-Br)PPFe (a); T(4-Br)PPCo (b); T(4-Br)PPMn (c); T(4-
Br)PPCu (d); T(4-Br)PPZn (e); T(4-Br)PPNi (f) with H2O2.

3.4. Effect of Porphyrin Ligands on Alkyl Aromatics Catalytic Oxygenation

Because ligand structures affected the catalytic performance of metalloporphyrins,
a series of metalloporphyrins iron(II) with various substituent groups was investigated,
employing ethylbenzene and cumene as a model substrate. Tables 3, S4 and S5, showed
that all of the metalloporphyrins iron(II) used had a satisfactory catalytic performance
on the transformation of both ethylbenzene and cumene to acetophenone, and the metal-
loporphyrins iron(II) with more notable steric hindrance substituent groups resulted in
higher yields. T(2,6-diCl)PPFe was the most efficient, with a conversion rate of 27.44%
and a selective of 85% towards acetophenone. The greater yields of T(2,6-diCl)PPFe could
be attributed to its high acetonitrile solubility and plane structure, as shown in Figure S8.
To evaluate the solubility, a series of metalloporphyrins iron(II) was dissolved in 10 mL
acetonitrile. Figure S4 shows that the solution was colorless for T(2-Cl)PPFe, T(2-CH3)PPFe,
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and T(4-OCH3)PPFe, which had no catalytic activity, and purple-red for the others, in-
dicating that the difference in conversion may be attributable to solubility. The central
metal of metalloporphyrins was therefore protected from attack by radical species in the
reaction, and electron transfer capacity was improved, resulting in increased conversion
and selectivity.

Table 3. Effect of porphyrin structures on oxygenation of alkyl aromatics employing ethylbenzene as
model substrate a.
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5 T(2,6-diCl)PPFe 27.44 85 15 - -
6 T(2-CH3)PPFe <1% - - - -
7 T(3-CH3)PPFe 13.87 82 18 - -
8 T(4-CH3)PPFe 20.52 78 22 - -
9 T(3-OCH3)PPFe 12.89 83 17 - -

10 T(4-OCH3)PPFe <1% - - - -
11 T(3-F-4-Br)PPFe 13.63 87 13 - -
12 T(2-F-4-Br)PPFe 12.57 85 15 - -
13 T(2-Cl-4-Br)PPFe 14.12 87 13 - -
14 T(3-Cl-4-Br)PPFe 14.21 86 14 - -
15 T(2,3,6-triCl)PPFe 3.87 85 15 - -
16 T(2,3,5-triCl)PPFe 3.76 82 18 - -
17 T(2,3,6-triF)PPFe 1.62 82 18 - -
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a Reaction tube (35 mL), ethylbenzene (0.1 mmol, 0.0106 g), H2O2 (0.8 mmol), metalloporphyrins (10%, mol/mol),
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3.5. Effect of Catalyst Loading and Oxidant Amount

The resulting catalytic system in ethylbenzene oxygenation was further investigated
in terms of oxidant amount and catalyst loading to increase aromatic ketones conversion.
Tables 4, S6 and S7 show when the catalyst loading was increased from 5% to 25%, the
conversion results remained nearly unchanged. Tables 5, S8 and S9 show that as the oxidant
amount increased from 4:1 (mol/mol) to 8:1 (mol/mol) catalyzed by T(2,6-triCl)PPFe, the
conversion of ethylbenzene increased from 10.11% to 27.44%. The selectivity towards
ketone was not improved by further increasing the oxidant amount which resulted in the
formation of acid. Increases in the amount of oxidant, produced a decrease in selectivity
rather than a rise in conversion. To summarize, using T(2,6-diCl)PPFe as the catalyst,
an efficient catalytic system for direct and selective oxygenation of ethylbenzene and
its substrates was developed, with the conversion of ethylbenzene reaching 27.44% and
selectivity of 85% towards aromatic ketone.
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Table 4. Effect of catalyst amount on alkyl aromatics oxygenation employing ethylbenzene as model
substrate a.
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Entry Catalysts Mole Ratio Conversion
(%) Selectivity (%)

(H2O2:
Substrate) R1=O R1-OH R1-OOH R2-

COOH

1 TPPFe 4 7.84 77 23 - -
2 TPPFe 6 13.41 79 21 - -
3 TPPFe 8 19.71 79 21 - -
4 TPPFe 10 20.75 75 19 - 6
5 TPPFe 12 21.22 72 18 - 10
6 TPPFe 14 21.50 71 18 - 11
7 T(2,6-diCl)PPFe 4 10.11 85 15 - -
8 T(2,6-diCl)PPFe 6 20.93 84 16 - -
9 T(2,6-diCl)PPFe 8 27.44 85 15 - -
10 T(2,6-diCl)PPFe 10 28.48 81 15 - 4
11 T(2,6-diCl)PPFe 12 28.99 78 14 - 8
12 T(2,6-diCl)PPFe 14 29.36 77 14 - 9

a Reaction tube (35 mL), ethylbenzene (0.1 mmol, 0.0106 g), H2O2, metalloporphyrins (10%, mol/mol), 70 ◦C,
6.0 h, 550 rpm.

3.6. Kinetic Study

Noticeably, we have optimized a catalytic system for selective catalytic oxygenation
of aromatic benzylic C—H bonds employing H2O2. A series of kinetic experiments were
conducted from 50 ◦C to 70 ◦C, with ethylbenzene serving as a substrate, 3 kinds of repre-
sentative metalloporphyrins were employed as catalysts, and 3 models were employed to
measure the apparent activation energies (Ea). From the results summarized in Figure 6
and Table 6, the pseudo-first-order kinetic model (Figure 6) had the highest correlation
coefficients when fitting the reaction data of substrate autoxidation and catalytic oxygena-
tion with H2O2. The apparent activation energies (Ea) were calculated using the Arrhenius
equation: lnk = −(Ea/R) × (1/T) + lnk0, and declined in the following order: T(4-Br)PPFe
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(57.09 kJ/mol) > TPPFe (52.10 kJ/mol) > T(2,6-diCl)PPFe (41.09 kJ/mol). In the instance
of ethylbenzene oxygenation, the link between Ea and catalytic activity is clear: lower
apparent activation energy resulted in higher ethylbenzene conversion and selectivity
towards acetophenone.
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Table 6. The pseudo-first-order kinetic parameters in ethylbenzene catalytic oxygenation.

Entry Catalysts Temp. (◦C) k
(L·mol−1·h−1) R2 Average

Intercepts Ea (kJ/mol)

1 TPPFe 50 0.0217 0.9920 0.0060 51.37
2 60 0.0306 0.9941
3 70 0.0665 0.9916
4 T(4-Br)PPFe 50 0.0117 0.9929 −0.0044 53.31
5 60 0.0170 0.9936
6 70 0.0374 0.9964
7 T(2,6-diCl)PPFe 50 0.0380 0.9906 0.0025 40.24
8 60 0.0524 0.9906
9 70 0.0913 0.9988

3.7. Mechanism on the Reaction Pathways

To examine whether the mechanism of metalloporphyrin iron(II) catalytic oxygenation
of ethylbenzene and its derivates is a free radical process, we employed a mechanism test.
Radical inhibitor bromotrichloromethane (CBrCl3), 2-bromo-2-methylpropane ((CH3)3CBr),
and diphenylamine (Ph2NH) were added into the reaction tubes, and the conversion
was decreased from 20.87%, to 3.12%, 3.79%, and 3.60% respectively, thus suggesting
a free radical process. When CBrCl3 was employed to catch radicals, GC-MS analyses
revealed (1-bromoethyl)benzene and (1-chloroethyl)benzene, indicating the presence of
benzyl radical (C8H9·). When (CH3)3CBr was employed to catch radicals, GC-MS analyses
revealed both (1-bromoethyl)benzene and tert-Butanol, indicating the presence of hydroxyl
radical (HO·) (Figure S6). Furthermore, the radical species in the process of ethylbenzene
oxygenation were examined using an electron paramagnetic resonance (EPR) study. In
the reaction mixture, ethyl phenyl radical (C8H9·) as well as ethyl phenyl peroxy radical
(C8H9OO·), and ethyl phenyl oxidative radical (C8H9O·) were found when the spin trap
was utilized (Figure 7). The detected radical intermediates were primarily ethyl phenyl
(C8H9·), hydroxyl (HO·), ethyl phenyl peroxy radical (C8H9OO·), and ethyl phenyl oxygen
radical (C8H9O·).
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For oxygenation promoted by a series of iron complexes, the “water-assisted mecha-
nism” [27,28] was extensively accepted. As shown in Scheme 1, a “water-assisted mech-
anism” for the oxygenation of ethylbenzene and its derivates by metalloporphyrin Fe(II)
can be described as follows. The initiation of the catalytic reaction is the metallopor-
phyrins iron(II) oxidized to the PorFe(III)OOH (A), which was detected by ESI-MS. The
PorFe(III)OOH (A) converted to a reactive species Fe (III)-oxo complex (B) with H2O. Fol-
lowed by this step, the Fe (III)-oxo complex (B) extracts a hydrogen atom from the CH2
group of ethylbenzene and its derivates to form benzyl radical and short-lived electron-
deficient radical intermediate (C). Then, the OH group rebounded to benzyl radical and
formed the corresponding alcohol, which would be further oxidized to the ketone. The
ESI-MS and UV/Vis spectroscopic were collected to confirm the presence of PorFe(III)OOH.
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3.8. Comparison with Different H2O2 Catalytic Systems and Substrate Scope

The scope of the substrate was expanded, from ethylbenzene to several ethylbenzene
derivates having secondary C—H bonds, when the optimal method for the direct oxygena-
tion of ethylbenzene and its derivates to ketones was established. To evaluate the substrate
adaptability of the catalytic system in this work, the substrate was expanded to various
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alkyl aromatics. All ethylbenzene and its derivates tested could be oxidated to ketones
with a selectivity of 50% to 90%, as shown in Table 7. Due to the high stability of 1-ethyl-2-
nitrobenzene, the oxygenation of 1-ethyl-2-nitrobenzene resulted in a conversion of 14.73%
and a selectivity towards secondary benzylic ketone of 50%. With a selectivity of about
80% except for 1-ethyl-2-nitrobenzene, all substrates yielded ketones and alcohols, but no
acid. The method reported in this study was a high-potential and practicable solution for
converting ethylbenzene and its derivates to valuable ketones directly under additive-free
conditions using H2O2 catalyzed by T(2,6-diCl)PPFe. Due to the great catalytic activity
of metalloporphyrins Fe(II), the oxygenation system obtained from the study may be em-
ployed in conventional alkyl aromatics oxygenation. The method described in this paper
was compared to other references of secondary benzylic C—H bond oxygenation systems,
as shown in Table 8. In this paper, we developed a catalytic system that used simple
metalloporphyrins and mild conditions to achieve high selectivity. We kept the conversion
under control so that only useful ketones and alcohols were formed. Meanwhile, among
six different metals, we studied the underlying reasons why only metalloporphyrin Fe(II)
could oxygenate aromatic C—H bonds.

Table 7. Ethylbenzene and its derivates oxygenation employing H2O2 catalyzed by T(2,6-diCl)PPFe a.
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iron based catalyst 
[(PDP)Fe(OTf)2] (1.0%, 

m/m), H2O2 (4 equiv), EHA 
(10 equiv), 0 °C, 2.5 h 

19 95 [47] 
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metalloporphyrins T(2,6-
diCl)PPFe (10.0%, m/m), 
H2O2 (8.0 equiv), CH3CN, 

70 °C, 12.0 h 
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20 
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diCl)PPFe (10.0%, m/m), 
H2O2 (8.0 equiv), CH3CN, 

70 °C, 12.0 h 

36 88 
This 
work 

4. Conclusions 
Using ethylbenzene and its derivatives as a model substrate, an efficient and selective 

additive-free alkyl aromatics oxygenation, employing H2O2 as oxidant and simple metal-
loporphyrin iron(II) as catalyst, was accomplished. The main benefit of this catalytic sys-
tem was that it maintained a balance between improved selectivity, milder conditions, 
and higher conversion, owing to the great electron transport capacity of metalloporphyrin 
iron(II), and the environmentally friendly oxidant H2O2. Meanwhile, this research found 
the relationship between the central metal of metalloporphyrins and catalytic activity in 
aromatic benzylic C—H bonds oxygenation employing H2O2. The cyclic voltammetry 
curves of metalloporphyrins indicated better electron transferring performances of metal-
loporphyrin iron(II), which determined the catalytic reactivity of the complexes. Com-
pared with current references, the optimum balance between better selectivity, milder 
conditions, and simpler catalysts, was proved to be the key advantage of our work. As a 
result, our strategy for converting alkyl aromatics with optimized, T(2,6-diCl)PPFe and 
H2O2 was an effective, manageable, and appealing way to functionalize ethylbenzene and 
its derivates. It was also a crucial example of using simple metalloporphyrins to function-
alize and use alkyl aromatics. We anticipate more research into the aromatic benzylic C—
H bonds oxygenation using easily prepared metalloporphyrins under additive-free and 
mild conditions. 
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porphyrin iron(II), which determined the catalytic reactivity of the complexes. Compared
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effective, manageable, and appealing way to functionalize ethylbenzene and its derivates. It
was also a crucial example of using simple metalloporphyrins to functionalize and use alkyl
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using easily prepared metalloporphyrins under additive-free and mild conditions.
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