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Abstract: Shape memory nanocomposites are excellent smart materials which can switch between a
variable temporary shape and their original shape upon exposure to external stimuli such as heat,
light, electricity, magnetic fields, moisture, chemicals, pH, etc. Numerous nanofillers have been
introduced in shape memory polymers such as carbon nanotubes, graphene, nanodiamonds, carbon
nanofibers, etc. Among nanocarbons, graphene has attracted research interest for the development
of shape memory polymer/graphene nanocomposites. Graphene is a unique one-atom-thick two-
dimensional nanosheet of sp2-hybridized carbon atoms. Graphene has been used as an effective
nanofiller in shape memory polymeric nanocomposites owing to its remarkable electrical conduc-
tivity, flexibility, strength, and heat stability. Thermoplastics as well as thermoset matrices have
been used to form the shape memory nanomaterials with graphene nanofiller. In shape memory
polymer/graphene nanocomposites, their shape has been fixed above the transition temperature
and then transformed to the original shape through an external stimulus. The inclusion of graphene
in nanocomposites can cause fast switching of their temporary shape to their original shape. Fine
graphene dispersion, matrix–nanofiller interactions, and compatible interface development can lead
to high-performance shape memory graphene-derived nanocomposites. Consequently, this review
focuses on an important class of shape memory graphene-based nanocomposites. The fabrication,
physical properties, and shape memory actuation of polymer/graphene nanocomposites are dis-
cussed. The stimuli-responsive polymer/graphene nanocomposites mostly revealed heat-, electricity-,
and light-induced effects. The inclusion of graphene enhanced the physical/covalent linking, shape
recovery, shape fixity, flexibility, and crystallization effects in the polymers. Furthermore, potential
applications of these materials are observed in the aerospace/automobile industries, civil engineering,
and biomaterials.

Keywords: graphene; nanocomposite; shape memory; thermoresponsive; electroactive; aerospace

1. Introduction

Shape memory materials have been identified as a unique category of smart mate-
rials [1]. In the 1980s, this class of smart materials, i.e., shape memory materials, was
discovered with the capability to recover their original shape (from a deformed shape)
when exposed to external stimuli such as heat [2], light [3], electric fields [4], magnetic
fields [5], water [6,7], chemicals [8], solvents [9], pH [10], etc. The shape memory effect is a
phenomenon in which a material recovers its original form through external stimuli. The
shape memory materials that respond to a heat stimulus are referred to as thermorespon-
sive materials, which initially gained research attention owing to their facile processing
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and applications [11]. Afterwards, the shape recovery of materials using electric fields,
light, moisture, and other stimuli was studied. Various polymers revealed the shape
memory effect including polyurethane, epoxies, polyesters, and other thermoplastics and
thermosetting polymers [12]. The most widely studied shape memory materials include
thermoactive, electroactuated, and light-responsive materials. Segmented polymers with
various blocks in the main chain show a good shape memory effect. The stimuli-responsive
properties of polymers have been enhanced through the incorporation of carbon nanoparti-
cles such as carbon nanotubes, graphene, carbon black, etc. [13,14]. The design, features,
and utilization of shape memory polymers and nanocomposites have been explored [15].
Moreover, the mechanism of shape memory materials and their actuation effects have been
investigated [16].

Graphene is a unique two-dimensional nanocarbon nanostructure, which is made up
of sp2-hybridized carbon atoms [17]. Graphene has a large surface area and physical prop-
erties that are suitable for forming high-performance shape memory alloys and polymeric
nanomaterials [18,19]. Consequently, the shape memory features of metal alloys (such
as copper alloys) have been improved by doping with minor amounts of graphene [20].
Graphene has been included in metal alloys to enhance their shape recovery, superelasticity,
ductility, and strength properties. In polymeric nanocomposites, the inclusion of graphene
may cause fast switching of their temporary shape to their original shape [21]. In this regard,
graphene dispersion, matrix–nanofiller interactions, and compatible interface formation
have led to high-performance stimuli-responsive graphene nanocomposites. Moreover, the
fabrication, properties, and actuation methods of shape memory graphene nanocomposites
have been investigated. Shape memory nanocomposites have applications in a wide range
of fields such as aerospace, automobiles, electronics, textiles, biomedicine, etc. [22]. In this
review, polymer- and graphene-derived nanocomposites were surveyed for their physical
characteristics and shape memory effects. Numerous polymers were studied to determine
their shape memory effects with graphene nanofillers. Their indispensable features and the
significance of stimuli-responsive polymer/graphene nanocomposites were considered.
In this regard, some previous studies on shape memory graphene nanocomposites were
reviewed; however, the literature is not in an updated form to portray the current state of
these materials. Nevertheless, future developments in the field of shape memory graphene
nanocomposites are not possible for related researchers without prior knowledge of the
recent literature. Accordingly, this review includes the significant literature found between
2016 and 2023 (Figure 1). To the best of our knowledge, a specific review on shape memory
graphene nanocomposites has not been performed before that arranges, interprets, and
outlines the recent literature.
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2. Shape Memory Behavior of Polymers

In shape memory polymers, the shape change effect has been observed due to their
transformation from a temporary shape to a permanent shape upon exposure to an external
stimulus. Various stimuli can cause shape changes in polymers including heat, electricity,
light, water, solvents, and other external sources. Heat-responsive shape memory poly-
mers have been studied [23]. Thermoresponsive shape memory polymers show actuation
at temperatures higher than their transition temperature (Ttrans) such as glass transition
temperature (Tg) or melting temperature (Tm) [24]. At temperatures above Ttrans, shape
memory polymers can be easily heated and molded to a desired temporary shape [25]. Simi-
larly, electroactive shape memory polymers revealed shape transitions upon the application
of an external electric field [26]. In order to understand the shape memory phenomenon,
it is important to study the mechanism behind this effect [27]. Most importantly, not all
polymers show shape memory effects, for example, rubbers [28]. Rubbers can be deformed
elastically under load and return to their original shape upon removal of the load; however,
these polymers cannot be fixed to a temporary shape. Therefore, the elastic deformation and
recovery of rubbers cannot be considered a shape memory effect. The polymers exhibiting
a shape memory effect may have net points and switch segments. The net points in shape
memory polymers usually determine the original shape which is usually achieved through
covalent or physical cross-linking, crystalline phase formation, molecule entanglement,
and interpenetrating network formation. The net points are stable at high temperatures
to preserve a shape with stable polymer network formation. On the other hand, switch
segments are flexible parts of polymer chains responsible for reversible switching transi-
tions. Moreover, switch segments are important for fixing the temporary shape of polymers.
The switch segments may have a crystallization/melting transition, a glass transition of
amorphous phase, reversible molecule cross-linking, hydrogen bonding, supramolecu-
lar association, and liquid crystal transitions. Figure 2 shows different interactions and
cross-linking in shape memory polymers. Various molecular mechanisms can lead to a
comprehensive architecture of shape memory polymers.
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The cross-linking phenomenon due to chemical bond formation between the polymer
chains is reversible for shape recovery effects. The physical linking of polymer chains
may involve van der Waals forces, hydrogen bonding, and the entanglement phenomenon.
Shape memory polymers have significant potential applications in automotive, electronics,
and biomedical fields [29]. The inclusion of nanoreinforcements in polymers has enhanced
the shape memory effect, mechanical properties, and thermal stability [30]. Among shape
memory polymers, segmented polymers such as polyurethanes and polyesters have gained
research attention [31–33]. In these polymers, the shape memory effect has been observed
due to the formation of reversible interactions between the polymer chains [34].

3. Stimuli-Responsive Polymer Nanocomposites

Thermoplastic and thermoset polymers have been widely used as shape memory
materials [35–37]. Among nanofillers, carbon nanoparticles and inorganic nanofillers
have been filled in polymeric matrices to cause the shape memory effect. Consequently,
nanocarbon [38], nanoclays [39], and inorganic nanoparticles [40] have been investigated.
Carbon nanoparticles (graphene, carbon nanotubes, fullerene, etc.) have been used as
effective reinforcements in thermoresponsive and electroactive shape memory materials
(Figure 3) [41]. For high-performance shape memory materials, homogeneous nanoparti-
cle dispersion has been considered important [42]. Shape memory nanocomposites have
been fabricated using facile techniques such as solution casting, melt blending, and other
synthesis techniques [43]. Functional nanoparticles have been used to enhance the dis-
persion and compatibility in polymeric matrices [44,45]. In nanocomposites, the major
types of shape memory effects include electroactive, thermoresponsive, light-responsive,
moisture-sensitive, and magnetic-responsive effects [46,47].
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3.1. Electroactive Shape Memory Nanocomposite

Conductive nanofillers such as carbon nanoparticles have been used to produce the
electroactive shape memory effect in nanomaterials [48]. Carbon nanotubes have been
known as an effective nanoreinforcement for shape memory polymers [49]. Functional car-
bon nanotubes can develop covalent cross-linking with polyurethanes to enhance the shape
memory effect [50]. Nanofiller loading also influences the shape memory properties of these
materials [51]. Shape memory polyurethane/carbon nanotube nanocomposites have been
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fabricated using the spray deposition modeling (SDM) technique, in which nanofillers were
deposited on the polymer films [52]. Using SDM, 10, 20, 30, 40, and 50 carbon nanotube
layers were printed on polymers. The rectangular, semi-circle, and spiral line areas of the
samples were studied for the applied voltage, and thermal images were scanned. Upon the
application of voltage, the nanocomposite stability was observed at constant temperature.
Furthermore, shape memory polyurethane/nanoclay and polyurethane/metal nanoparticle
nanocomposites have been designed and studied [53,54].

Commonly studied shapes of electroactive shape-responsive polymers include rect-
angular, semi-circle, and spiral forms. In addition, more complex shapes have been ob-
served in these shape memory polymer nanocomposites. For example, Xie et al. [55]
designed star-shaped electroactive shape memory networks derived from polylactide and
aniline. The polymer chains were chemically cross-linked to synthesize a shape memory
nanocomposite. Lu et al. [56] studied octagon-shaped shape memory polymer/carbon
nanofiber nanocomposites. Joule heating-triggered shape recovery was observed in the
three-dimensional template of self-assembled nanocomposites, and the electroactivated
recovery of the nanocomposites was monitored.

Moreover, the alignment of conductive nanofillers plays an important role in shape
memory actuation. Lu et al. [57] studied a shape memory polymer nanocomposite based
on self-assembled multi-walled carbon nanotubes and nickel nanostrands. The vertical
alignment of conductive nanofillers in the shape memory matrix enhanced the electroactive
recovery behavior. Good nanofiller alignment resulted in a 100% recovery ratio of the shape
memory nanomaterials.

3.2. Thermoresponsive Shape Memory Nanocomposite

In addition to the electroactive effect, heating-triggered shape memory polymer
nanocomposites have been reported [58]. Thermoresponsive shape memory polymeric
nanocomposites have been widely studied for a range of potential applications from the en-
gineering to biomedical sector [59,60]. Microwave heating has been used for rapid, uniform,
and controlled actuation of nanocomposites [61]. Gopinath et al. [62] developed thermore-
sponsive polycaprolactone/polystyrene-block-polybutadiene-block-polystyrene/carbon
nanofiber nanocomposites. The shape memory effect in these nanocomposites was stim-
ulated by a change in temperature. Due to the good miscibility of the polymer chains
and nanofiller dispersion, good shape recovery and fixing performance were observed.
Epoxy resins have been studied for the shape memory effect [63]. The shape mem-
ory effect in epoxy resins has been observed due to network formation and reversible
switching transitions [64]. Consequently, shape memory epoxy/carbon nanotube [65],
epoxy/nanoclay [66,67], and epoxy/metal nanoparticle nanocomposites have been inves-
tigated [68]. In poly(vinyl alcohol)/carbon nanotube nanocomposites, thermoresponsive
and electroactive effects have been observed [69,70]. Flexibility and shape recovery prop-
erties were investigated for low nanofiller contents in the poly(vinyl alcohol) matrix [71].
Several other thermoplastic polymeric nanocomposites revealed an effective shape memory
phenomenon [72].

3.3. Light-Responsive Shape Memory Nanocomposite

Light-responsive stimuli-responsive nanocomposites have been effectively devel-
oped [73]. The light-driven actuation of shape memory nanocomposites, with light of dif-
ferent wavelengths, has been found efficient relative to other shape memory effects [74,75].
Chen et al. [74] formed polycaprolactone/polyurethane-based light-sensitive nanomaterials.
The polydopamine nanospheres were used as photothermal nanofiller. The irradiation of
150 s caused light-sensitive recovery of >78%. Light-responsive nanocomposites have been
applied for fabricating intelligent structures, biomedical microdevices, artificial muscles,
robotics, etc. [76].
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3.4. Moisture-, Chemo-, Or Solvent-Responsive Shape Memory Nanocomposites

Moisture-sensitive, chemoresponsive, and solvent-responsive shape memory nanocom-
posites have also been developed [77–79]. The shape recovery in these materials does
not require external heating. The moisture-sensitive shape recovery is an environmen-
tally friendly process with sufficient structural and chemical flexibility [80,81]. Moisture-
sensitive or chemoresponsive nanomaterials also possess the advantage of low-temperature
actuation [82]. Moreover, glass transition temperature, intermolecular hydrogen bonding,
and plasticizing do not affect the moisture-sensitive recovery process [83]. Wang et al. [84]
fabricated chemoresponsive polycaprolactone/graphene oxide nanomaterials due to the
uniform network formation. The inclusion of 0.5% nanofiller enhanced the strain by 300%.

3.5. Magnetic-Responsive Shape Memory Nanocomposite

Magnetically sensitive shape memory polymer nanocomposites have been reported,
in which covalent integration of nanoparticles improved the shape memory effect [85,86].
Magnetic metal oxide nanoparticles such as Fe3O4 (size: ~100 nm) have been used to
create a magnetic response in the nanocomposites [87]. Pekdemir et al. [88] prepared
magnetic-responsive polylactide/poly(ethylene glycol) with magnetic Fe3O4 nanoparticles.
These magnetic-responsive materials have been applied in data storage and microfluidic de-
vices [89]. Moreover, pH-sensitive effects have been observed in the polymer/nanocarbon
nanocomposites.

The shape memory polymer/nanocarbon nanocomposites have been applied in engi-
neering, civil, and technical devices and systems [90,91]. Shape recovery effects in these
materials have also been explored through modeling and simulation approaches [92]. The
thermoviscoelastic properties of shape memory polymer composites have been exam-
ined [92]. The shape memory nanocomposites usually consist of reinforcements (carbon
nanoparticles, carbon black, carbon fibers, glass fibers, etc.) embedded in the matrix.
Nanofiller addition has been found to alter the thermomechanical properties and shape
memory performance of the nanomaterials. To understand the shape recovery phenomenon,
the mechanisms of the thermomechanical properties of nanocomposites need to be investi-
gated. Changes in thermomechanical properties were found to be dependent on the glass
transition and viscoelastic properties of the nanocomposites. To explore the shape memory
behavior of the nanocomposites, finite-deformation and time-dependent thermoviscoelastic
models have been studied [93]. Zeng et al. [94] developed the thermoviscoelastic finite-
deformation constitutive model for thermoresponsive shape memory nanocomposites.
The model was based on the modified temperature-dependent laminate analogy theory to
predict thermal-dependent effective elastic properties of nanocomposites. The constitutive
model was applied to study the thermoviscoelastic properties of shape memory nanocom-
posites with different filler loadings. The simulation results revealed agreements with the
experimental data.

4. Shape Memory Effect in Polymer/Graphene Nanocomposites

Graphene is a one-atom-thick nanosheet made up of sp2-hybridized carbon atoms [95].
It has a honeycomb lattice structure [96]. Graphene is a derived form of graphite with stack-
ing graphene layers with van der Waals interactions [97]. High-surface-area graphene has
high electron transportation, thermal conductivity, Young’s modulus, and strength proper-
ties. Graphene gained special position among nanocarbon nanoparticles due to its unique
structure and properties [98]. Graphene has been used to form various derived nanomate-
rials [99]. Moreover, graphene can be further modified or functionalized to form graphene
oxide and reduced graphene oxide-like structures [100]. Graphene, graphene oxide, and
reduced graphene oxide have been used as efficient nanofillers for polymers [101]. Appli-
cations of graphene and its derived materials have been found in the fields of engineering
structures, energy devices, electronics, biomedicine, and nanocomposites [102–104].

The inclusion of graphene in polymers has been found to enhance shape recovery
and self-healing properties [105]. Generally, superior shape recovery properties were
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observed with low graphene contents of 0.005–3 wt.% [106]. The inclusion of graphene
has been found to improve the physical properties and shape memory features of poly-
mers. Several types of graphene have been produced such as CVD graphene, modified
graphene, graphene oxide, graphene foams, reduced graphene oxide, mechanically exfoli-
ated graphene, etc. The physical and chemical characteristics of different graphene types
are different. Graphene oxide and reduced graphene oxide also have different chemical
and structural features owing to variances in their chemical compositions. The synthesis
of graphene oxide has been attained using a top-down approach such as the treatment of
graphite with strong oxidants and subsequent exfoliation. In this process, the sp2 graphite
structure is disrupted to form different oxygen-containing functionalities (carboxyl, hy-
droxyl, or epoxy groups) on graphite layers. The disruption of sp2 bonding causes low
electrical conductivity properties. The oxidation of graphite layers also enhances the in-
terplanar spacing of the graphite structure. The reduction of graphene oxide also causes
graphene-like behavior. Chemical, thermal, or photothermal reduction methods have been
applied to attain reduced graphene oxide structures. However, reduced graphene oxide
cannot achieve a pristine graphene structure. Residual oxygen and structural defects exist
on the reduced graphene oxide surface due to chemical oxidation synthesis. CVD graphene
has been fabricated as single-layer graphene with a fine structure and the least impurities.
All the graphene and derivative forms of graphene have been successfully used to form
shape memory nanocomposites.

Liu et al. [107] formed CVD graphene and applied it to fabricate shape memory
epoxy/graphene nanocomposites through the vacuum infusion technique. The nanocom-
posites had high conductivity of 16 Sm−1. The electroactive shape memory effect was
studied at 60 V. The shape recovery rate was found to be 0.5 degrees per second in 20 s.
Rong et al. [108] also produced single-layer graphene by the CVD method. Then, graphene
foams were developed to form shape memory nanomaterials. The derived electroactivated
shape memory nanocomposites had a fast response of 53 ms.

High-performance shape memory polyurethane/graphene systems have been de-
signed [109]. Jung and co-workers [110] considered shape memory polyurethane/graphene
nanocomposites with high mechanical properties and shape recovery force (1.8 MPa cm−3)
due to fine nanofiller dispersion. Modified graphene has been developed to form shape
memory nanocomposites. Kim et al. [111] developed acrylate-terminated polyurethane
and allyl isocyanate-modified graphene-based nanocomposites. The shape recovery ratio
was measured to evaluate the effect of nanofillers on the shape memory behavior of the
nanocomposites. The shape recovery ratio was improved with the inclusion of graphene,
up to 1.5 phr content, due to fine nanofiller dispersion. The graphene nanofiller was found
to control polymer segmental movement during the recovery motion of the sample, leading
to a high shape recovery ratio. However, the shape memory properties were decreased at
higher graphene contents due to aggregation. Consequently, graphene addition caused a
high yield strength, modulus, and glass transition temperature of the nanocomposites.

Graphene oxide has been obtained using facile methods for fabricating shape memory
nanocomposites. Yan and co-workers [112] formed shape memory polyurethane/multi-
layer graphene oxide nanocomposites. A shape recovery ratio of 83% in 7.6 s was attained.
The superior shape recovery ratio of the nanocomposites was due to the restriction of
polymer chain mobility and limitation of stress transfer on interfacial domains. In addition
to graphene oxide, reduced graphene oxide has also been effectively employed as nanofiller
in shape memory nanomaterials. Yoo et al. [113] reinforced graphene oxide, reduced
graphene oxide, and poly(ε-caprolactone) functional graphene oxide nanofillers in the
polyurethane matrix. A solution processing method was used to develop the shape memory
nanocomposites. The formation of poly(ε-caprolactone) functional graphene oxide is
shown in Figure 4. The shape recovery of neat polyurethane and polyurethane/graphene
nanocomposites was studied in different cycles (Figure 5). The shape recovery of the
polyurethane/poly(ε-caprolactone) functional graphene oxide nanocomposite was >95%
relative to neat polyurethane (88.3%) and other nanocomposites. It was suggested that
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the functional graphene oxide develops better interactions and reversible cross-linking
to facilitate the shape recovery process. The thermoresponsive behavior of the samples
was analyzed at 50 ◦C under 6.5 gf loading (Figure 6A). The nanocomposite revealed a
fast shape recovery of 50% in 8 s relative to the neat polymer sample tested. Hence, the
polyurethane/graphene oxide samples revealed fast shape recovery along with mechanical
stability properties. Gupta et al. [114] produced shape memory polyurethane/graphene
nanoplatelets through the melt-blending method. The shape recovery was considered
under microwave irradiation. The nanocomposites were developed with 0.2, 0.4, 0.6,
and 0.8 phr nanofiller loadings. Figure 6B shows the shape recovery behavior of the
nanocomposites with time. The inclusion of graphene nanoplatelets in the polyurethane
matrix enhanced its dielectric and magnetic properties by acting as heating nodes. The
sample recovered 80% of its shape in 60 s, which is slower than the reported functional
graphene oxide-based nanocomposites [113].
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Figure 5. Shape recovery of pure PU and PU/graphene nanofiber webs with different cy-
cles (red and solid symbols: first cycle; blue and open symbols: fifth cycle; • PU; � PU/GO;
N PU/f-GO; and H PU/r-GO) [113]. PU = polyurethane; PU/GO = polyurethane/graphene oxide;
PU/f-GO = polyurethane/functional graphene oxide; PU/r-GO = polyurethane/reduced graphene
oxide. Reproduced with permission from ACS.
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Figure 6. (A) Shape recovery images of (a) PU and (b) PU/GO nanocomposite, where shape recovery
test was carried out at a constant temperature of 50 ◦C with increasing time [113]. PU = polyurethane;
PU/GO = polyurethane/graphene oxide. Reproduced with permission from ACS. (B) Sequence of
shape recovery of shape memory polyurethane/graphene nanoplatelets under microwave irradiation:
(a) digital images; (b) infrared thermal images [114]. Reproduced with permission from Springer.

Sofla et al. [115] fabricated electroactive shape memory polyurethane and CVD
graphene-based nanocomposites. The polyurethane was prepared using polycaprolac-
tone, hexamethylene diisocyanate, and 1,4-butanediol in the solution processing. Figure 7
displays variations in the flowing electrical current with respect to the applied voltage for
the prepared nanocomposites. The electrical conductivity was enhanced with the graphene
addition, and a percolation threshold of 1.5 wt.% was obtained. For the shape recovery
of the fixed samples, 75 V was applied for 60 s (Figure 8A). The inclusion of 1–1.5 wt.%
graphene in polyurethane did not cause complete shape recovery of the samples. The
addition of 2–3 wt.% graphene nanofiller caused shape recovery within 60 s. Table 1 shows
the shape memory properties of neat polyurethane and the resulting nanocomposites.
Increasing graphene content improved the shape fixity (83.4%) and shape recovery (100%)
of the nanocomposite samples. Thus, the inclusion of graphene in segmented polyurethane
enhanced the shape memory parameters due to better matrix–nanofiller compatibility. Kim
et al. [116] developed electroactive shape memory polyurethane nanocomposites with
various amounts of thermally reduced graphene. The thermally reduced graphene was
chemically modified with allyl isocyanate. The electroactive shape recovery behavior is
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shown in Figure 8B. Thermally reduced graphene was loaded up to 25 wt.%. At low
nanofiller contents, the electric current did not induce any shape change due to the inade-
quate electrical dissipation. On the other hand, at high nanofiller contents (20 and 25 wt.%),
up to 97% of the original shape was recovered. However, the electroactuation response was
slower than for the reported polyurethane and graphene-based samples [115].
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Figure 7. Variation in flowing electrical current vs. applied voltage for PU and PU/graphene
nanocomposites [115]. PU = polyurethane; G = graphene. Reproduced with permission from Elsevier.

Table 1. Shape memory properties of PU and PU/graphene nanocomposites [115]. PU = polyurethane;
G = graphene. Reproduced with permission from Elsevier.

Sample Shape Fixity (%) Shape Recovery (%)
(Thermal: 60 ◦C)

Shape Recovery (%)
(Electrical: 75 V at 60 s)

PU 65 ± 2 90 ± 2 Not Recovered
PU + 1% G 71 ± 3 94 ± 2 Not Recovered

PU + 1.5% G 78 ± 2.2 94 ± 3 Not Recovered
PU + 2% G 82.2 ± 4 98 ± 2 95
PU + 3% G 83.4 ± 1 100 100

Epoxy nanocomposites with graphene nanofiller have been investigated for their
thermoresponsive shape recovery effects [117]. Williams and co-workers [118] developed
thermally actuated shape memory epoxy/graphene nanocomposites. The influence of
nanofiller content and polymer–nanofiller interactions on shape recovery was examined.
Yu et al. [119] designed shape memory epoxy and graphene oxide-derived nanocomposites.
Figure 9 depicts the thermal deformation mechanism for the shape memory epoxy material.
A temperature above Ttrans was used to mold the material under applied force, followed
by cooling the material to fix the shape. Then, reheating the materials above Ttrans and
removing the applied force recovered the original shape of the material.
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Figure 8. (A) Electroactuation of polyurethane/CVD graphene samples [115]. Reproduced with
permission from Elsevier. (B) Electroactive shape memory behavior of polyurethane with 0 (a), 10 (b),
15 (c), 20 (d), and 25 (e) wt.% thermally reduced graphene. The as-cast straight line is deformed (left)
and recovered (right) partially with 20 and almost completely with 25 wt.%, whereas 0 and 10 wt.%
do not respond to the electrical current [116]. Reproduced with permission from Elsevier.
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Figure 9. Schematic of thermal deformation shape memory epoxy material [119]. Reproduced with
permission from MDPI.

Lu and co-researchers [120] fabricated shape memory epoxy-derived nanocomposites.
Graphene oxide-coated carbon fibers were used as reinforcement [121]. The interfacial
interactions between the epoxy and graphene oxide-modified carbon fiber are shown in
Figure 10. These interactions enhanced the matrix-filler compatibility. The electrical-current-
induced Joule heating effect was also observed in the epoxy/graphene oxide-coated carbon
fibers (Figure 11). Up to 95% shape recovery was observed. Reduced graphene oxide was
applied to form shape memory nanocomposites.
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Figure 10. (a) Illustration of graphite stack oxidized to separate individual layers of GO; and (b) role
of GO in interfacial bonding between carbon fiber and epoxy-based SMP matrix via van der Waals
bonding and covalent cross-linking, respectively [120]. GO = graphene oxide; SMP = shape memory
polymer. Reproduced with permission from Elsevier.



Processes 2023, 11, 1171 13 of 24Processes 2023, 11, x FOR PEER REVIEW 13 of 23 
 

 

 

Figure 11. Snapshot of Joule heating-induced shape recovery in SMP nanocomposite recorded by 

infrared video camera [120]. SMP = shape memory polymer. Reproduced with permission from 

Elsevier. 

Wang and co-workers [122] formed electroactive shape memory epoxy/reduced gra-

phene oxide nanocomposites. The applied voltage was used to enhance the shape recov-

ery effect of these materials. Figure 12A shows the shape memory process in the epoxy 

and reduced graphene oxide-derived nanocomposites. Initially, the nanocomposite was 

heated to 113 °C and fixed to a temporary ‘U’ shape. Then, the temporary shape was trans-

formed to the original shape at 6 V. The shape recovery properties of the nanocomposite 

are given in Table 2. Wang et al. [123] prepared a waterborne epoxy/reduced graphene 

oxide nanocomposite. The sample was fixed into a ‘U’ shape above Tg and then cooled to 

25 °C. Electroresponsive shape recovery was observed at 8 V (Figure 12B). The nanocom-

posite film had a response within 8 s, i.e., slower than the epoxy/reduced graphene oxide 

shape memory nanocomposite under 6 V [122]. Liu et al. [107] designed epoxy thermally 

reduced graphene/carbon nanotube hybrid nanocomposites. Due to the high conductivity 

of the nanocomposites, the original shape was actuated at 60 V (Figure 12C). The recovery 

rate was 0.5 degrees per second during the first 20 s. The recovery rate was enhanced to 

2.1 degrees per second. However, the shape recovery was slower than that reported for 

epoxy/reduced graphene oxide nanomaterials [123].  

Table 2. Epoxy/graphene oxide or modified graphene oxide-based shape memory nanocompo-

sites. 

Sample 
Nanocomposite Di-

mensions 

Applied Volt-

age or Cur-

rent 

Shape Recovery 

Time or Ratio 

Highest Tem-

perature 

(°C) 

Ref.  

Epoxy/reduced graphene oxide paper Thickness, 0.1 cm 6 V 5 s 240 [122] 

Epoxy/graphene oxide 80 × 6 × 2 mm3 - 90% 74 [119] 

Epoxy/graphene 5 mm 5–10 mA 60 s 60 [124] 

Epoxy/graphene oxide/carbon fiber 50 × 15 × 0.30 mm3 - 20 min/100% 80 [125] 

Waterborne epoxy/graphene oxide 30 × 4 × 0.25 mm3 2–9 V 3–7 s/> 90% 25 [123] 

Polyurethane/epoxy resin/functional 

graphene 
25 × 5 × 1 mm3 - 96% 50 [126] 

  

Figure 11. Snapshot of Joule heating-induced shape recovery in SMP nanocomposite recorded by
infrared video camera [120]. SMP = shape memory polymer. Reproduced with permission from
Elsevier.

Wang and co-workers [122] formed electroactive shape memory epoxy/reduced
graphene oxide nanocomposites. The applied voltage was used to enhance the shape
recovery effect of these materials. Figure 12A shows the shape memory process in the
epoxy and reduced graphene oxide-derived nanocomposites. Initially, the nanocomposite
was heated to 113 ◦C and fixed to a temporary ‘U’ shape. Then, the temporary shape was
transformed to the original shape at 6 V. The shape recovery properties of the nanocompos-
ite are given in Table 2. Wang et al. [123] prepared a waterborne epoxy/reduced graphene
oxide nanocomposite. The sample was fixed into a ‘U’ shape above Tg and then cooled to
25 ◦C. Electroresponsive shape recovery was observed at 8 V (Figure 12B). The nanocom-
posite film had a response within 8 s, i.e., slower than the epoxy/reduced graphene oxide
shape memory nanocomposite under 6 V [122]. Liu et al. [107] designed epoxy thermally
reduced graphene/carbon nanotube hybrid nanocomposites. Due to the high conductivity
of the nanocomposites, the original shape was actuated at 60 V (Figure 12C). The recovery
rate was 0.5 degrees per second during the first 20 s. The recovery rate was enhanced to
2.1 degrees per second. However, the shape recovery was slower than that reported for
epoxy/reduced graphene oxide nanomaterials [123].
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Figure 12. (A) Shape recovery process of epoxy/reduced graphene oxide paper-based shape memory
nanocomposite under 6 V [122]. Reproduced with permission from Elsevier. (B) Electroresponsive
shape memory effect of the waterborne epoxy/reduced graphene oxide nanocomposite film at 8 V
applied voltage [123]. Reproduced with permission from Elsevier. (C) Shape recovery process of the
compound aerogel (the weight ratio of carbon nanotubes and graphene is 3:5)/epoxy resin composite
under voltage of 60 volts [107]. Reproduced with permission from RSC.
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Table 2. Epoxy/graphene oxide or modified graphene oxide-based shape memory nanocomposites.

Sample Nanocomposite
Dimensions

Applied Voltage
or Current

Shape Recovery
Time or Ratio

Highest
Temperature

(◦C)
Ref.

Epoxy/reduced graphene
oxide paper Thickness, 0.1 cm 6 V 5 s 240 [122]

Epoxy/graphene oxide 80 × 6 × 2 mm3 - 90% 74 [119]
Epoxy/graphene 5 mm 5–10 mA 60 s 60 [124]
Epoxy/graphene

oxide/carbon fiber 50 × 15 × 0.30 mm3 - 20 min/100% 80 [125]

Waterborne
epoxy/graphene oxide 30 × 4 × 0.25 mm3 2–9 V 3–7 s/> 90% 25 [123]

Polyurethane/epoxy
resin/functional graphene 25 × 5 × 1 mm3 - 96% 50 [126]

The shape recovery ratio measures the capability of the shape memory material to
recover its original shape [127]. It is usually calculated as total deformation recovered vs.
maximum deformation attained during programming. For electroactive shape memory
epoxy/reduced graphene oxide nanocomposites, a shape recovery ratio of up to 98% was
achieved. Similarly, actuation force is the force exerted by the sample on an object. The
optimization of actuation force has been found important to achieve an efficient shape
memory effect [128]. The assessment of applied actuation force over time is also important
to analyze the shape memory behavior. At the maximum actuation force, usually all
energy stored within the polymer chains is released. In shape memory nanocomposites, the
inclusion of nanoparticles affects the actuation force. Better interfacial interactions between
the polymer and graphene requires a large actuation force for the chain movement. In
particular, the electric-field-driven shape recovery revealed a good actuation force and
recoverable strains, thus providing opportunities to form high-performance actuating
systems.

Moreover, the shape memory phenomenon has been observed in polyacryloni-
trile/graphene nanocomposites [129]. Cross-linking in polyacrylonitrile/graphene
nanocomposites revealed good stimuli-responsive effects. Shape memory polylactic
acid/graphene nanomaterials have also been developed [130]. Uniform graphene
dispersion has enhanced the crystallization and shape memory effects of polylactic
acid [131]. Graphene has been filled in polyethylene elastomer for the shape memory
effect [132]. Increasing the nanofiller loading was observed to enhance the shape re-
covery effect. Subsequently, the nanofiller dispersion, loading, and cross-linking have
been found to increase the stimuli-responsive phenomenon in these polymers. Table 3
details the shape memory effect in significant graphene-based nanocomposites.
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Table 3. Shape memory effect in graphene-based nanocomposites.

Polymer Nanofiller Actuation Type Properties Ref.

Polyurethane Graphene Electroactive Shape recovery force:
1.8 MPa cm−3 [110]

Polyurethane Graphene Light-active Nanofiller dispersion;
shape recovery ratio [111]

Polyurethane Multi-layer graphene oxide Electroactive Shape recovery ratio: 83%;
Shape recovery time: 7.6 s [112]

Polyurethane

Graphene oxide, reduced
graphene oxide,

poly(ε-caprolactone functional
graphene oxide

Thermoresponsive Shape recovery > 95% [113]

Polyurethane Graphene Electroactive

Percolation threshold:
1.5 wt.%;

shape recovery: 100% in 60 s;
shape fixity: 83.4%

[115]

Epoxy Graphene oxide Thermoresponsive
Thermal deformation

mechanism;
Ttrans

[119]

Epoxy Graphene oxide-coated
carbon fiber Electroactive

Electrical-current-induced Joule
heating effect;

shape recovery: 95%
[120]

Epoxy Reduced graphene oxide Electroactive Shape recovery at 6 V [122]

5. Applications of Graphene-Based Shape Memory Nanocomposites

Due to superior shape memory properties, multiple triggering strategies, and fast
responses, graphene-based shape memory nanocomposites have been used in various
fields ranging from research to industry [133]. Significant applications have been observed
in electronics, sensors, energy devices, etc. [134]. Shape memory graphene materials have
high electrical conductivity for electroactive actuation [135]. Gao and co-workers [136]
formed shape memory polycaprolactone/graphene oxide with a millisecond response.
The nanocomposites have been applied in a high-speed fuse to avoid current overloading.
The shape memory graphene-based fuse easily recovered its original shape and circuit
breaking. These nanocomposites have also been used as micro-oscillators by coupling with
a high-frequency electromagnetic field. Xie et al. [137] formed shape memory graphene-
based cyclic actuators, which were triggered by heat or light stimuli. The nanocomposites
have been applied in smart devices for automatic restoring, due to cyclic sensitivity. In
addition to electronics, stimuli-responsive graphene nanomaterials have been used for
energy storage purposes [138]. This application relies on the excellent photothermal
conversion and thermal insulation potential of the materials [139].

Shape memory polymer nanocomposites have essential civil engineering applications
due to their high mechanical properties [140–142]. Civil-engineered structures demand
high bending, twisting, and fluctuating capacities [143]. Consequently, civil structures with
shape memory graphene-based nanomaterials have been formed [144]. Thermoresponsive,
electroactive, and moisture-active polymer/graphene nanomaterials have been used in
civil engineering [145–147]. Self-healing polymer and graphene nanocomposites have also
been used for civil structures [148]. Graphene-based civil materials have high strength,
large recoverable strain, and high recovery stress [149]. Stimulation studies have also been
performed to explore shape memory graphene-derived civil engineering structures.

In addition, stimuli-responsive polymer/graphene nanocomposites have been studied
for aerospace and automotive components [150–152]. Space craft/automobile outer body,
wings, inner seats, airflow controls, lenses, and other structures have been developed
using polymer/graphene nanomaterials [153,154]. Shape memory nanocomposites have
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the advantages of inexpensiveness, a light weight, fast actuation, facile processing, and
mechanical robustness [155,156]. In the space sector, self-healing nanocomposites have
gained recent interest [157]. The stimuli-responsive polymer/graphene nanocomposites
have also been exploited in the actuators, sensors, and microelectronics related to aircrafts
and automobiles [158].

Moreover, the application of shape memory nanocomposites has been observed in
biomedical devices [159,160]. The stimuli-responsive polyurethane nanocomposites have
been used in biomedical implants and other devices [161]. The switchable segments in
polyurethane/graphene nanocomposites have enhanced their function for biomedical
applications [162–164]. A few attempts of applying shape memory polymer/graphene
nanocomposites in smart textiles and fabrics have been observed [165].

6. Conclusions

Among thermoplastic polymers, polyurethane, polyacrylonitrile, and other polymers
have been used as matrices for shape memory graphene-based materials. Among ther-
mosets, epoxy resins and graphene-based materials have been designed to observe the
shape memory phenomenon. Ttrans, strain recovery, strain fixity, and the cross-linking
phenomenon have been studied as important factors to enhance the shape memory ef-
fect in these materials. The response towards a particular stimulus depends upon the
formation of physical and covalent cross-linking in the polymer/graphene nanocomposites.
Hence, this review article considered the shape memory polymer and graphene-derived
nanocomposites. Shape memory nanocomposites of different polymers (polyurethane,
epoxy, polylactic acid, etc.) with graphene and modified graphene were considered. In this
regard, the significant thermally, electrically, and light-active stimuli-responsive materials
were investigated. Shape memory polymer/graphene nanocomposites have potential for
electronics, civil structures, aerospace, and biomedical fields. High-performance shape
memory polymer/graphene nanocomposites need to be further explored for functional
polymers, modified graphene, and actuation mechanisms. Combinations of different
polymers with graphene and modified graphene nanocomposites revealed that the shape
memory effect depends upon the optimization of the actuation force and a high shape
recovery ratio. High graphene nanofiller loadings significantly influenced the shape re-
covery ratio. In addition, the presence of optimal nanofiller and the interaction with the
polymer affect the actuation force required for the shape recovery of the nanocomposites.
More actuation force is required to overcome the chain recovery due to strong interfacial
interactions between the polymer chains and the graphene nanosheets. Future attempts
must focus on the exploration of graphene-based nanocomposites for unexplored high-tech
applications.
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