
Citation: Yang, S.; Zhang, T.; Zhai, Y.;

Wang, K.; Zhao, G.; Tu, Y.; Cheng, L.

Frequent Alarm Pattern Mining of

Industrial Alarm Flood Sequences by

an Improved PrefixSpan Algorithm.

Processes 2023, 11, 1169. https://

doi.org/10.3390/pr11041169

Academic Editors: Xinhong Li,

Shangyu Yang and Huixing Meng

Received: 21 February 2023

Revised: 12 March 2023

Accepted: 13 March 2023

Published: 11 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

processes

Article

Frequent Alarm Pattern Mining of Industrial Alarm Flood
Sequences by an Improved PrefixSpan Algorithm
Songbai Yang 1,2, Tianxing Zhang 2,3, Yingchun Zhai 1,2, Kaifa Wang 1,2, Guoxi Zhao 4, Yuanfei Tu 2,5,*
and Li Cheng 2,5

1 Petrochina Tarim Petrochemical Co., Ltd., Korla 841000, China
2 Control Engineering Centre of Nanjing Tech University, Nanjing 210037, China
3 Kunlun Digital Intelligence Technology Co., Ltd., Beijing 100007, China
4 Hexagon’s Asset Lifecycle Intelligence, Beijing 100026, China
5 College of Electronic Engineering and Control Science, Nanjing Tech University, Nanjing 210037, China
* Correspondence: yuanfeitu@163.com

Abstract: Alarm systems are essential to the process safety and efficiency of complex industrial
facilities. However, with the increasing size of plants and the growing complexity of industrial
processes, alarm flooding is becoming a serious problem and posing challenges to alarm systems.
Extracting alarm patterns from an alarm flood database can assist with an alarm root cause analysis,
decision support, and the configuration of an alarm suppression model. However, due to the
large size of the alarm database and the problem of sequence ambiguity in the alarm sequence,
existing algorithms suffer from excessive computational overhead, incomplete alarm patterns, and
redundant outputs. In order to solve these problems, we propose an alarm pattern extraction method
based on the improved PrefixSpan algorithm. Firstly, a priority-based pre-matching strategy is
proposed to cluster similar sequences in advance. Secondly, we improved PrefixSpan by considering
timestamps to tolerate short-term order ambiguity in alarm flood sequences. Thirdly, an alarm
pattern compression method is proposed for the further distillation of pattern information in order to
output representative alarm patterns. Finally, we evaluated the effectiveness and applicability of the
proposed method by using an alarm flood database from a real diesel hydrogenation unit.

Keywords: alarm management; industrial alarm systems; alarm flood; PrefixSpan algorithm; sequential
pattern recognition

1. Introduction

In order to ensure the safety of industrial production, alarm systems are essential to
guarantee the safety and efficiency of operations. Alarms are audible or visual signals
that alert operators to equipment failures, process deviations, and other abnormalities,
thus preventing equipment damage or even production accidents. With the wide use of
industrial control systems (ICSs), on the one hand, the cost of designing and configuring
alarms has been reduced; on the other hand, the high degree of correlation and complexity
between devices makes it possible for a single point of failure to lead to a failure in a related
area or even failures in the whole plant, known as cascaded faults. At the same time,
unreasonable alarm thresholds and the low performance of alarm management systems in
ICSs pose challenges to the efficient operation of alarm systems [1,2], where alarm flooding
is the most common and serious problem during the operation of industrial installations.
According to EEMUA and ISA 18.2 standards, operators should not receive more than
6 alarms per hour, and alarm flooding is defined as more than 10 alarms per operator per
10 min [3,4]. During alarm floods, operators are unable to identify critical information from
numerous alarms in a timely manner, resulting in the lack of effective actions to address
critical exceptions, which affects product quality and increases production costs and poses
a significant risk to process safety as well as personnel safety. For instance, 275 different

Processes 2023, 11, 1169. https://doi.org/10.3390/pr11041169 https://www.mdpi.com/journal/processes

https://doi.org/10.3390/pr11041169
https://doi.org/10.3390/pr11041169
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/processes
https://www.mdpi.com
https://orcid.org/0000-0001-7078-8225
https://doi.org/10.3390/pr11041169
https://www.mdpi.com/journal/processes
https://www.mdpi.com/article/10.3390/pr11041169?type=check_update&version=2

Processes 2023, 11, 1169 2 of 16

alarms occurred in the 10.7 min prior to the 2005 hydrocarbon plant explosion at a Texas
refinery in the United States [5,6]. The operators failed to detect an abnormality in the
hydrocarbon fractionation level in its isomerization unit in time, leading to an explosion
after the gas-phase component was discharged from the vent stack. Numerous industrial
standards and accident analyses have shown that a scientific and reasonable alarm system
is important to ensure the safety of industrial processes, to enhance production efficiency,
and to guarantee the safety of employees.

Alarm floods have become a common phenomenon in the process industry and pose
challenges for alarm systems. To date, extensive studies have been carried out to optimize
alarm systems so as to alleviate the effects of alarm floods caused by chattering alarms
or reduce the number of these alarm floods. Tulsya et al. [7] designed a delayed alarm
strategy for the desired and worst conditions based on minimizing the missed alarm rate
and false alarm rate to ensure robustness to non-smooth industrial processes. Wang et al. [8]
proposed a method to design a dead bandwidth to suppress the number of chattering
alarms and mitigate disturbances to the alarm system. Cheng et al. [9] designed an optimal
alarm filter to achieve the best alarm accuracy in the case of the given normal and abnormal
statistical distributions.

In the process industry, the switching of some operating states and the propagation of
cascaded faults usually generate related alarms. As part of alarm rationalization, alarm
flood analysis has also attracted extensive research attention and has become a major
branch in handling alarm floods. To date, some modified sequence alignment algorithms
have been proposed for the pairwise matching of alarm flood sequences. In Ref. [10],
the similarity index between paired sequences was calculated using an improved Smith–
Waterman algorithm (SWA) and clustered similar alarm sequences based on the similarity
scores. Lai et al. [11] proposed an improved basic local alignment search tool (BLAST)
by combining the alarm priority information and timestamp. Simulation experiments
showed that the improved BLAST has a smaller computational overhead compared to the
modified SWA in [10]. In Ref. [12], a weighted sequential similarity approach is proposed to
extract alarm sequence templates for given faults. Based on the extracted fault templates, an
improved Needleman–Wunsch algorithm is proposed to isolate alarms caused by identified
alarm patterns [13].

Alarm flood analysis extracts alarm sequences from alarm logs and identifies alarm
patterns based on the similarity indexes or the frequency of alarm occurrences. The
extracted alarm patterns can be used in a root cause analysis [14], alarm display and alarm
response improvement [15], or some advanced methods mentioned in the EEMUA, such as
fault prediction, online alarm suppression, and so forth. However, extracting patterns from
an alarm database with thousands of alarms is time-consuming and requires fairly accurate
process knowledge [16]. Fortunately, it is common that some events or abnormalities that
occur frequently leave a trace in the A&E log. If such a repeated series of alarms can be
detected from historical data, it can help to extract alarm patterns.

Although alarm flood analyses with sequence alignment algorithms were imple-
mented in Refs. [12,13], these methods focus more on clustering similar alarm flood se-
quences rather than detecting frequent alarm patterns. The Apriori algorithm and its
variants are major methods for extracting frequent patterns [17]. However, these algorithms
need to construct a large number of candidates as well as frequently scan the database
to detect patterns, which results in unaffordable computational overhead when applied
to industrial alarm databases. In order to reduce the computational cost, Zhou et al. [18]
proposed a modified CloFast algorithm to extract compact alarm patterns in industrial
alarm floods.

PrefixSpan (Prefix-Projected Pattern Growth) is an efficient algorithm that generates
smaller-sized item databases and provides faster computation [19]. Niyazamand et al. [20]
proposed a modified PrefixSpan algorithm (M_PrefixSpan) to extract frequent patterns
in alarm flood sequences. However, M_PrefixSpan is based on the premise that alarm
sequences are sequential, and such a premise is difficult to satisfy in real industrial processes:

Processes 2023, 11, 1169 3 of 16

related alarms occur almost simultaneously and in an uncertain order. When several alarm
flood sequences occur with order ambiguities, M_PrefixSpan will sequentially extract
alarms as prefixes for expansion. As a result, the frequency of some alarms may not meet
the minimum support threshold, making it possible for critical alarms to be neglected,
affecting the usability of the extracted patterns. Wang et al. [21] reduced the computational
cost of the PrefixSpan algorithm by applying an incremental mining strategy. However, it
still fails to solve the problem of the sequence ambiguity of alarm sequences; at the same
time, the existing algorithm outputs a large number of redundant alarm patterns, which
makes it difficult for users to find representative alarm patterns.

Motivated by the problems described above, a compressed alarm pattern mining
method based on the PrefixSpan algorithm (CAPM_PrefixSpan) is proposed to further
facilitate the root cause analysis of the alarm flood.

The main contributions of this paper are as follows:

1. We propose a pre-matching mechanism based on the similarity scores of pairwise
alarm sequences, which can effectively reduce the computational cost when dealing
with numerous alarm data.

2. We modified the method of constructing the projection database in the PrefixSpan
algorithm, which can help the algorithm avoid the problem of incomplete patterns
due to sequence order ambiguity when mining frequent alarm patterns.

3. We propose a compression method to merge similar extracted alarm patterns so as to
cluster and compress frequent alarm patterns into a compact alarm sequence, which
prevents the output of cumbersome alarm patterns.

The rest of this paper is organized as follows. Section 2 introduces the preliminar-
ies of alarm systems and the PrefixSpan algorithm. Section 3 presents the proposed
CAPM_PrefixSpan algorithm. The effectiveness of CAPM_PrefixSpan is verified based on
an industrial case in Section 4. Finally, the conclusion is given in Section 5.

2. Preliminaries and Problem Description

This section presents the problem of extracting alarm flood patterns from historical
alarm data (A&E log) and describes the relevant definitions and algorithms.

2.1. Alarms and Alarm Floods

Alarms are generated when process variables exceed their predetermined thresholds
and are stored as a set of structured texts in the Alarm and Event Log (A&E log). As
shown in Table 1, an alarm contains many attributes, typically including a tag name, an
alarm identifier, time information, and an alarm priority [22]. The tag name is the label
corresponding to the alarm, and the alarm identifier denotes the alarm type; e.g., “PVHI”
(process variable high) and “PVLO” (process variable low) indicate that an analog variable
exceeds the high limit or the low limit of the threshold, respectively. The time label records
the time that the alarm happens; the alarm priority indicates the importance of the alarm
and is usually determined based on factors such as the consequences of ignoring the alarm
and the maximum time allowed to deal with the alarm.

Therefore, in this paper, we represent an alarm with a tuple containing three attributes:

xj
i = (e

xj
i
, t

xj
i
, p

xj
i
) (1)

where e
xj

i
is the alarm label, which is a combination of the tag name and the identifier. t

xj
i

and p
xj

i
are the time label and the priority of the alarm, respectively. As a result, these three

attributes can define an arbitrary unique alarm xj
i in any alarm sequence Xj in the A&E log.

Based on the ANSI/ISA 18.2 definition of an alarm flood (more than ten alarms per
operator per ten minutes), an alarm flood sequence can be expressed as Equation (2) shows.

Xj = [xj
1
, xj

2
, . . . , xj

|Xj |
], Xj ∈ D (2)

Processes 2023, 11, 1169 4 of 16

where
∣∣Xj
∣∣ is the length of the alarm flood sequence and satisfies

∣∣Xj
∣∣ ≥ 10 according to

the definition. D is the alarm flood database, which is a collection of all the alarm flood
sequences extracted from the A&E log.

Table 1. An example of alarms in industrial plants.

Time Label Tag Name Identifier Alarm Label Priority

2 May 2021 22:36:01 PI251 PVLO PI251.PVLO 3
2 May 2021 22:36:01 PI104 PVHI PI104.PVHI 3
2 May 2021 22:37:33 PI603B PVLO PI603B.PVLO 3
2 May 2021 22:38:21 PI604 PVLO PI604.PVLO 3
2 May 2021 22:38:25 PI603B PVLO PI603B.PVLO 3
2 May 2021 22:38:27 PI604 PVLO PI604.PVLO 3
2 May 2021 22:38:28 FI301 PVLO FI301.PVLO 3
2 May 2021 22:38:29 FI301 PVLO FI301.PVLO 3
2 May 2021 22:38:31 FI301 PVLO FI301.PVLO 3
2 May 2021 22:38:31 PI004 PVHI PI004.PVHI 3
2 May 2021 22:39:40 FI703 PVLO FI703.PVLO 3
2 May 2021 22:40:16 PI004 PVHI PI004.PVHI 3

2.2. Chattering Alarms

Chattering alarms are large and single alarm messages due to one alarm variable
fluctuating around the alarm threshold over a short period of time. Due to the prevalence
of noise and unreasonable alarm designs, chattering alarms are very common in the process
industry and account for more than 80% of the total number of alarms [23]. Chattering
alarms are unable to convey interdependent pattern information between alarms and
interfere with the extraction of frequent alarm patterns. Therefore, it is important to remove
chattering alarms during the data pre-processing phase.

Clustering identical alarms into a single event can eliminate the influence of chattering
alarms. We adopt a predefined time window TW to eliminate chattering alarms: when an
alarm is generated, alarms with the same alarm label and the same alarm identifier for the
subsequent duration of the alarm are ignored. After this processing, this method ensures
that two identical alarms are separated by at least TW (s).

Figure 1a shows 135 alarms for diesel flow in the atmospheric and vacuum distillation
units of the refinery, and Figure 1b shows the processed alarms by setting the time window
TW = 120 s. Only four alarms are preserved for further alarm pattern analysis.

Processes 2023, 11, x FOR PEER REVIEW 5 of 18

when an alarm is generated, alarms with the same alarm label and the same alarm identi-
fier for the subsequent duration of the alarm are ignored. After this processing, this
method ensures that two identical alarms are separated by at least WT (s).

Figure 1a shows 135 alarms for diesel flow in the atmospheric and vacuum distilla-
tion units of the refinery, and Figure 1b shows the processed alarms by setting the time
window WT = 120 s. Only four alarms are preserved for further alarm pattern analysis.

(a) (b)

Figure 1. Alarm for tag “TI203.PVHI”. (a) Alarm “TI203.PVHI” before removing chattering alarms.
(b) Alarm “TI203.PVHI” after removing chattering alarms.

2.3. Mining Frequent Alarm Patterns with PrefixSpan
PrefixSpan is a variant of the FreeSpan algorithm, which continuously generates and

mines smaller projection databases by recursive mining until all items are lower than the
support threshold. In Ref. [21], a modified PrefixSpan (M-PrefixSpan) is proposed for min-
ing frequent alarm patterns. The relevant definitions of M_PrefixSpan are as follows:

Item: Each alarm label in the alarm flood sequence database. For example, the alarm
label “PI251.PVLO” in Table 1.

Item frequency (marked as ()ξ •): The total number of alarm sequences in , which
contains at least one alarm label.

Support threshold (marked as minSup): The minimum frequency of an item to be
considered a candidate as a frequent item.

Prefix and suffix:Consider three alarm sequences 𝛼 𝑆 ，𝑆 , … , 𝑆 , 𝛽 𝑆 ，𝑆 , … , 𝑆 and 𝛾 𝑆 ，𝑆 , … , 𝑆 with 𝑞 𝑝 .Alarm sequence 𝛽 is called a pre ix of 𝛼 if 𝑆 𝑆 ,∀𝑖 𝑞. The remaining sequence 𝛾 is called a suf ix of 𝛼 with regards to pre-ix 𝛽.
Projection database: The collection of suffixes for a given prefix in the alarm sequence

database.
For instance, Table 2 shows several alarm sequences from a steam generator in a die-

sel hydrogenation plant. By setting 2minSup = , the steps of mining frequent alarm pat-
terns with PrefixSpan are as follows:

Table 2. Alarm sequences for a steam generator in a diesel hydrogenation plant.

Alarm Sequence #1 Alarm Sequence #2 Alarm Sequence #3

Time Alarm La-
bel Priority Time Alarm La-

bel Priority Time Alarm La-
bel Priority

2021/6/15 5:01:40 FI702.PVHI 2 2021/6/22 17:43:17 FI702.PVHI 2 2021/6/24 13:23:12 FI702.PVHI 2
2021/6/15 5:02:08 LI701.PVHI 3 2021/6/22 17:43:50 LI701.PVHI 3 2021/6/24 13:23:48 LI701.PVHI 3
2021/6/15 5:02:38 TI702.PVLO 3 2021/6/22 17:44:14 TI701.PVLO 3 2021/6/24 13:24:12 TI701.PVLO 3
2021/6/15 5:02:45 TI701.PVLO 3 2021/6/22 17:44:22 TI702.PVLO 3 2021/6/24 13:24:26 TI702.PVLO 3

Figure 1. Alarm for tag “TI203.PVHI”. (a) Alarm “TI203.PVHI” before removing chattering alarms.
(b) Alarm “TI203.PVHI” after removing chattering alarms.

2.3. Mining Frequent Alarm Patterns with PrefixSpan

PrefixSpan is a variant of the FreeSpan algorithm, which continuously generates and
mines smaller projection databases by recursive mining until all items are lower than the

Processes 2023, 11, 1169 5 of 16

support threshold. In Ref. [21], a modified PrefixSpan (M-PrefixSpan) is proposed for
mining frequent alarm patterns. The relevant definitions of M_PrefixSpan are as follows:

Item: Each alarm label in the alarm flood sequence database. For example, the alarm
label “PI251.PVLO” in Table 1.

Item frequency (marked as ξ(•)): The total number of alarm sequences in D, which
contains at least one alarm label.

Support threshold (marked as Supmin): The minimum frequency of an item to be
considered a candidate as a frequent item.

Prefix and suffix: Consider three alarm sequences α =
{

S1
m, S2

m, . . . , Sp
m

}
, β ={

S1
n, S2

n, . . . , Sq
n

}
and γ =

{
Sq+1

m , Sq+2
m , . . . , Sp

m

}
with q ≤ p.Alarm sequence β is called a

prefix of α if Si
n = Si

m, ∀i ≤ q. The remaining sequence γ is called a suffix of α with regards
to prefix β.

Projection database: The collection of suffixes for a given prefix in the alarm sequence
database.

For instance, Table 2 shows several alarm sequences from a steam generator in a diesel
hydrogenation plant. By setting Supmin = 2, the steps of mining frequent alarm patterns
with PrefixSpan are as follows:

Table 2. Alarm sequences for a steam generator in a diesel hydrogenation plant.

Alarm Sequence #1 Alarm Sequence #2 Alarm Sequence #3
Time Alarm Label Priority Time Alarm Label Priority Time Alarm Label Priority

2021/6/15 5:01:40 FI702.PVHI 2 2021/6/22 17:43:17 FI702.PVHI 2 2021/6/24 13:23:12 FI702.PVHI 2
2021/6/15 5:02:08 LI701.PVHI 3 2021/6/22 17:43:50 LI701.PVHI 3 2021/6/24 13:23:48 LI701.PVHI 3
2021/6/15 5:02:38 TI702.PVLO 3 2021/6/22 17:44:14 TI701.PVLO 3 2021/6/24 13:24:12 TI701.PVLO 3
2021/6/15 5:02:45 TI701.PVLO 3 2021/6/22 17:44:22 TI702.PVLO 3 2021/6/24 13:24:26 TI702.PVLO 3
2021/6/15 5:02:52 TI311.PVLO 3 2021/6/22 17:44:31 TI407.PVLO 3 2021/6/24 13:24:34 TI407.PVLO 3
2021/6/15 5:03:08 TI407.PVLO 3 2021/6/22 17:44:50 PI125.PVHI 3 2021/6/24 13:24:42 PI125.PVHI 3

Step 1: Scan the database and determine the frequency of each item (alarm) and its fre-
quency: “FI702.PVHI-3”, “LI701.PVHI-3”, “TI702.PVLO-3”, “TI701.PVLO-3”, “TI311.PVLO-
2”, “TI407.PVLO-3”, and “PI125.PVHI-1”. Since “PI125.PVHI” does not meet the support
threshold Supmin, “PI125.PVHI” is excluded. Here, we use “FI702.PVHI” as an example of
a prefix to expand its frequency pattern.

Step 2: Create a projection database with each prefix.
Step 3: Determine the frequencies of all suffixes associated with the prefix. The

frequency of the suffix with regard to the prefix “FI702.PVHI” is shown in Table 3.

Table 3. Frequencies of suffixes with regard to the prefix “FI702.PVHI”.

Item Frequency of the Suffix

LI701.PVHI 3
TI702.PVLO 3
TI701.PVLO 3
TI311.PVLO 2
TI407.PVLO 3

Step 4: The frequencies of all items in Table 3 are greater than the support thresh-
old Supmin. The new prefixes are updated to {FI702.PVHI, LI701.PVHI}, FI702.PVHI,
TI701.PVLO}, {FI702.PVHI, TI311.PVLO}, and {FI702.PVHI, TI407.PVLO}.

Step 5: Repeat Step 2 to Step 5 until the support values of all items in the projection
database are lower than the threshold Supmin.

Step 6: Remove alarm patterns that are subsets of other patterns. Finally, the fre-
quent alarm patterns are {FI702.PVHI, LI701.PVHI, TI702.PVLO, TI407.PVLO}, {FI702.PVHI,

Processes 2023, 11, 1169 6 of 16

LI701.PVHI, TI701.PVLO, TI407.PVLO}, {FI702.PVHI, LI701.PVHI, TI701.PVLO, TI702.PVLO},
and {FI702.PVHI, LI701.PVHI, TI311.PVLO, TI407.PVLO}.

2.4. Problem Description

In summary, the major aim of this paper is to extract frequent alarm patterns from the
A&E logs of industrial alarm systems. As shown in Figure 2, after removing chattering
alarms, the calculation for extracting alarm patterns from the alarm database D is conducted
in the following three steps:

1. The priority-based pre-matching strategy is used to cluster similar alarm flood se-
quences so as to reduce the computational overhead.

2. Closed frequent alarm patterns are discovered to extract typical alarm patterns.
3. The alarm pattern is compressed to reduce the impact of cumbersome frequent alarm

patterns.

Processes 2023, 11, x FOR PEER REVIEW 7 of 18

Figure 2. Framework of the proposed method for mining alarm patterns.

3. Proposed Methods
In this section, we detail the three steps of CAPM_PrefixSpan for mining frequent

alarm patterns, including the priority-based pre-matching strategy, the discovery of
closed frequent alarm patterns, and the alarm pattern compression method.

3.1. The Priority-Based Pre-Matching Strategy
The pre-matching strategy utilizes the similarity index of alarm sequences or alarm

attributes of alarm sequences to cluster similar alarm sequences and thus exclude irrele-
vant ones. As one of the important attributes of alarms, the alarm priority indicates the
importance of the alarm. As shown in Table 4, there are usually three or four alarm prior-
ities established in industrial alarm systems. According to ISA 18.2, for alarm systems with
three levels of alarm priorities, the recommended percentage for each alarm priority from
“Low” to “Emergency” should be 80%, 15%, and 5%, respectively. High-priority alarms
have a smaller percentage but indicate severe abnormal conditions; on the contrary, lower
priorities are typically used to configure most of the less severe alarms. Thus, it is reason-
able to cluster alarm flood sequences based on the co-occurrence of alarms with higher
priorities.

Table 4. Typical alarm priorities of industrial alarm systems.

Type 1 Type 2 Type 3 Corresponding Prior-
ity

Emergency Emergency Critical 1
High High Warning 2

Medium Low Advisory 3
Low 4

In order to cluster similar alarm flood sequences in a given database, a binary matrix
S is established with each element calculated by Equation (3):

(,)
,

1,

0, otherwise
i jX X th

i j

s
S

μ≥=

 (3)

Figure 2. Framework of the proposed method for mining alarm patterns.

The specific calculations and processes for the above steps are described in the follow-
ing section.

3. Proposed Methods

In this section, we detail the three steps of CAPM_PrefixSpan for mining frequent
alarm patterns, including the priority-based pre-matching strategy, the discovery of closed
frequent alarm patterns, and the alarm pattern compression method.

3.1. The Priority-Based Pre-Matching Strategy

The pre-matching strategy utilizes the similarity index of alarm sequences or alarm
attributes of alarm sequences to cluster similar alarm sequences and thus exclude irrel-
evant ones. As one of the important attributes of alarms, the alarm priority indicates
the importance of the alarm. As shown in Table 4, there are usually three or four alarm
priorities established in industrial alarm systems. According to ISA 18.2, for alarm systems
with three levels of alarm priorities, the recommended percentage for each alarm priority
from “Low” to “Emergency” should be 80%, 15%, and 5%, respectively. High-priority
alarms have a smaller percentage but indicate severe abnormal conditions; on the contrary,
lower priorities are typically used to configure most of the less severe alarms. Thus, it is
reasonable to cluster alarm flood sequences based on the co-occurrence of alarms with
higher priorities.

Processes 2023, 11, 1169 7 of 16

Table 4. Typical alarm priorities of industrial alarm systems.

Type 1 Type 2 Type 3 Corresponding
Priority

Emergency Emergency Critical 1
High High Warning 2

Medium Low Advisory 3
Low 4

In order to cluster similar alarm flood sequences in a given database, a binary matrix
S is established with each element calculated by Equation (3):

Si,j =

{
1, s(Xi ,Xj)

≥ µth

0, otherwise
(3)

where Si,j represents the element in the i-th row and j-th column of matrix S, s(Xi ,Xj)
is the

similarity index between the i-th and j-th alarm sequences, and µth is the threshold for
matching similar sequences.

s(Xi ,Xj)
=

m
∑

n=1
ψ(Cn

i,j) Ci,j 6= ∅

0 Ci,j = ∅
(4)

where Ci,j =
{

ex
∣∣x = (ex, tx, px) ∈ Xi ∩ Xj

}
is the collection of all identical alarm labels

between the i-th and j-th alarm sequences, m represents the length of set Ci,j, and Cn
i,j

denotes the n-th alarm label in set Ci,j. The function ψ(•) calculates the score based on the
priority levels and can be expressed as Equation (5):

ψ(ex)= 2 + 1.5(pmax − px) (5)

where px is the priority level of alarm x, pmax is the maximum priority level, and β is a
positive constant. Therefore, ψ(ex) increases as the alarm priority increases. For instance,
given an alarm system with three priority levels, “High”, “Medium”, and “Low”, the scores
ψ(ex) are 2, 3.5, and 5, respectively.

Once the binary matrix S is finished, alarm flood sequences with Si,j = 1 are clustered

to segment the alarm flood database D, denoted as < =
{
R1,R2, . . . ,R|R|

}
.

In each group Rk =
{

Xk
1, Xk

2, . . . , Xk
|Rk |

}
, k ∈ [1, |R|], any two sequences Xk

a and Xk
b

share at least one instance of identical alarm labels. As a result, the algorithm avoids
distractions from irrelevant alarm sequences. In the next step, frequent alarm patterns are
discovered recursively for each group of alarm sequences

{
R1,R2, . . . ,R|R|

}
by incorpo-

rating temporal information.

3.2. Discovering Closed Frequent Alarm Patterns

Definition 1: Alarm pattern P is a frequent alarm pattern if the frequency ξ(P) ≥ Supmin. Notice
that if P is frequent, all subsets of Pare also frequent.

Definition 2: Alarm pattern P is a closed alarm pattern iff:

(1) Alarm pattern P is frequent.

(2) There is no frequent pattern P′, such that P ⊂ P′ and ξ(P) = ξ(P′).

The PrefixSpan algorithm builds the projection database by counting the frequency
of each suffix corresponding to the prefix. In order to reduce interference from the order

Processes 2023, 11, 1169 8 of 16

ambiguity problem in alarm flood sequences, we propose an improved projection database
construction method by introducing the temporal information of the alarms.

Without loss of generality, for the arbitrary prefix v with the frequency m, assume that
the suffix v has n alarm sequences containing the alarm tag exi (m ≥ n). Let t(xi)

v denote

the time information of alarm xi corresponding to prefix v, where t(xi)
v is an n× 1 column

vector. Let t(v) denote the final time of m alarm sequences with respect to prefix v. The time
distance matrix ∆Tv,xi can be calculated by the following equation.

∆Tv,xi = [∆t]n×m = t(xi)
v · I1×m − In×1 · t(v)T (6)

where I1×m and I1×n are the unit vector. The time span Ts = [tb, t f] is used to truncate the
time distance matrix ∆Tv,xi , where tb is a negative constant, so as to reduce the impact of
sequence order ambiguity; t f is the time window and a positive constant (usually set to
100 s), which is used to determine the causal relationship between the alarms. To truncate
the time distance matrix ∆Tv,xi by the time span Ts according to Equation (7), we have
∇Tv,xi = [∇t]n×m:

∇tij =

{
1, if ∆tij ∈ Ts
0, otherwise

(7)

where ∆tij is an element in the time distance matrix. ∆tij ∈ (0, t f] indicates that alarm xi
occurs after prefix v within t f seconds; ∆tij ∈ [tb, 0] indicates that alarm xi occurs within ts
seconds before prefix v. Therefore, the frequency of the alarm tag can be calculated as:

ζ(exi → v) = rank(∇Tv,xi) (8)

where ζ(exi → v) represents the total frequency of alarm tag exi following prefix v. Then,
alarm tag exi and corresponding frequency ζ(exi → v) will be recorded in the projection
database B

w.r.t v
. The Pseudocode for constructing the projection database is summarized in

Algorithm 1.
If ζ(exi → v) ≥ Supmin , alarm tag exi is integrated with the current corresponding

prefix v to construct a new prefix, v′. Further, the average time interval between exi and v can
be calculated as τ(exi → v) and will also be recorded. The prefix extension is recursively
performed until no more frequent alarm items can be found in the projection database. The
major codes for building the projection database are summarized in Algorithm 1. Finally, a
filter is adopted to remove all the subsets of frequent alarm patterns, rendering the final
output of the CAPM_PrefixSpan a closed frequent alarm pattern. The main codes for
discovering closed frequent alarm patterns are shown in Algorithm 2.

Algorithm 1 Major codes for building projection database

1 Input: v, Ts, Rk
2 Output: B

w.r.t v
3 X=The set of all alarm tags in the suffix with regard to prefix v
4 For each alarm tag exi in X.
5 tv= timestamp of v in Rk

6 t(xi)
v = timestamp of xi in Rk

7 Calculate time distance matrix ∆Tv,xi according to Equation (6)
8 ∇Tv,xi = Truncate ∆Tv,xi by time span Ts according to Equation (7)
9 rank(∇Tv,xi) = the frequency of alarm tag exi with respect to v in Rk
10 Add {exi :rank(∇Tv,xi)} into B

w.r.t v
11 End For

Processes 2023, 11, 1169 9 of 16

Algorithm 2 Major codes for discovering closed frequent alarm patterns in <

1 Input: <, Ts, Supmin
2 Output: P
3 For each Rk in <
4 Scan all alarm items in Rk.
5 Remove items with frequencies lower than Supmin.
6 vcurrent = the remaining alarm items in Rk.
7
8 For Each vi in vcurrent
9 B

w.r.t vi
= Projection database calculated by Algorithm 1

10 For each alarm tag exn in B
w.r.t vi

11 If ζ(exn → vi) ≥ Supmin
12 Update vnext by Assembling exn with vi
13 End If
14 End For
15 End For
16 While vcurrent 6= vnext
17 vcurrent = vnext
18 For each vm in vcurrent
19 B

w.r.t vm
= projection database with respect to vm by Algorithm 1

20 For each exn in B
w.r.t vm

21 If ζ(exn → vm) ≥ Supmin
22 Update vnext by Assembling exn with vm
23 End If
24 End For
25 End For
26 End While
27 Pk = remove all subsets of vcurrent

28 P =
{

P1, P2 . . . P|R|
}

29 End For

3.3. Frequent Alarm Pattern Compression Method

Even if similar alarm flood sequences are clustered by the pre-matching strategy
proposed in Section 3.1, the closed frequent alarm patterns extracted from Rk are still
numerous and redundant. Therefore, the extracted frequent alarm patterns should be
further compressed into representative alarm patterns.

For the given closed alarm pattern Pk extracted from Rk, a binary matrix Zk is created
by calculating the pairwise similarity index between patterns Pk

a and Pk
b :

Zk
a,b =

{
1, if ϕ(P k

a, Pk
b

)
≥ γ

0, otherwise
(9)

where γ is the threshold for pattern compression, and Zk
a,b denotes an element of the i-the

column and j-th row in matrix Z. The function ϕ(P k
a, Pk

b

)
calculates the similarity index

between Pk
a and Pk

b . Since the closed alarm patterns extracted from the same collection Rk

usually share identical alarm tags, the similarity index ϕ(P k
a, Pk

b

)
is calculated based on

the optimal alignment of the optimal segment pairs of two alarm patterns. As a result, the
Smith–Waterman algorithm is utilized to calculate ϕ(P k

a, Pk
b

)
as Equation (10) shows.

ϕ
(

Pk
a , Pk

b

)
=

max
1≤i≤p≤|pk

i |,1≤j≤q≤|pk
j |

(
φ
(

Pa
i:m, Pb

j:n

)
, 0
)

min
(
φ
(

Pk
a , Pk

a
)
, φ
(

Pk
b , Pk

b
)) (10)

Processes 2023, 11, 1169 10 of 16

where φ
(

Pa
i:m, Pb

j:n

)
is the similarity index of the segmented pair

(
Pa

i:m, Pb
j:n

)
. In order to

find the best local alignment between Pk
a and Pk

b , the SW algorithm recursively calculates
an index matrix H:

Hp+1,q+1 = max
{

Hp,q + ρ
(

xa
p, xb

q

)
, Hp,q+1 + δ, Hp+1,q + δ, 0

}
(11)

where Hp+1,q+1 is an element of the matrix, and δ is the gap penalty. For any p and q,

H1,q = 0 and Hp,1 = 0 since one or both of the segments of Pk
a and Pk

b are empty. ρ
(

xa
p, xb

q

)
is the similarity score function, as Equation (12) shows:

ρ
(

xa
p, xb

q

)
=

{
1, if exa

p = exb
q

−0.6, if exa
p 6= exb

q

(12)

Based on Equation (11), matrix H and the similarity index ϕ(P k
a, Pk

b

)
can be worked

out. Following this, by calculating all alarm patterns in Pk, the matrix Zk can be obtained.
By clustering the alarm patterns with Zk = 1, similar closed alarm pattern collections can
be recognized for further compression. These collections can be expressed as:

Nk =
{

Ck
1, Ck

2, ..., Ck
|Nk |

}
(13)

where Ck
m =

{
Pk

1 , Pk
2 , . . . , Pk

|Ck
m |

}
, m ∈ [0, |Nk|] is the clustered alarm pattern, and

k = 1, 2, . . . , |R| is the index of the extracted alarm pattern in P.
Finally, the compressed alarm pattern Yk

m is distilled from each Ck
m in according to

Equation (14):
Yk

m = Pk
1 ⊕ Pk

2 ⊕ . . .⊕ Pk
|Ck

m |
(14)

where the operator ⊕ indicates the combination of elements in the clustered frequent alarm
patterns based on their corresponding average timestamp. The Pseudocode of the frequent
alarm pattern compression method is shown in Algorithm 3.

Algorithm 3 Major codes for compressing alarm patterns in P

1 Input: P, γ

2 Output: Y
3 For each Pk in P
4 For i = 1: Length(Pk)
5 For j = 1: Length(Pk)
6 Calculate the index matrix H between Pk

i and Pk
j based on Equation (11)

7 Calculate similarity index ϕ(P k
i , Pk

j

)
8 If ϕ(P k

i , Pk
j

)
≥ γ

9 Zk
i,j = 1

10 Else:
11 Zk

i,j = 0
12 End If
13 End For
14 End For
15 Cluster the closed frequent alarm patterns with Zk = 1
16 Nk = the collection of the clustered alarm patterns
17 Yk

m = compress the alarm patterns in each Ck
m ∈ Nk according to Equation (14)

18 Add Yk
m into Y

19 End For

Processes 2023, 11, 1169 11 of 16

3.4. Implementation Procedure

The major steps for mining frequent alarm patterns by CAPM_PrefixSpan are summa-
rized in Algorithm 4, where D is the alarm flood sequences, [Tw µth γ Ts Supmin] are the
predefined parameters, and Y denotes the set of compressed closed alarm patterns. The
detailed steps are as follows:

Step 1. Remove chattering alarms by using the time window Tw.
Step 2. Calculate the similarity score of all alarm flood sequences in D based on

Equation (4) and cluster similar alarm sequences according to Equation (3).
Step 3. Extract closed frequent alarm patterns recursively from the set

< =
{
R1,R2, . . . ,R|R|

}
according to Algorithm 2.

Step 4. Compress the extracted alarm patterns for each collection in P =
{

P1, P2 . . . P|R|
}

according to Algorithm 3.

Algorithm 4 Mining closed frequent alarm patterns in D

1 Input: D, Tw, µth, Ts, γ, Supmin
2 Output: Y
3 Remove chattering alarms in D.

4 Divide D into < =
{
R1,R2, . . . ,R|R|

}
by using the priority-based pre-matching strategy.

5 For each pattern in R in <
6 Mining closed frequent alarm patterns P according to Algorithm 2
7 End for
8 Compress the alarm patterns P into Y according to Algorithm 3

In the CAPM_PrefixSpan algorithm, several important parameters are involved, in-
cluding the time window Tw, pre-matching threshold µth, time span Ts, compress threshold
γ, and minimum support threshold Supmin. For the easier implementation of the algorithm
for practitioners, the following guidelines can be considered when selecting the parameters
of CAPM_PrefixSpan.

1. In the data processing step, Tw specifies the minimum time interval between two
identical alarm tags. By default, Tw = 100s to filter chattering alarms is widely used
in practice [20].

2. In the pre-matching stage, µth specifies the minimum similarity score for the pre-
matching strategy. For the alarm system with three levels of priorities, µth = 5× 2 = 10
is set because ISA 18.2 considers an alarm flood to be over when the alarm rate is
less than five alarms in 10 min; in addition, ISA 18.2 suggests that 80 percent of the
alarms should be designated “Low” priority alarms, which have a similarity score of
2 according to Equation (5).

3. In the closed frequent alarm pattern discovery stage, Supmin specifies the minimum
occurrence frequency for considering an alarm to be a frequent alarm in the ana-
lyzed alarm floods. By default, Supmin = 2 is set to capture all repeated alarms.
Ts specifies the tolerance of order ambiguity in the alarm flood sequences. By de-
fault, Ts = [−10, 100] is set as the tolerance of short-term order ambiguity to discover
casualty alarms.

4. In the alarm pattern compression stage, γ specifies the threshold for merging similar
alarm patterns. The value of γ can be determined based on user requirements.

4. Industrial Case Study

In this section, we intend to evaluate the performance of the proposed CAPM_
PrefixSpan algorithm in terms of computational cost and mining alarm patterns based on a
real industrial alarm sequence database.

Processes 2023, 11, 1169 12 of 16

4.1. Data Acquisition and Comparative Algorithms

The experimental data were collected from the A&E log of a typical diesel hydrogena-
tion unit at a refinery in Xingjiang Province, China. This facility had a total of 2203 con-
figured alarms for monitoring 503 process variables. The alarm data were extracted from
April 2020 to August 2020, and the chattering alarms were removed by setting Tw = 100s.
Finally, 161 alarm flood sequences were extracted according to the definition in ISA 18.2.
Details of the extracted alarm flood sequences are shown in Table 5.

Table 5. Details of the extracted alarm flood sequence database.

Attribute Description

Number of alarm flood sequences 161
Average length of sequences 27.2

Length of the longest sequence 41
Length of the shortest sequence length 10

Average duration of alarm flood 863.4 (s)
Longest duration of alarm flood 1357 (s)
Shortest duration of alarm flood 392 (s)

In order to evaluate the effectiveness of the CAPM_PrefixSpan algorithm, M_
PrefixSpan [20] and causality PrefixSpan (C_PrefixSpan) [21] were compared on the same
alarm flood database. In Ref. [21], the C_PrefixSpan algorithm utilized the time span t f
to capture causality alarms associated with prefixes. The parameter settings are shown in
Table 6.

Table 6. Detailed parameters of each algorithm.

Algorithm Supmin tf µth tb γ

M_PrefixSpan 2 - - - -
C_PrefixSpan 2 100 - - -

CAPM_PrefixSpan 2 100 10 −10 0.6

4.2. Comparison of the Overall Results

Firstly, a total of 29 collections of clustered alarm flood sequences were obtained by
using the pre-matching strategy proposed in Section 3.1. Next, frequent alarm pattern
mining and alarm pattern compression were recursively performed for each clustered alarm
sequence. As a result, we obtained a total of 121 closed alarm patterns and 33 compressed
alarm patterns, which are shown in Figure 3.

By dividing the alarm flood database into 29 alarm collections by using the proposed
pre-matching strategy, the search space of the algorithm is effectively reduced. In clustered
alarm sequence #1 in Figure 2, this collection contains a total of 32 different alarm tags,
which means that the maximum number of alarm tags to be considered is reduced to 32.
Without the pre-matching process, all 2203 alarm tags in the DCS of the diesel hydrogena-
tion unit would be examined, resulting in a large number of redundant alarm patterns and
potentially unaffordable computational overhead.

To further illustrate the importance of the pre-matching method, Figure 4 presents the
running times of the different algorithms for different database sizes. Overall, the larger
the database, the longer it takes to extract the closed alarm patterns. This is because, as the
database contains more alarm tags and alarm sequences, more alarm tags satisfy Supmin
in each iteration, making the size of the projected database also increase dramatically. By
clustering alarm flood sequences based on the alarm priority and co-occurrence, the number
of alarms to be examined is reduced significantly, which greatly reduces the computation
time of the algorithm. Furthermore, this also allows CAPM_PrefixSpan to extract alarm
patterns based on a low support threshold.

Processes 2023, 11, 1169 13 of 16

Processes 2023, 11, x FOR PEER REVIEW 14 of 18

Length of the shortest sequence length 10
Average duration of alarm flood 863.4 (s)
Longest duration of alarm flood 1357 (s)
Shortest duration of alarm flood 392 (s)

In order to evaluate the effectiveness of the CAPM_PrefixSpan algorithm, M_Pre-
fixSpan [20] and causality PrefixSpan (C_PrefixSpan) [21] were compared on the same
alarm flood database. In Ref. [21], the C_PrefixSpan algorithm utilized the time span ft
to capture causality alarms associated with prefixes. The parameter settings are shown in
Table 6.

Table 6. Detailed parameters of each algorithm.

Algorithm minSup ft thμ bt γ

M_PrefixSpan 2 - - - -
C_PrefixSpan 2 100 - - -
CAPM_Pre-
fixSpan 2 100 10 −10 0.6

4.2. Comparison of the Overall Results
Firstly, a total of 29 collections of clustered alarm flood sequences were obtained by

using the pre-matching strategy proposed in Section 3.1. Next, frequent alarm pattern
mining and alarm pattern compression were recursively performed for each clustered
alarm sequence. As a result, we obtained a total of 121 closed alarm patterns and 33 com-
pressed alarm patterns, which are shown in Figure 3.

Figure 3. Numbers of clustered alarm flood sequences, closed alarm patterns, and compressed alarm
patterns from 29 alarm flood groups.

By dividing the alarm flood database into 29 alarm collections by using the proposed
pre-matching strategy, the search space of the algorithm is effectively reduced. In clus-
tered alarm sequence #1 in Figure 2, this collection contains a total of 32 different alarm

Figure 3. Numbers of clustered alarm flood sequences, closed alarm patterns, and compressed alarm
patterns from 29 alarm flood groups.

Processes 2023, 11, x FOR PEER REVIEW 15 of 18

tags, which means that the maximum number of alarm tags to be considered is reduced
to 32. Without the pre-matching process, all 2203 alarm tags in the DCS of the diesel hy-
drogenation unit would be examined, resulting in a large number of redundant alarm
patterns and potentially unaffordable computational overhead.

To further illustrate the importance of the pre-matching method, Figure 4 presents
the running times of the different algorithms for different database sizes. Overall, the
larger the database, the longer it takes to extract the closed alarm patterns. This is because,
as the database contains more alarm tags and alarm sequences, more alarm tags satisfy

minSup in each iteration, making the size of the projected database also increase dramati-
cally. By clustering alarm flood sequences based on the alarm priority and co-occurrence,
the number of alarms to be examined is reduced significantly, which greatly reduces the
computation time of the algorithm. Furthermore, this also allows CAPM_PrefixSpan to
extract alarm patterns based on a low support threshold.

Figure 4. Runtime with different sizes of alarm flood sequence databases.

Table 7 shows the number of alarm patterns extracted by the compared algorithms
with the full database. CAPM_PrefixSpan extracted the most closed alarm patterns; this is
because C_PrefixSpan and M_PrefixSpan are affected by alarm sequence order ambiguity,
resulting in the incomplete extraction of alarm patterns. CAPM_PrefixSpan tolerates
short-term sequence timing order ambiguity by introducing alarm time information and
the time span sT . In addition, it is clear that the alarm pattern compression method sig-
nificantly reduced pattern redundancy. For example, in alarm flood collection #2, five
closed alarm patterns were obtained, and these alarm patterns differ only partially in their
alarm tags and are highly similar. The alarm pattern compression method distills similar
alarm patterns into a compressed alarm pattern, which reduces pattern redundancy and
in turn helps users to focus on the patterns they are interested in.

Table 7. The number of extracted alarm patterns.

 M_PrefixSpan C_PrefixSpan CAPM_PrefixSpan
Number of closed

alarm patterns
106 86 121

Number of com-
pressed alarm pat-

terns
/ / 33

Figure 4. Runtime with different sizes of alarm flood sequence databases.

Table 7 shows the number of alarm patterns extracted by the compared algorithms
with the full database. CAPM_PrefixSpan extracted the most closed alarm patterns; this is
because C_PrefixSpan and M_PrefixSpan are affected by alarm sequence order ambiguity,
resulting in the incomplete extraction of alarm patterns. CAPM_PrefixSpan tolerates short-
term sequence timing order ambiguity by introducing alarm time information and the time
span Ts. In addition, it is clear that the alarm pattern compression method significantly
reduced pattern redundancy. For example, in alarm flood collection #2, five closed alarm
patterns were obtained, and these alarm patterns differ only partially in their alarm tags and
are highly similar. The alarm pattern compression method distills similar alarm patterns

Processes 2023, 11, 1169 14 of 16

into a compressed alarm pattern, which reduces pattern redundancy and in turn helps
users to focus on the patterns they are interested in.

Table 7. The number of extracted alarm patterns.

M_PrefixSpan C_PrefixSpan CAPM_PrefixSpan

Number of closed alarm patterns 106 86 121
Number of compressed alarm

patterns / / 33

4.3. Comparison of Extracted Alarm Patterns

For further demonstration, we compared the alarm patterns extracted by the three
algorithms from the same collection of alarm sequences.

The alarm sequence comes from the feedstock feed system in the diesel hydrogenation
plant. This system feeds the feedstock from the atmospheric depressurization unit to the
buffer tank, outputs the feedstock through the booster pump, and removes the fine particles
through the filter; it then heats up and feeds it to the buffer tank to provide a stable feed to
the downstream unit, which is an important part of the system in the diesel hydrogenation
plant.

After the pre-matching process, alarm sequence collection #1 was obtained with
a total of four alarm flood sequences. The alarm patterns extracted by M_PrefixSpan,
C_PrefixSpan, and CAPM_PrefixSpan from alarm collection #1 are shown in Tables 8–10,
respectively. “PDI203” is the filter’s differential pressure indicator; “PI106” is the buffer
tank pressure indicator; “FI102” and “FI101” are the tank diesel flow indicators; “FI401” is
the filter outlet flow indicator; and “FI402” is the atmospheric diesel flow indicator.

Table 8. Alarm patterns extracted by M_PrefixSpan.

Index Closed Alarm Patterns Frequency

1 PDI203.PVHI, PI106.PVHI, FI102.PVHI, FI101.PVHI 2
2 PDI203.PVHI, FI101.PVHI, FI102.PVHI 2
3 PDI203.PVHI, PI106.PVHI, FI402.PVHI 2
4 PDI203.PVHI, FI401.PVLO, FI402.PVHI 2
5 PDI203.PVHI, FI401.PVLO, PI106.PVHI, F101.PVHI 2

Table 9. Alarm patterns extracted by C_PrefixSpan.

Index Closed Alarm Patterns Frequency

1 PDI203.PVHI, PI106.PVHI, FI102.PVHI 2
2 PDI203.PVHI, FI101.PVHI, FI102.PVHI 2
3 PDI203.PVHI, PI106.PVHI, FI402.PVHI 2
4 PDI203.PVHI, FI401.PVLO, PI106.PVHI 2

Table 10. Alarm patterns extracted by CAPM_PrefixSpan.

Index Closed Alarm Patterns Frequency

1 PDI203.PVHI, PI106.PVHI, FI102.PVHI, FI101.PVHI 3
2 PDI203.PVHI, PI106.PVHI, FI101.PVHI, FI102.PVHI 3

3 PDI203.PVHI, FI401.PVLO, FI402.PVHI, PI106.PVHI,
FI102.PVHI 2

The process values in collection #1 are highly correlated with each other, but the alarm
sequences do not have a fixed order, and the same alarm pattern can produce multiple
forms. For example, pattern #1 and pattern #2 in Table 10 are different forms of the same
alarm pattern. M_PrefixSpan calculates each frequency separately based on each particular

Processes 2023, 11, 1169 15 of 16

form, resulting in a reduced frequency for some pattern forms and causing the frequency
of that alarm pattern form to not meet the minimum support threshold Supmin. As shown
in Table 8, it can be found that alarm pattern #1 to pattern #3 are subsets of pattern #1 in
Table 10, which indicates that the M_PrefixSpan algorithm fails to extract the complete
alarm patterns. Meanwhile, the C_PrefixSpan algorithm also fails to completely extract
pattern #1 in Table 8 due to the limited time window and the influence of order ambiguity
in alarm flood sequences.

In contrast, the alarm patterns extracted by CAPM_PrefixSpan contained all the
patterns in Tables 8 and 9. This indicates that tolerating short-term order ambiguities by
setting the time span can effectively improve the mining performance of the alarm patterns.

It is clear to see that pattern #1 and pattern #2 in Table 10 are different forms of the
same mode. Therefore, the closed alarm patterns need to be further processed to prevent
outputting redundant patterns. Table 11 shows the compressed alarm patterns obtained by
CAPM_PrefixSpan. The compressed alarm patterns greatly reduce the pattern redundancy.
Further, based on an evaluation by experts with process knowledge, the alarm pattern
“PDI203.PVHI” is triggered by high differential pressure due to the backflushing of the
oil circuit. After 6.3 s, “FI401.PVLO” was triggered. In addition, the high flow of diesel
fuel “FI405.PVHI”, “FI102.PVHI”, and “FI101.PVHI” caused the high pressure of the tank
and triggered alarm “PI106.PVHI” within 12.4 s. Therefore, this alarm mode makes sense
because it effectively exposed the fault propagation path in the plant.

Table 11. Compressed alarm patterns obtained by CAPM_PrefixSpan.

Compressed Alarm Patterns Extracted by CAPM_PrefixSpan
Pattern Index Alarm Tag Time (s)

1

PDI203.PVHI 0
FI401.PVLO 6.3
FI402.PVHI 7.2
PI106.PVHI 12.4
FI102.PVHI 16.8
FI101.PVHI 17.1

5. Conclusions

In the process industry, alarm sequences caused by the same propagation path share
different forms because of noise and the randomness of detection delays. In order to
facilitate alarm pattern extraction as well as improve alarm systems, an alarm pattern
extraction method is proposed, which consists of three main stages: the pre-matching
strategy based on alarm priority, the improved PrefixSpan algorithm, and the alarm pattern
compression method. To verify the effectiveness of the proposed method, an industrial
case study was carried out with alarm data from a complex facility of a refinery. The
experimental results show that CAPM_PrefixSpan improves the efficiency of alarm pattern
recognition by introducing alarm timestamp information and tolerating short-term order
ambiguity. In addition, the effectiveness of the compressed alarm patterns was verified by
an expert evaluation.

However, alarm pattern mining based on historical data can only extract alarm patterns
from abnormalities that have occurred. Furthermore, as the proposed algorithm is based
on the number of occurrences of alarm tags in a particular DCS system, the extracted alarm
patterns are still not universal across the same processes at different facilities. Therefore,
future work will focus on investigating generalized alarm pattern mining methods.

Author Contributions: Conceptualization, S.Y., T.Z. and G.Z.; methodology, Y.Z.; validation, K.W.,
T.Z. and G.Z.; writing—original draft preparation, Y.T. and G.Z.; writing—review and editing, L.C.;
funding acquisition, Y.T. All authors have read and agreed to the published version of the manuscript.

Funding: This work is supported by the Postgraduate Research & Practice Innovation Program of
Jiangsu Province under Grant No. SJCX22_0420.

Processes 2023, 11, 1169 16 of 16

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Wang, Z.; Hu, W.; Cao, W.; Wu, M. Detection of Sequential Alarm Patterns in Complex Industrial Facilities Using ClaSP and

Top-K Algorithms. In Proceedings of the 40th Chinese Control Conference, Shanghai, China, 26 July 2021.
2. Zhu, Q.X.; Jin, C.; He, Y.L. Pattern Mining of Alarm Flood Sequences Using an Improved PrefixSpan Algorithm with Tolerance to

Short-Term Order Ambiguity. Ind. Eng. Chem. Res. 2021, 60, 4375–4384. [CrossRef]
3. EEMUA. Alarm System: A Guide to Design, Management, and Procurement, 2nd ed.; The Engineering Equipment and Materials

Users Association (EEMUA): London, UK, 2007.
4. Dai, Y.Y.; Qiu, Y. Risk Matrix and Event Tree Based Half Quantitative Alarm Priority Analysis for Alarm Systems. Proc. Intg. Opti.

Sust. 2019, 3, 159–166. [CrossRef]
5. Wang, J.; Zhao, Y.; Bi, Z. Criteria and algorithms for online and offline detections of industrial alarm floods. IEEE Trans. Control.

Syst. Technol. 2017, 5, 1722–1731. [CrossRef]
6. Laberge, J.; Bullemer, P.; Tolsma, M.; Reising, D. Addressing alarm flood situations in the process industries through alarm

summary display design and alarm response strategy. Int. J. Ind. Ergon. 2014, 44, 395–406. [CrossRef]
7. Tulsyan, A.; Alrowaie, F.; Gopaluni, B. Design and assessment of delay timer alarm systems for nonlinear chemical processes.

AIChE J. 2017, 64, 77–90. [CrossRef]
8. Wang, Z.; Bai, X.; Wang, J.; Yang, Z. Indexing and Designing Deadbands for Industrial Alarm Signals. IEEE Trans. Ind. Electron.

2019, 66, 8093–8103. [CrossRef]
9. Cheng, Y.; Izadi, I.; Chen, T. Optimal Alarm Signal Processing: Filter Design and Performance Analysis. IEEE Trans. Autom. Sci.

Eng. 2013, 10, 446–451. [CrossRef]
10. Cheng, Y.; Izadi, I.; Chen, T. Pattern matching of alarm flood sequences by a modified Smith–Waterman algorithm. Chem. Eng.

Res. Des. 2013, 91, 1085–1094. [CrossRef]
11. Lai, S.; Yang, F.; Chen, T. Accelerated multiple alarm flood sequence alignment for abnormality pattern mining. J. Process Control.

2019, 82, 44–57. [CrossRef]
12. Charbonnier, S.; Bouchair, N.; Gayet, P. Fault template extraction to assist operators during industrial alarm floods. Eng. Appl.

Artif. Intell. 2016, 50, 32–44. [CrossRef]
13. Charbonnier, S.; Bouchair, N.; Gayet, P. A weighted dissimilarity index to isolate faults during alarm floods. Control. Eng. Pract.

2015, 45, 110–122. [CrossRef]
14. Beebe, D.; Ferrer, S.; Logerot, D. The connection of peak alarm rates to plant incidents and what you can do to minimize. Process

Saf. Prog. 2012, 32, 72–77. [CrossRef]
15. Wang, J.; Chen, T. An online method for detection and reduction of chattering alarms due to oscillation. Comput. Chem. Eng. 2013,

54, 140–150. [CrossRef]
16. Hu, W.; Chen, T.; Shah, S.L. Detection of Frequent Alarm Patterns in Industrial Alarm Floods Using Itemset Mining Methods.

IEEE Trans. Ind. Electron. 2018, 65, 7290–7300. [CrossRef]
17. Hu, W.; Chen, T.; Shah, S.L. Discovering Association Rules of Mode-Dependent Alarms from Alarm and Event Logs. IEEE Trans.

Control. Syst. Technol. 2018, 26, 971–983. [CrossRef]
18. Zhou, B.; Hu, W.; Chen, T. Pattern Extraction from Industrial Alarm Flood Sequences by a Modified CloFAST Algorithm. IEEE

Trans. Ind. Inform. 2022, 18, 288–296. [CrossRef]
19. Pei, J.; Han, J.; Mortazavi, A.B.; Wang, J.; Pinto, H.; Chen, Q.; Dayal, U.; Hsu, M.C. Mining sequential patterns by pattern-growth:

The prefixspan approach. IEEE Trans. Knowl. Data Eng. 2004, 16, 1424–1440.
20. Niyazmand, T.; Izadi, I. Pattern mining in alarm flood sequences using a modified PrefixSpan algorithm. ISA Trans. 2019, 90,

287–293. [CrossRef] [PubMed]
21. Wang, J.; Jia, R.; Zhou, J.; Zhou, M. Mining sequential alarm pattern based on the incremental causality prefixSpan algorithm.

IEEE Trans. Artif. Intell. 2021, 0, 1–12. [CrossRef]
22. Alinezhad, H.S.; Shang, J.; Chen, T. Early Classification of Industrial Alarm Floods Based on Semisupervised Learning. IEEE

Trans. Ind. Inform. 2022, 18, 1845–1853. [CrossRef]
23. Cheng, L.; Yuan, T.; Gu, S.; Zheng, Y.; Yang, X. Pattern matching of alarm flood sequences by a modified Smith-Waterman

Algorithm. In Proceedings of the 2021 3rd International Conference on Electronics and Communication, Network and Computer
Technology, Xiamen, China, 3 December 2021.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1021/acs.iecr.0c05618
http://doi.org/10.1007/s41660-017-0026-x
http://doi.org/10.1109/TCST.2017.2723578
http://doi.org/10.1016/j.ergon.2013.11.008
http://doi.org/10.1002/aic.15860
http://doi.org/10.1109/TIE.2018.2885718
http://doi.org/10.1109/TASE.2012.2233472
http://doi.org/10.1016/j.cherd.2012.11.001
http://doi.org/10.1016/j.jprocont.2019.06.004
http://doi.org/10.1016/j.engappai.2015.12.007
http://doi.org/10.1016/j.conengprac.2015.09.004
http://doi.org/10.1002/prs.11539
http://doi.org/10.1016/j.compchemeng.2013.03.025
http://doi.org/10.1109/TIE.2018.2795573
http://doi.org/10.1109/TCST.2017.2695169
http://doi.org/10.1109/TII.2021.3071361
http://doi.org/10.1016/j.isatra.2018.12.050
http://www.ncbi.nlm.nih.gov/pubmed/30755312
http://doi.org/10.1109/TAI.2022.3156052
http://doi.org/10.1109/TII.2021.3081417

	Introduction
	Preliminaries and Problem Description
	Alarms and Alarm Floods
	Chattering Alarms
	Mining Frequent Alarm Patterns with PrefixSpan
	Problem Description

	Proposed Methods
	The Priority-Based Pre-Matching Strategy
	Discovering Closed Frequent Alarm Patterns
	Frequent Alarm Pattern Compression Method
	Implementation Procedure

	Industrial Case Study
	Data Acquisition and Comparative Algorithms
	Comparison of the Overall Results
	Comparison of Extracted Alarm Patterns

	Conclusions
	References

