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Abstract: This paper investigates the failure of a regulating valve stem in a petrochemical plant, which
was mainly caused by vibration fatigue under small opening conditions. The fractured valve stem was
analyzed using macroscopic analysis, chemical composition analysis, mechanical property analysis,
metallographic analysis, fracture surface observation, and energy spectrum analysis. Additionally,
fluid-structure interaction (FSI) modal analysis was used to investigate the failure of the regulating
valve. The results indicate that the valve opening had a direct impact on the vibration of the valve
body, which, when operated at small openings, led to fatigue fracture at the step of variable cross-
section. The paper suggests a smooth transition treatment be performed at the variable cross-section
of the valve stem to avoid stress concentration. Although this study is limited to a specific case, it
provides valuable insights for the failure analysis of valves operating at small openings.

Keywords: regulating valve; failure analysis; fatigue fracture; fluid-structure interaction

1. Introduction

Regulating valves, as a type of valve used for regulating process parameters of flu-
ids in the petroleum, chemical, and metallurgical industries, have found widespread
applications [1–3]. By adjusting the valve opening, the fluid flow rate, pressure, tempera-
ture, liquid level, and other parameters can be effectively controlled. However, the improper
selection and usage of control valves, particularly when handling high-temperature, high-
pressure, flammable, explosive, toxic, or hazardous media, can lead to degraded control
quality, increased risk of unplanned shutdown, and can even jeopardize the safe and stable
long-term operation of the process equipment, resulting in significant economic losses to
the company [4,5].

Extensive research has been carried out to address these difficulties. Tu et al. [6]
used computational and experimental methods to evaluate flow-induced vibrations in
cage control valves. Wang et al. [7] investigated the flow-induced resonance problem of
sleeve control valves in depth, using transient flow field simulation and fluid-solid coupled
modal analysis. Xu et al. [8] conducted a computational fluid dynamics discrete element
method (CFD-DEM) simulation to study the solid-liquid two-phase flow characteristics
and erosion characteristics of a butterfly valve with different openings. Gabel et al. [9]
used a coupled computational and experimental methodology to analyze the complex
flow within a choke valve under laminar inflow conditions. They found that dominant
frequency peaks can result in FIV and the resonance failure of control valves. Sun et al. [10]
investigated the flow characteristics of high-parameter multi-stage sleeve control valves.
Makaryants et al. [11] explored low-frequency self-excited oscillation as well as external
vibration coupled with acoustic resonance of the vessel with an attached pipe, leading
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to the fleeting reduction of drag force in the valve and to high-frequency valve chatter.
Grice et al. [12] found that the globe valve stem experienced brittle fracture, caused by
environmental stress cracking. Michaud et al. [13] proposed that the high-frequency
noise of the valve was the primary source causing fatigue failure. The literature [14,15]
determined that the fracture failure of 17-PH stainless steel valve stems was caused by
hydrogen embrittlement. Chandra et al. [16] proposed that valve stem failure occurred
due to sulphide stress cracking caused by hydrogen embrittlement of the ferrite phase for
the duplex stainless steel 329 stem fracture problem. A computational tool was created in
the literature [17] by using numerical simulation methods for predicting the fatigue life of
valve stems.

This paper reported a rare case of a regulating valve operating at a small opening with
a broken stem within a few days. In a sulfur recovery unit of a petrochemical company
in China, the regulating valve LV5401 was used to regulate the rich liquid entering the
regeneration tower, and the control valve LV5403 was used to regulate the lean liquid
leaving the tower. The rich liquid is regenerated in the tower after passing through LV5401,
while the lean liquid at the bottom of the tower enters the lean liquid pump after being
heated by the heat exchanger, and then passes through LV5403. The process flow diagram
of LV5401 and LV5403 in the unit is shown in Figure 1. The structures of these two control
valves are identical, as shown in Figure 2. The valve stem and valve core were machined
and are made of 316 L austenitic stainless steel. The valve stem is composed of two sections,
with diameters of Φ24 mm and Φ16 mm, respectively.
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Figure 1. Schematic diagram of the process flow of the failed regulating valve.

During the routine shutdown maintenance of the equipment, it was necessary to
completely drain the medium in the system to proceed with the next step of steam blowing.
As the flow rate of the medium decreases, the valve opening must be adjusted to achieve a
balance of medium inflow and outflow. Table 1 shows the opening and working conditions
of the LV5401 and LV5403 control valves. The valve stem, made of 316 L austenitic stainless
steel, is composed of two sections with diameters of Φ24 mm and Φ16 mm, respectively.
The valve stem and valve core are integrally machined and are one of the main components
of the control valve. The structure of the control valve is shown in Figure 2a. During the
shutdown maintenance process, the valve stem of the LV5401 control valve broke first,
followed by the valve stem of the LV5403 control valve. These fractures occurred at the
step where the diameter of the valve stem changed from Φ24 mm to Φ16 mm, where no
back-cut groove was machined, and there was no smooth transition. The broken valve
stems are shown in Figure 2b.
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Figure 2. Diagram of the studied regulating valve; (a) Structural diagram of the regulating valve;
(b) Fractured stem of the regulating valve.

Table 1. Regulating valve openings and working conditions.

Opening During
Daily Production

Opening During
Shutdown

Shutdown
Material

Work
Material

Shutdown
Pressure

LV5401 regulating valve 15–20% (manual control) 1–2% (manual control) Lean
solution

Rich
solution 0.6–0.8 MPa

LV5403 regulating valve 30–40%
(automatic control)

1–5%
(manual control)

Lean
solution

Lean
solution 0.4–0.6 MPa

In this study, the root cause of the failure of the 316 L valve stem is scientifically
investigated by analyzing the fracture of the stem during a small opening operation over a
short period of time. A macroscopic analysis, a chemical composition analysis, a mechanical
property analysis, a metallographic analysis, and a fracture analysis were conducted, which
determined that the stem fracture was caused by fatigue, with the cyclic bending load
mainly induced by fluid flow-induced vibration in Section 2. To verify the analysis results,
numerical simulations of fluid flow at different valve openings and a fluid-structure coupling
modal analysis of the valve core were conducted using ANSYS software, as elaborated upon
in Section 3. The causes of the valve stem fracture are comprehensively discussed in the
Section 4. In Section 5, the paper is summarized, indicating that vibration fatigue is the main
cause of regulator valve fracture, and suggestions for improvement are proposed.

This study aims to investigate the root cause of a regulating valve stem fracture under
small opening conditions. The fluid-structure coupling method was applied in the analysis
process to connect the fluid field and the structural mechanics field, providing a deep
understanding of the mechanism of valve stem fracture and methodological guidance for
the operation and optimization of regulating valves under small opening conditions.
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2. Experiments and Results
2.1. Visual Inspection

Based on Figure 3, a macroscopic examination of the fracture position and fracture
surface was carried out in four different directions. The fracture surface exhibited a smooth
appearance without any notable plastic deformation or shear lips, but fatigue striations
were observed, suggesting that the fracture resulted from fatigue failure. Typically, fatigue
fracture exhibits a characteristic inclined fracture surface at an angle of 45◦ to the axial
direction of the rod. However, in this particular case, a significant stress concentration
phenomenon was present at the valve stem radius transition, and the fracture occurred
along the direction of maximum stress concentration. Figure 3 depicts a schematic of the
fatigue feature area of the fracture, which shows the crack origin area, fatigue propaga-
tion area, and brittle fracture area. The crack was initiated from the stress concentration
area around the small end of the valve stem, and multiple crack sources were identified,
indicating that multiple sources of initiation occurred. After the crack was initiated from
the stress concentration area, it propagated towards the center under alternating bending
loads. When the crack propagation of adjacent crack sources overlapped, a ratchet mark
was formed. Multiple obvious ratchet marks could be observed around the fracture surface,
indicating that the crack initiated from multiple sources along the edge of the small rod.
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Figure 3. Schematic diagram of fatigue fracture.

The fatigue striations are observed in the crack propagation area, and the area on
the side of the instantaneous fracture is larger than the other side. In the upstream flow
direction, the impact of fluid flow causes larger alternating stresses and faster fatigue crack
propagation, resulting in a larger fracture surface area. On the other side, where there is no
impact from fluid flow, the stress is smaller, resulting in slower fatigue crack propagation
and a relatively smaller fracture surface area.

The instantaneous fracture area is the final area where the crack breaks. When the
crack propagates to a certain extent, the crack breaks under the combined action of tensile
and bending stresses.

2.2. Chemical and Mechanical Property Analysis

During the study, two samples were prepared from the valve stem metal using a
wire cutting machine. The chemical composition of the valve stem samples was analyzed
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using spectral analysis techniques. The average results after three analyses are presented in
Table 2. The analyses indicate that, except for the low Ni content, the chemical composition
of the steel meets the standard requirements. Ni is an element that forms austenite, and a
lower content may affect the corrosion resistance of 316 L steel, but it has little effect on the
fatigue failure in this case.

Table 2. Chemical composition analysis (wt.%).

Element C Si Mn P S Ni Cr Mo

Sample 0.067 0.58 1.05 0.023 0.008 10.97 16.33 2.13
Standard ≤0.30 ≤0.10 ≤2.0 ≤0.035 ≤0.03 12.0–15.0 16.0–18.0 2.0–3.0

The valve stem was sampled for testing of its mechanical properties at room tempera-
ture, including tensile strength, yield strength, elongation after fracture, impact toughness,
and hardness, as shown in Table 3. The test results indicate that the valve stem material
meets the standard requirements for all tested parameters of tensile strength, yield strength,
elongation after fracture, impact toughness, and hardness.

Table 3. Mechanical properties test results.

Item

Tensile Test at Room Temperature Impact Test Hardness Test

Yield
Strength

(MPa)

Tensile
Strength

(MPa)

Elongation
after Fracture

(%)

Impact Energy
Akv (J)

Average Impact
Energy Akv (J)

Measured Value
(HBW)

Samples 240/255 590/615 40/54 106/120/105 110 187 186 182 170 179
Standard ≥177 ≥480 ≥40 No requirement No requirement ≤187

2.3. Microstructure Observation

To investigate the root cause of the valve stem fracture, a sample of the valve stem
was taken for metallographic observation. Figure 4 shows the microstructure of the base
material near the fractured valve stem. Figure 4a,b show metallographic images of the
stem material at 100× and 500× magnification, respectively. It exhibits a normal austenite
structure with a grain size of 10 to 11, and non-metallic inclusions at a level of 0.6.
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2.4. Fracture Surface Characterisation

Figure 5 presents scanning electron microscopy (SEM) images of the fracture surface.
The crack initiation sources can be observed moving from 0◦ to 270◦ directions through
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SEM observation. The SEM fracture pattern at the source of the crack is shown in Figure 5b,
which indicates that the cracks originate from the stress concentration area at the valve
stem edge and propagate to the center. The micromorphology at different periods during
the crack propagation process is shown in Figure 5c,d. Zone B underwent a period of slow
propagation of the fatigue crack, where fatigue striations are visible, and partial crushing of
the metal can be observed. Area C underwent a period of rapid fatigue crack propagation,
where in addition to fatigue striations, there are already local metal torn dimples. Figure 5e
shows the micromorphology of the fracture zone D, where the fracture mainly appears as
dimples and grains with lateral tensile deformation. This indicates that the valve stem has
good plasticity, and grains elongate, deform, and fracture under alternating bending and
shearing stress. Figure 5f displays the microstructure of the fracture in the final fracture
region E, where the fracture mainly occurs in the form of dimples, and elongated and
deformed grains can also be observed laterally.
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Figure 5. SEM images of the fracture surface. (a) SEM observation locations of the fracture.
(b) Fracture pattern of area A at the crack source (300×). (c) Fracture pattern of B crack propa-
gation area (800×). (d) Fracture pattern of C crack propagation area 5 (800×). (e) Fracture pattern of
D final fracture area (1000×). (f) Fracture pattern of E final rupture area (1000×).

The energy dispersive spectroscopy (EDS) analysis of an example is presented in
Figure 6. The results indicate that metal oxides are the main product of the fracture, with
some local areas containing residual sulfides from the media.
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Based on the above analysis, it is inferred from the morphological characteristics that
the fracture is a fatigue fracture. At the source of the crack, all cracks initiate at the stress
concentration area at the variable diameter part of the valve stem and propagate to the center,
where fatigue striations can be observed. In the crack propagation area, fatigue cracks can also
be observed during the slow propagation period. During the fast crack propagation period,
in addition to the fatigue striations, local dimples with torn metal can be observed. From the
microscopic pattern of the final fracture area, it can be seen that there are mainly dimples
and grains that are elongated and deformed laterally on the fracture. It is well-known that
the main failure modes of control valves include blockage, leakage, and vibration [18]. Many
studies on control valve failures [5,19,20] are related to vibration problems.

3. Numerical Simulation and Analysis

According to the structure and operating conditions of the regulating valve, the cyclic
bending load may mainly come from the vibration of the valve stem caused by the impact
of fluid flow. The cause for the greater stress concentration is that the valve stem is not
provided with an undercut or smooth transition at the transition between the variable
diameter parts of the valve stem. Therefore, it is necessary to perform the numerical
simulation of fluid flow. Some scholars [21–24] used Computational Fluid Dynamics (CFD)
technology to analyze the internal flow field of the regulating valve by visualizing it.

3.1. Modeling of Flow Passage of the Regulating Valve

Figure 2 shows the actual structural model and assembly structure of the regulating
valve, and Table 4 presents the dimensional data of the valve. The valve has a nominal pres-
sure of 0.6 MPa and an equal percentage flow characteristic. SolidWorks three-dimensional
modeling software was used to build the regulating valve models at different openings.
Since this study only focused on the valve core and flow passage, the valve is simplified,
and the flow passage data, as well as the data of the valve stem and valve core, are extracted
to build the corresponding models. As shown in Figure 7, the mesh division model has
good orthogonality, which allows it to accurately capture the boundary layer and obtain
higher-precision calculation results [25,26]. The mesh in the coupling area between the
valve stem and valve core and the fluid, valve seat, and intermediate component is partially
densified, while the unstructured grids are used to divide the valve body. The model is
divided into different numbers of grids: 230,000, 590,000, 1.12 million, 1.66 million, and
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2.13 million. The calculation result with 230,000 grids is used as the reference value to
compare the average mass flow at the outlet of the regulating valve.

Table 4. Data sheet of regulating valve sizes.

Length (mm) Inner Diameter (mm)

Diameter of inlet and outlet pipe 20 76
Total length of valve body 320
Total height of valve body 165
Intermediate component 105 80

Thin stem 150 16
Thick stem 58 24
Valve core 60 78
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By checking the grid independence under the same operating conditions with different
openings of the regulating valve, it was found that when the number of meshes exceeds
1.6 million, the simulation results are not relevant. Therefore, the final number of meshes
used was about 1.66 million.

3.2. CFD Solution Process and Related Settings
3.2.1. Selection of Fluid Model

As the regulating valve failed during the shutdown period, and the medium is lean
solution with flow properties similar to water, it can be treated as water with a density of
1.0 g/cm3. Therefore, the turbulence model [27] was chosen and the standard model [28,29]
was used. To solve the calculation, the commonly used SIMPLE method using the finite
volume method was adopted.

3.2.2. Establishment of a Computation Model

The N-S governing equation, a closed equation consisting of a mass conservation equa-
tion and three momentum conservation equations, is utilized as the governing equation.
This includes the continuity equation, which is the mathematical expression of the law of
conservation of mass in the flow field. The mass conservation equation is expressed as:

The governing equation adopts the N-S governing equation, which is a closed equation
composed of a mass conservation equation and three momentum conservation equations,
including the following:

1. Continuity equation
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The mathematical expression of the law of conservation of mass in the flow field is
called the continuity equation. The mass conservation equation is

∂ρ

∂t
+

∂(ρux)

∂x
+

∂
(
ρuy

)
∂y

+
∂(ρuz)

∂z
= 0 (1)

where ux, uy, uz are velocity components (m/s) in x, y and z directions, respectively, t is
time, and ρ is density. The fluid in this study is a lean solution or an incompressible fluid,
ρ is a constant, and Equation (1) can be simplified as

∂(ρux)

∂x
+

∂
(
ρuy

)
∂y

+
∂(ρuz)

∂z
= 0 (2)

2. Momentum equation

The mathematical expression of the law of conservation of momentum in the flow
field is called the momentum equation, which can be expressed as:

∂(ρux)

∂t
+∇ ·

(
ρux
→
u
)
= −∂p

∂x
+

∂τxx

∂x
+

∂tyx

∂y
+

∂tzx

∂z
+ ρ fx (3)
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(
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+

∂tyy

∂y
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∂z
+ ρ fy (4)

∂(ρuz)

∂t
+∇ ·

(
ρuz
→
u
)
= −∂p

∂z
+

∂τxz

∂x
+

∂tyz

∂y
+

∂tzz

∂z
+ ρ fz (5)

where: fx, fy, fz are the unit mass force (m2/s) in the x, y, z directions, p represents the pres-
sure acted on the volume micro-element body, and τxx, τxy, τxz represents the components
of the viscous force τ acting on the surface of the micro-element body.

3.2.3. Boundary Conditions and Parameter Settings

The pressure inlet and pressure outlet boundary conditions were selected in this study.
The inlet pressure is set to 0.6 MPa and the outlet pressure is 0.45 MPa. Solid wall conditions
are adopted for all interfaces in contact with the fluid, the medium is treated as water, and
the medium temperature is 40 ◦C. For the research, nine openings, namely, 1%, 2%, 5%,
10%, 15%, 40%, 60%, 80%, and 100%, were chosen.

3.3. Analysis of Simulation Results

The pressure distribution on a symmetrical surface under different openings is pre-
sented in Figure 8. When the valve is fully open, the pressure change from inlet to outlet is
relatively uniform, and the pressure drop is mainly concentrated at the top and bottom of
the valve core. A low-pressure area appears at the valve core near the outlet side, while a
local high-pressure area appears at the bottom of the spool. Notably, the pressure changes
significantly at the throttling location, and the minimum pressure occurs on the outlet side
of the throttle valve.

Similar to the full opening situation, the pressure distribution remains relatively
stable at 80% opening. However, at 60% and 40% opening, the local high-pressure area at
the bottom of the spool expands, and the pressure gradient at the throttle changes more
compared to the full opening condition. Further reduction of the opening to 15% and 10%
causes the high-pressure area at the bottom of the spool to expand continuously, and there
is a significant pressure gradient on both sides of the top and bottom of the spool.
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The cloud pictures of pressure distribution at 5%, 2%, and 1% openings exhibit re-
markable similarity. The high-pressure area at the bottom of the spool further increases
and strengthens, resulting in a larger pressure gradient on both sides of the top and bottom
of the spool.

A pressure difference diagram at the top and bottom of the valve core for each opening
is plotted based on the pressure nephogram, as shown in Figure 9. As seen from the
figure, the pressure difference decreases as the opening increases, with the maximum
pressure difference occurring at 1%, 2%, and 5% opening, with all three pressure differences
reaching 1.34 MPa. Under this condition, the valve stem is bent by the high pressure
difference, causing an increase in the gap between the valve core and valve seat, which
leads to a decrease in the pressure difference. The valve stem then rebounds within the
elastic range and returns to the original opening, causing the pressure difference to increase
again, resulting in a cyclic reciprocation process that forms an alternating load. During
the shutdown maintenance of the failed valve under study, the valve stems broke and
failed when working at small openings of 1% to 5%. The fatigue load comes from the large
pressure difference at small openings.

The above analysis reveals that the flow fields at adjacent valve openings are similar.
Consequently, the subsequent analysis will focus solely on typical flow fields with three
openings, namely 2%, 15%, and 60%.
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Figure 9. Pressure difference across the valve core at different openings.

3.4. Modal Analysis of Fluid-Structure Interaction of Regulating Valve Bodybsection

Based on the wet mode theory [30], the fluid surrounding the valve core and valve
stem is taken as the unidirectional fluid-structure interaction mode in this paper. The modal
analysis on the regulating valve is conducted with the wet mode. ANSYS Workbench was
used to simulate the stem and valve core of the single-seat regulating valve, and a fluid-
structure interaction model was established with SolidWorks software, as illustrated in
Figure 10. The grid number is 77,517. Steady-state flow field calculations for the throttling
model at each typical opening were performed with reference to the boundary conditions of
the flow field of the regulating valve in Section 3.1. In the static field, fixed constraints were
imposed on the inlet and outlet ends of the regulating valve. The flow field information
was loaded in the static field to obtain the fluid-structure interaction surface pressure
information. The elastic modulus of 316 L austenitic stainless steel was set to E = 206 MPa,
the density was 7.98 g/cm3, and the Poisson’s ratio was set to u = 0.3.
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3.4.1. The Equivalent Stress at the Variable Diameter Sections of the Valve Stem

The equivalent stress diagrams of the valve core and stem at three different openings
(2%, 15%, and 60%) are shown in Figure 11. As depicted in the figure, the valve core
deforms towards the right, i.e., in the direction of fluid flow, and the amount of deformation
increases gradually from the top of the valve stem towards the valve core. The largest
deformation occurs at the top end of the valve core. Additionally, the stress decreases from
the top of the valve stem towards the valve core. However, it is worth noting that a local
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high-stress area is present between the variable diameter parts of the valve stem, precisely
where the stem broke. This local stress area is the source of crack initiation for fracture
failure, and it is particularly high at the 2% opening. As the opening increases, the stress
between the variable diameter parts of the valve stem decreases, and the possibility of
fracture becomes smaller.
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Figure 11. The total deformation diagram and equivalent stress diagram of the valve core and stem;
(a) Equivalent stress diagram at 2% opening; (b) Enlarged view of Zone A; (c) Equivalent stress
diagram at 15% opening; (d) Enlarged view of Zone B; (e) Equivalent stress diagram at 60% opening;
(f) Enlarged view of Zone C.
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3.4.2. Modal Analysis of the Regulating Valve Model at Each Opening

In order to analyze the vibration characteristics of the regulating valve, a modal
analysis was conducted at three typical openings: 2%, 15%, and 60%, which have similar
valve characteristics. The first three-order modes were studied in this paper because of the
low influence of high-order modes on the vibration. Figure 12 shows the modal diagrams
of each order at different openings, and Table 5 lists the vibration modes at each opening.
The analysis reveals that the valve stems have a large deformation in all modes, especially
in the first-order mode, which mainly involves left and right swinging. The second-order
mode mainly involves periodic vibration formed in the form of left and right swinging at
about 45◦, which is referred to as induced vibration [31]. According to classical theory [32],
the influence of low-order modes on vibration is much greater than that of high-order
modes. When fluid flows perpendicular to the cylinder axis, the cylinder vibrates laterally
in the direction perpendicular to the direction of fluid flow due to various causes, which
becomes the cause of the fatigue fracture of the valve stem.
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Figure 12. Vibration mode diagrams for the first, second, and third order modes at valve openings
of 2%, 15%, and 60%; (a) First-order mode at 2% opening; (b) Second-order mode at 2% opening;
(c) Third-order mode at 2% opening; (d) First-order mode at 15% opening; (e) Second-order mode
at 15% opening; (f) Third-order mode at 15% opening; (g) First-order mode at 60% opening;
(h) Second-order mode at 60% opening; (i) Third-order mode at 60% opening.
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Table 5. Table of vibration modes of each order at different openings.

Opening Number of
Orders

Vibration
Frequency

(Hz)

Amplitude
(mm) Vibration Type

2%
1st order 56.354 27.899 The steps of the variable diameter parts of the valve stem vibrate back

and forth along the z-axis
2nd order 56.359 27.855 The step of the valve stem vibrates back and forth along the xz direction
3rd order 303.98 38.092 The valve core vibrates evenly in the circumferential direction

15%
1st order 56.309 31.385 The step of the valve stem vibrates back and forth along the z direction
2nd order 56.309 31.385 The step of the valve stem vibrates back and forth along the x direction
3rd order 303.99 42.782 The valve core vibrates unevenly in the circumferential direction

60%
1st order 56.241 31.389 The step of the valve stem vibrates back and forth along the z direction
2nd order 56.241 31.389 The step of the valve stem vibrates back and forth along the x direction
3rd order 303.99 42.784 The valve core vibrates unevenly in the circumferential direction

Through simulation analysis, the valve stem and valve core were found to undergo
periodic bending, pressure difference reduction, and elastic range rebound when subjected
to high pressure differences at the small hole. This results in induced vibration, which
is characterized by left and right periodic vibration of valve flow and 45-degree angle
periodic vibration. The stress concentration is highest in the variable diameter parts of the
stem, leading to the appearance of a local high stress area. This area became the source of
the crack. Therefore, the stem experiences both alternating loads and stress concentration
conditions, leading to fatigue fracture in the variable diameter range. In summary, the
simulation analysis reveals that induced vibration, combined with stress concentration, is
the root cause of the fatigue fracture in the variable diameter range of the valve stem.

4. Discussion and Recommendations

According to the analysis of the adjusting valve stem fracture failure, it was determined
that it was a vibration fatigue fracture, characterized by fatigue striations that can be
observed at both macroscopic and microscopic levels. All cracks initiate at the stress
concentration at the edge of the variable diameter part of the valve stem and extend to the
central portion under alternating loads until they break. The cyclic alternating load mainly
comes from the vibration caused by the impact of fluid flow on the valve stem. The high
stress concentration is mainly due to the absence of a tool retreat groove and the smooth
transition in the variable diameter part of the valve stem.

The simulation results in the third part of the paper show that the valve stem and
core undergo periodic bending, a reduction in pressure difference, and the rebound of the
elastic range under the action of high pressure difference when the valve is closed and
operating in the small opening, which is an induced vibration process. The maximum stress
is concentrated in the variable diameter part of the valve stem, and the local high-stress
area is the source of crack initiation leading to fracture failure.

Vibration fatigue is a common cause of equipment or component fatigue fracture
under dynamic loads such as vibration load, water hammer, or unstable fluid flow. The
effects of vibration fatigue on material failure have been extensively studied, including
low cycle fatigue [33], random vibration load on joint fatigue [34], vibration fatigue sim-
ulation [35], 316 L stainless steel fatigue life prediction [36], average stress on austenitic
stainless steel fatigue performance [37], and microdefects on 316 L stainless steel shaft
fatigue life analysis [38,39]. Although the valve stem material studied in this paper was
316 stainless steel, when vibration load occurs, cracks may occur at high-stress points or
structural discontinuities, even in stainless steel. Hence, it is suggested that regulating
valves should minimize their operation at small openings whenever feasible.

It is worth noting that literature reporting fatigue fractures of valve stems in the small
opening state after short-term operation is very rare. Therefore, this study focused on
the fracture of a variable cross-section stepped valve stem during operation in the small
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opening state. During normal production, the opening of the LV5401 regulating valve is
15% to 20%, and that of the LV5403 regulating valve is 30% to 40%. In combination with
the results of Figures 8 and 9, it was found that the valve stem pressure difference during
normal valve opening is lower. The LV5401 has a smaller opening and a larger pressure
difference, resulting in a larger bending load on the valve stem. Therefore, the LV5401
valve broke first at 1% to 2% opening later in the shutdown period.

Meanwhile, the sudden structural change of the variable diameter part of the stem
is also an important factor affecting stem fatigue fracture. The fatigue behavior of 316 L
stainless steel has been extensively studied in numerous manuals and studies [40,41]. As
shown in Figure 11, the maximum calculated equivalent force is 43.7 MPa. However, it is
crucial in considering the stress concentration factor at the variable section of the valve stem.
In this study, the valve stem has a diameter of D = 24 mm and a diameter of d = 16 mm,
with a nearly right-angled stem transition, resulting in a very small r value. Specifically,
D/d = 24/16 = 1.5, and r/d→0. When r/d = 0.01, the stress concentration factor exceeds
4.5. Thus, the stress at the variable section step of the valve stem can be estimated to be at
least 196.65 MPa (43.7 MPa × 4.5 = 196.65 MPa). According to the S-N curve presented in the
literature [42], the expected lifetime under this stress level is 5.5× 105 cycles. However, at the
operating opening (2% opening), the vibration frequency of the first-order mode is 56.354 Hz,
and the vibration frequency of the regulating valve for one working day is approximately
4.8 × 106 times, which surpasses its fatigue life, thereby leading to fatigue fracture.

Consequently, the absence of a smooth transition in this region and the high stress
concentration in the variable diameter part of the valve stem is the main reason for the
valve stem fracture. Therefore, the structure was improved in the variable diameter region
of the valve stem, as shown in Figure 13a. Figure 13b displays the local stress distribution
in the variable diameter region. It can be seen from the figure that the stress decreases at
the smooth transition of the variable diameter region, thus avoiding stress concentration
and improving the safety of the valve stem.
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5. Conclusions

In conclusion, this study investigated the failure of a regulating valve stem in a
petrochemical plant, and proposed two suggestions to improve its reliability based on
the analysis of the cause of the valve stem fracture and the operating conditions. The
suggestions were successfully implemented and yielded positive results. Moreover, the
flow and structural response inside the valve in the small opening state is a complex
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multiphysics coupling problem involving multiple disciplines. Flow-structure coupling
can provide a more accurate simulation of the flow and structural response inside the
valve in the small opening state, facilitating a better understanding of its physical nature
and mechanism. However, this study has limitations, such as the absence of experimental
verification of the simulation results. In the future, more experimental work is needed to
validate the simulation, and further investigation of the flow and structural response inside
the valve is required. Nevertheless, this study provides a valuable reference for the failure
analysis of valves operating at small openings which can benefit the design and operation
of similar equipment in the industry.
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