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Abstract: Time, cost, and quality are critical factors that impact the production of intelligent manufac-
turing enterprises. Achieving optimal values of production parameters is a complex problem known
as an NP-hard problem, involving balancing various constraints. To address this issue, a workflow
multi-objective optimization algorithm, based on the dynamic virtual staged pruning (DVSP) strategy,
was proposed to optimize multi-stage nonlinear production processes. The algorithm establishes
a virtual workflow model based on the actual production process and proposes a pruning strat-
egy to eliminate the indirect constraint relationship between tasks. A virtual hierarchical strategy
is employed to divide the task node set, and the Pareto optimal service set is calculated through
backward iteration in stages. The optimal path is generated through forward scheduling, and the
global optimal solution is obtained. The algorithm was compared with the minimum critical path
algorithm (MCP) and the partial critical path budget balance scheduling algorithm (PCP-B2). The
experimental results demonstrated that the DVSP can improve product quality, reduce production
costs, and ensure production stability while completing production tasks. This paper used a pruning
strategy and virtual workflow modeling methods to achieve dynamic multi-objective optimization
scheduling for nonlinear feedback manufacturing processes.

Keywords: optimize scheduling; pruning strategy; workflow; virtual node; production quality

1. Introduction

In recent years, the intelligent manufacturing industry has experienced rapid develop-
ment, and as a result, production quality and efficiency have become the primary focus of
many enterprises. Workflow scheduling technology, as an advanced technology in intelli-
gent manufacturing, is widely adopted for enterprise manufacturing equipment scheduling
and scientific production. It plays a positive role in improving the quality of production
processes and reducing production costs. With the rapid progress of intelligent manufactur-
ing technology, the production mode of enterprises is moving towards complexity, synergy,
and refinement. Traditional scheduling methods for single linear workflows mainly opti-
mize a single linear objective. However, this approach does not significantly improve the
efficiency and production quality of more complex production activities. Therefore, finding
the optimal solution of multi-objective comprehensive performance by weighing multiple
objectives is considered an NP-hard problem [1].

As production technology continues to progress and innovate, an increasing number of
workflow technologies are being applied to actual production processes. This trend further
promotes the continuous advancement of workflow scheduling technology [2]. Time and
cost optimization are the primary optimization objectives of scheduling algorithms, and
these objectives have been widely studied. For instance, particle swarm optimization,
genetic algorithms (GAS), and simulated annealing algorithms have been proposed and
applied to solve scheduling problems [3–8].

With the intensification of competition among manufacturers, the production qual-
ification rate of products has become increasingly important. Improving the production
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qualification rate and reducing production energy consumption while meeting the delivery
deadline is currently an essential direction for multi-objective optimization. Global opti-
mization and local search techniques are used to optimize the maximum completion time
and workload of machines in flexible job shop scheduling [9].

In recent studies, Abed-Alguni et al. proposed a cloud workflow scheduling method
that combines particle swarm optimization (PSO) and idle slot-aware rules to improve
resource utilization and save workflow execution costs under deadline constraints by
making full use of idle time slots on virtual machines. Wang et al. [10] developed a multi-
objective optimization algorithm (MDSS-MOGA-DE) based on a multi-region partitioning
sampling strategy to consider flexible job-shop scheduling for preventive maintenance
activities and transportation processes. The algorithm combines a genetic algorithm and a
differential evolution algorithm to further enhance the algorithm’s search capability.

Ma et al. [11] proposed a workflow scheduling algorithm based on the Infrastructure
as a Service (IaaS) model, which takes into account task deadlines and execution costs,
and aims to minimize the execution cost of tasks while satisfying workflow constraints.
Duan et al. [12] proposed a heuristic multi-objective non-dominated genetic sorting algo-
rithm (NSGA-II) based on real number coding and considering batch transfer rules for
dynamic scheduling of flexible job shop under mechanical fault constraints, which can
effectively reduce energy consumption and maximum completion time. Dai et al. [13] estab-
lished a multi-objective optimization model aimed at minimizing energy consumption and
maximizing completion time for flexible job-shop scheduling problems with transportation
constraints. They then proposed an improved genetic algorithm to solve this problem,
which provides a decision basis for energy-saving scheduling in flexible manufacturing
systems. Zhou et al. [14] proposed a new algorithm, namely budget-deadline constrained
workflow scheduling (BDCWS), that considers multiple quality of service (QoS) constraints,
such as cost and time constraints, for workflow scheduling.

Ndamlabin Mboula et al. [15] proposed a new efficient workflow scheduling algorithm
that optimizes the cost–time tradeoff by selecting the most suitable range of VM instance
types for workflow execution. This avoids overpriced and underpriced options, which
can lead to budget and deadline violations. The cost optimization of workflow applica-
tions described with time constraints is a challenging problem [16]. Petchrompo et al. [17]
proposed a pruning method to simplify the Pareto front solution set, determine the most
promising solutions, and reduce computational steps required for obtaining the Pareto opti-
mal set in experiments. Arabnejad V et al. [18] introduced a heuristic scheduling algorithm,
budget deadline aware scheduling (BDAS), which solves eScience workflow scheduling
problems under budget and deadline constraints in an infrastructure as a service (IaaS)
cloud. To address the difficult problem of complex linear production process optimization
scheduling, Luo et al. [19,20] proposed a three-layer virtual workflow optimization algo-
rithm (three-OVMG) that uses a segmentation strategy to calculate the optimal value of
production quality within the segment and ultimately achieve the global optimal solution.
Wu et al. [21] proposed a budget allocation mechanism based on the part of the critical
path (PCP) to balance the critical path of the budget and solve the optimization problem
of workflow execution time under the condition of a limited budget. The proposed mech-
anism is based on the sequential or parallel structure properties of the critical path [22].
Zhen et al. [23] proposed a virtual workflow modeling method for parallel manufacturing
processes with multiple varieties of jobs, and based on this, introduced a multi-objective
virtual workflow scheduling algorithm (MOVWSA) to address the optimization problem
of nonlinear production processes with feedback.

As enterprises’ production processes become more complex, collaborative, and refined,
there is an increasing need for targeted algorithms to optimize these processes [24,25]. The
current workflow modeling method can only handle a single process route and cannot
achieve optimization for nonlinear multi-objective manufacturing. To address this, a phased
virtual workflow modeling method based on pruning strategy has been proposed for multi-
process and multi-service nonlinear manufacturing processes. This method establishes
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virtual workflows by using task nodes and corresponding services and generates virtual
node sets by using virtual task nodes with feedback processes. Virtual workflow diagrams
are constructed based on the partial order relationship between nodes, resulting in a virtual
workflow model. To facilitate optimal scheduling of actual production processes with
multiple processes and services, a multi-objective optimization algorithm based on the
dynamic virtual phased pruning strategy has been proposed using the improved virtual
workflow model. This algorithm first identifies the indirect constraint relationship between
processes through the pruning strategy based on the task scheduling sequence and startup
time and eliminates the indirect path between nodes. Then, the directed acyclic graph
(DAG) is simplified. Next, the hierarchical relationship of tasks is determined using the
virtual hierarchical strategy, and the set of task nodes is divided into stages. The nodes are
then processed hierarchically according to the sequential scheduling relationship of nodes
between stages. Finally, the optimal service node set is calculated by backward iteration
in stages, and the optimal solution set is obtained. The optimal task path is generated by
forward scheduling.

By constructing virtual nodes, this method can solve the nonlinear process optimiza-
tion problem, which combines workflow and virtual technology to achieve a multi-objective
dynamic balance problem with nonlinear characteristics. This approach can help enter-
prises achieve an effective balance of production quality, time, and cost, change their
production mode, and improve production efficiency and quality.

2. Problem Description

The enterprise’s production equipment is interconnected via corresponding sequences,
with each task represented as a node, resulting in a workflow that can be represented by a
DAG. The optimal service is selected based on QoS criteria, and the optimal path under
constraints is determined.

Related Definitions

Definition 1. Task node set (P). The set of all task nodes, defined as P = {p1, p2. . . pm} (m = 1,
2. . . m). For the task node p, it is called the precursor task pre(i) before, the successor task suc(i) after
it, and the successor task set map = {p1, p2. . . pn}.

Definition 2. Service node set (S). S is a set of services in a production process, defined as S = {s1,
s2. . . sn} (n = 1, 2. . . n). Each service parameter is represented as sij = {tij,qij,cij}, where tij represents
the production time parameter of task pi, qij represents the production quality after completing task
node pi, and cij represents the cost parameter of task pi. The cumulative production quality of the
current task node is represented as fq(pi,ti), and the cumulative production cost of the current node
is represented as fc(pi,ti).

Definition 3. Restriction constraint R = (Rt, Rq, Rc). Rt is the latest end time of the entire
production process, Rq denotes the minimum production quality to be achieved, and Rc denotes the
cost constraint of the entire production.

Definition 4. Task node degree of freedom (HSY(i)). HSY(i) represents the time interval during
which the task node i can be selected. It is defined as HSY(i) = [Tns(i),Tne(i)], where Tns(i) is the
earliest possible start time of task node i, and Tns(i) is the latest possible start time. The degree of
freedom of the task node HSY(i) can be calculated using Formulas (1) and (2). Tns(suc) represents
the earliest start time of the immediate successor node of task node pi, and Tne(suc) represents the
latest start time of the immediate predecessor node of task node pi.

Tns(i) =


0 (i = 1)

max
{

Tns(i− 1) + min
(
tij
)}

[Tns(i− 1) ∈ Tns(pre), (1 ≤ p ≤ k)]
(1)
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Tne(i) =


Vt (i = n)

min
{

Tne(i− 1)−min
(
tij
)}

[Tne(i− 1) ∈ Tne(suc), (1 ≤ m ≤ l)]
(2)

Definition 5. Task execution domain (HSY′(i)). Suppose the set N′ ∈ N (N = P∪P′), then the
node interval represented by the minimum period Vtmin and maximum period Vtmax determined
within a certain range in the set N’ is taken as the candidate domain of the node set, expressed as
HSY′(i) = [Vtmin,Vtmax]. Vtmin and Vtmax can be calculated by Equation (3).{

Vtmin = max
{

Tns
(

pj
)
− Tns(pi)

}
Vtmax = min

{
Tne
(

pj
)
− Tne(pi)

} (3)

During the execution of the workflow model, it is assumed that a corresponding service
set saj = {taj,qaj} exists in task set pk ∈ P. The selected service must satisfy certain constraints
to ensure the algorithm can proceed and the production quality can be effectively improved
within the given deadline. The constraints for the virtual workflow model are expressed in
the following formula: 

Entiret = min ∑
i∈v

∑
Pa∈P

Gia · taj ≤ Vt

Entireq = max ∏
Pa∈P

Gia · qaj

Gia ∈ {0, 1}, ∀i ∈ v, 0 ≤ a ≤ n

S.T
m
∑

a=1
Gia = 1, Sa = {S1, S2, . . . Sm}

(4)

In Equation (4), Gia is a Boolean function that ensures task Pi can only select one service
from the service set Sa. When Gia = 1, it means that service Sa in the corresponding service
set Sa executed during task Pi is selected. When Gia = 0, it means that this service is not
selected. Entiret indicates the total completion time of the task, which should be less than
the time constraint Vt. Entiret also represents the total quality parameter of the workflow.
Service set Saj = {taj, qaj, caj} exists in service set Pi ∈ P.

Definition 6. Virtual node (s′). The set of nodes consisting of several nodes, which are virtual from
node si to node sj, is denoted as s′[i,j]. S′ denotes the set of virtual nodes consisting of several virtual
nodes s′. pi

′ = p[i,j] denotes a virtual node after recombination from adjacent task nodes pi and pj,
and the virtual node set P′ denotes the set consisting of all virtual migrated nodes pi

′.

Definition 7. Virtual workflow (XN(M,S,P′,T′,E, In, Out)). XN is the virtual workflow name;
M is the initial workflow before the virtual node of the manufacturing process; S is the quality
check site set in the virtual reconstruction process according to the actual production needs, which
can be expressed as S = (S1, S2. . . Sn), where n is the code of the quality check site; E denotes the
partial order relationship between tasks and task pi can be executed only when all its parent tasks
are completed; P′ is the abstract set of several nodes for virtual reconfiguration into virtual task
nodes, denoted as P′ = (p1

′, p2
′. . . pi

′. . . pn
′); In and Out are the sets of the number of in and out

degrees of each node in the workflow XN, respectively. Productive virtual node workflow model
XNG = (S, XN, XNT) is an optimal scheduling model consisting of a collection of service nodes, a
virtual workflow XN, and a virtual workflow graph XNT (XN, E).

3. Workflow Multi-Objective Optimization Algorithm with a Virtual Phased
Pruning Strategy
3.1. Pruning Strategy

In a DAG, each node represents a task, and related nodes have a scheduling sequence.
The task that must be executed before a particular task is called its pre(i), while the task that
must be executed after it is called its suc(i). The execution of a subsequent task can only
begin after the completion of the previous task. For example, consider a task set P = {p1,
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p2, p3}, where the following constraints exist: Task p3 must be executed after task p2 is
completed, and task p2 must be executed after task p1 is completed. The constraints on
task p3 and task p1 are indirect constraints, and the path connecting them is known as an
indirect path, denoted as <p3,p1>.

Definition 8. Indirect path <pi, pj>. In a DAG, an indirect path refers to a directed path between
a node and its successor node that is not directly connected to the set of nodes. The constraint
relationship between the preceding and following tasks that constitute an indirect path is called an
indirect constraint relationship.

Basic Idea of the Pruning Strategy

The pruning strategy aims to reduce the complexity of the directed acyclic graph by
eliminating indirect paths between nodes. Initially, each task node in the graph corresponds
to several leading nodes. By examining the leading task set map = {p1, p2. . . pn}, the Outpi
value of each node in the initial order is determined. If the Outpi value is less than or equal
to 1, it indicates that the current node has a unique leading node and there is no indirect
path, so it is not further processed and is output to the ordered set Sout. However, if the
Outpi value is greater than 1, it means that there are multiple leading nodes for the current
task, and the leading set of each task in the leading node set is traversed to identify identical
tasks. When multiple tasks are found to be identical, the indirect path between the current
task and the identical task is recorded as <pi,pm>, and the indirect path is deleted. The
current task pi is then added to the ordered set, and the process is repeated until there are
no more indirect paths for the task node.

The diagram in Figure 1 represents the production process of a manufacturing plant,
with each node representing a specific production process. The indirect constraint rela-
tionships between the nodes are derived from the pruning strategy analysis. The red
dashed lines in Figure 1 show the indirect paths between nodes with indirect constraint
relationships, namely the paths between nodes p1 and p3, between nodes p4 and p6, and
between nodes p6 and p9. After applying the pruning strategy, the pruned DAG diagram
in Figure 2 is obtained. The related algorithmic process is shown in Algorithm 1.
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Algorithm 1: Pruning strategy.
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3.2. Virtual Layering Strategy

Definition 9. Wrong Route (N-route). In the virtual node domain XNT construction, node pi
is reconstructed with other neighboring nodes pj to form a virtual node, but there are multiple
out-degrees of node pi, i.e., the out-degree of node pi is not unique, and the rest of the out-degrees
can be reconstructed with the remaining node pn, so the path composed of nodes pi and pn is called
Wrong Route, denoted by N-route, where pi, pj, and pn are not the same node. As shown in Figure 3,
p[10–11] and p[12–13] are wrong route.
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Definition 10. The optimal path (Rm). It consists of virtual nodes and related service parameters,
and is defined as Rm (P′, N), where P’ is the set of virtual task nodes that compose the optimal path.
N is the cumulative sum of various parameters of virtual task nodes in the virtualization process
of Rm.

The virtual strategy is a pruning-based approach that abstracts certain tasks in a DAG
as virtual nodes to address optimization problems in nonlinear production processes. By
virtualizing, this technique combines workflow and virtualization methods to tackle multi-
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objective dynamic equilibrium problems that exhibit nonlinear characteristics. The related
algorithmic process is shown in Algorithm 2.

Algorithm 2: Virtual layering strategy.
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16.    If the set P′ is not empty, the loop is judged again, otherwise mark and output; 
17.   Foreach the set of virtual task nodes P′ and all virtual nodes pi′ = p[i,j] in the  

  model XN. Record the processing domain HSY′(i) of task nodes into model 
  M, construct a virtual workflow graph XNT with all paths from virtual nodes 
  pi to pj (i ≠ j) as directed edges. 

18.    End 
19. Return the virtual workflow graph XNT; 
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3.3. Algorithm Description

The multi-objective workflow optimization algorithm with a virtual hierarchical prun-
ing strategy uses a pruning strategy to handle with nonlinear production processes. It
applies a dynamic pruning strategy to eliminate the indirect constraint relationship between
tasks and divides task nodes into stages using a virtual hierarchical strategy. It generates
virtual nodes and workflow graphs using virtualization technology, calculates the set of
stage optimal service nodes by inverse reversion, and seeks the global optimal solution by
algorithmic integration.

Assuming an initial workflow model with n tasks, the production quality of node pi at
time ti is denoted as fq(pi,ti), and the cumulative cost of completing task pi is denoted as
fc(pi,ti). The quality and cost parameters for selecting a service at node pi are represented by
qij and cij, respectively. The execution time candidate domain of task pi is given by HXY(pi),
subject to constraints on cumulative time and cost. The cumulative production parameters
of task node pi (1 ≤ i ≤ n) are calculated using Equation (5).

fq(pi, ti) = max
{

qij
}

, i = n, 0 < j ≤ n
t ∈ HXY(pi), ti + ti−1 ≤ Rt

fc(pi, ti) = max
{

cij
}

, i = n, 0 < j ≤ n
t ∈ HXY(pi), ci + ci−1 ≤ Rc

(5)

Equation (6) is obtained by reverse deriving from Equation (5). In this equation, f′q(pi,ti)
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and f′c(pi,ci) represent the maximum achievable quality and minimum cumulative cost
within the given time constraint HXY(pi).

f ′q(pi−1, ti−1) = max
{

fq(pi, ti + ti−1) ∗ qi−l j

}
t ∈ HXY(pi)qi ∗ qi−1 > Rq

f ′c(pi−1, ti−1) = min
{

fc(pi, ti + ti−1) + ci−l j

}
t ∈ HXY(pi)ci + ci−1 ≤ Rc

(6)

3.4. Algorithm Steps

The algorithm is analyzed by reverse iteration to output the optimal scheduling path
of the workflow model. The scheduling algorithm process for virtual layer pruning strategy
can be found in Algorithm 3.

Algorithm 3: DVSP
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3.4. Algorithm Steps 
The algorithm is analyzed by reverse iteration to output the optimal scheduling path 

of the workflow model. The scheduling algorithm process for virtual layer pruning strat-
egy can be found in Algorithm 3. 

Algorithm 3: DVSP 
INPUT: Virtual hierarchical pruned workflow graph with restriction constraints 
    R = (Rt,Rq,Rc) and virtual workflow graph XNT. 
OUTPUT: Set of production parameters, optimal path Rm. 
1. For (int I = P.length; i ≤ 0; i--) do 
2.  For(int j = i−1; j--)Scan(XNT) do 
3.  Using Equations (1) and (2) to derive fq(p0,t0) and fq(pi,ci) for task node P0 

 within its nodal degrees of freedom HSY(p0); 
4. End 
5. For (int i = P.length; i ≥ 1; i--) do 
6.     If (pi in N-route) then   
7.    Iteratively calculate and label the fq(pi,ti) and fq(pi,ci)of the node pi  

   within the task execution domain HSY′(i) using inverse reduction; 
8.    Else  
9.    If the node is not in the wrong path, calculate fq(pi,ti) and fq(pi,ci) for node 

   pi in its task execution domain HSY′(i) by inverse reductive iteration. 
10.    End 
11. End 
12. The set of task nodes P that satisfy the constraints R = (Rt,Rq,Rc) is found by 

forward scheduling; 
13. Return Optimization path Rm of the production process; 

 

4. Experimental Validation of DVSP 
4. Experimental Validation of DVSP

The giant motor of an intelligent equipment manufacturer is a combination of three
semi-finished products, and each semi-finished product contains several production steps
and inspection points, and there are several service sets for each step. The initial production
process is shown in Figure 4, and there is a constraint relationship between task nodes
in the actual production process. The workflow after pruning hierarchical processing is
shown in Figure 5.

Due to the limitation of space, the following processes are mainly analyzed and studied
for the convenience of analysis, and nodes p1 to p9 are selected as the objects of study, and
the set of service nodes is shown in Table 1.
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Table 1. Collection of production nodes and service time, quality, and cost parameters.

Task/pi Type Services/si Task/pi Type Services/si

p1 A (2, 0.98, 0.3) p13 B (3, 0.94, 0.3) (6, 0.97, 0.4)

p2 A (2, 0.94, 0.6) (4, 0.95, 1.2)
(7, 0.96, 1.4) p14 B (2, 0.93, 0.2) (5, 0.95, 0.5)

(6, 0.96, 0.6)

p3 A (2, 0.95, 0.6) (5, 0.96, 1.5) p15 B (2, 0.95, 0.3) (4, 0.96, 0.3)

p4 A (4, 0.95, 1.2) p16 B (3, 0.93, 0.2)

p5 A (2, 0.93, 0.4) (5, 0.95, 1.5)
(6, 0.96, 1.8) p17 B (2, 0.94, 0.2) (4, 0.95, 0.3)

(7, 0.96, 0.2)

p6 A (3, 0.95, 0.9) p18 B (2, 0.95, 0.3) (5, 0.96, 0.4)

p7 A (2, 0.92, 0.6) (7, 0.95, 1.4) p19 C (2, 0.92, 0.3) (7, 0.95, 0.7)

p8 A (3, 0.91, 0.9) (4, 0.93, 1.2)
(6, 0.94, 1.8) p20 C (2, 0.93, 0.2) (5, 0.95, 0.5)

(6, 0.96, 0.6)

p9 A (2, 0.92, 0.4) (4, 0.95, 1.2) p21 C (3, 0.95, 0.3)

p10 B (1, 0.91, 0.3) (3, 0.94, 0.5) p22 C (1, 0.91, 0.1) (2, 0.94, 0.2)

p11 B (2, 0.98, 0.6) (3, 0.94, 0.8) p23 C (2, 0.98, 0.2) (3, 0.94, 0.3)

p12 B (1, 0.91, 0.1) (2, 0.94, 0.2) p24 C (2, 0.98, 0.1)

Workflow Scheduling Process

In order to verify the optimization performance of DVSP, several production processes
are selected to analyze the performance of the algorithm. The following experimental
environment is adopted: the programming language is Java, the operating system selected
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for the server is Windows 10, the CPU selected for the PC is 3.8 GHz, and the memory size
is 16 G.

In the initial stage of the algorithm, the task nodes in the production process are
pruned to generate a pruned DAG. Then, the related service parameter sets of the task
nodes are added to the workflow graph. Next, the virtual hierarchy strategy is used to
virtualize the nodes, and a virtual workflow and virtual workflow model are created. The
specific process is shown in Figure 6.
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the threshold value of monitoring station S1 is set to βq1 = 0.910 and βc1 = 8.0, while the 
threshold value of monitoring station S2 is set to βq1 = 0.935 and βc1 = 5.0. Thus, if the pro-
duction parameters ƒq(pi,ti) of the material flow produced by p6 and p9 do not meet the 
requirements at the detection station, they need to be sent back to the front production 
node for processing again. It has been statistically determined that reworking increases 
production time by 4 days and cost by 2.0. According to actual production regulations, 
the constraint vector R is: Rt = 33 days, Rq = 0.920, and Rc = 13.0 (Unit/ten thousand yuan). 

Interval A has a time constraint of 18 days. After analyzing the interval nodes and 
determining that they meet the requirements of virtual reconstruction and there are no N-
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The production process shown in Figure 2 is divided into two optimization intervals,
interval A and B, based on the characteristics of the production process. The production
time constraint for interval A is set as Rt1 = 18 days, while the time constraint for interval B
is set as Rt2 = 15 days.

To ensure the overall production quality, the relevant production parameters are
monitored in each interval through detection stations. Based on actual production data,
the threshold value of monitoring station S1 is set to βq1 = 0.910 and βc1 = 8.0, while the
threshold value of monitoring station S2 is set to βq1 = 0.935 and βc1 = 5.0. Thus, if the
production parameters ƒq(pi,ti) of the material flow produced by p6 and p9 do not meet
the requirements at the detection station, they need to be sent back to the front production
node for processing again. It has been statistically determined that reworking increases
production time by 4 days and cost by 2.0. According to actual production regulations, the
constraint vector R is: Rt = 33 days, Rq = 0.920, and Rc = 13.0 (Unit/ten thousand yuan).

Interval A has a time constraint of 18 days. After analyzing the interval nodes and de-
termining that they meet the requirements of virtual reconstruction and there are no N-route,
the execution domain of interval nodes is as follows: HSY(p1) = [0,7], HSY(p[2–3]) = [2,9],
HSY(p[4–5]) = [2,9], HSY (p6) = [8,15]. The calculation process is shown in Table 2.
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Table 2. DVSP algorithm interval A optimization steps.

Task/pi Quality/fq(pi,t) and Cost/fc(pi,t)

ƒq(p6,15) = max{0.95} = 0.95; ƒc = 0.9;

P6

ƒq(p6,14) = max{0.95} = 0.95; ƒc = 0.9;
. . .

ƒq(p6,8) = max{0.95} = 0.95; ƒc = 0.9;

ƒq(p[4–5],9) = max{ƒq(p6,15)0.93 × 0.95} = 0.839; ƒc = 2.5;
ƒq(p[4–5],8) = max{ƒq(p6,14)0.93 × 0.95} = 0.839; ƒc = 2.5;

. . .
P[4–5] ƒq(p[4–5],4) = max{ƒq(p6,10)0.96 × 0.95), 0.839, 0.857} = 0.866; ƒc = 3.9;

ƒq(p[4–5],3) = max{ƒq(p6,9)0.96 × 0.95), 0.839, 0.857} = 0.866; ƒc = 3.9;
ƒq(p[4–5],2) = max{ƒq(p6,8)0.96 × 0.95), 0.857} = 0.866; ƒc = 3.9;

P[2–3]

ƒq(p[2–3],9) = max{ƒq(p6,15)0.95 × 0.95} = 0.857; ƒc = 2.7;
ƒq(p[2–3],6) = max{ƒq(p6,12)0.95 × 0.96} = 0.866; ƒc = 2.7;

. . .
ƒq(p[2–3],4) = max{ƒq(p6,10)0.95 × 0.96, 0.85} = 0.866; ƒc = 2.9;

ƒq(p[2–3],3) = max{ƒq(p6,9)0.96 × 0.97, 0.866, 0.857} = 0.876; ƒc = 3.8;
ƒq(p[2–3],2) = max{ƒq(p6,8)0.96 × 0.97, 0.866 } = 0.876; ƒc = 3.8;

P1

ƒq(p1,7) = max{ƒq(p[2–5],9) 0.98} = 0.705; ƒc = 5.5;
ƒq(p1,6) = max{ƒq(p[2–5],8) 0.98} = 0.705; ƒc = 5.5;
ƒq(p1,5) = max{ƒq(p[2–5],7) 0.98} = 0.705; ƒc = 5.5;
ƒq(p1,4) = max{ƒq(p[2–5],6) 0.98} = 0.727; ƒc = 6.8;

. . .
ƒq(p1,2) = max{ƒq(p[2–5],4) 0.98} = 0.736; ƒc = 7.1;
ƒq(p1,1) = max{ƒq(p[2–5],3) 0.98} = 0.744; ƒc = 8.0;
ƒq(p1,0) = max{ƒq(p[2–5],2) 0.98} = 0.744; ƒc = 8.0;

According to the above process, the set of service time used by node p1 in inter-
val A through reverse iterative calculation is {15,16,15,15,14,11,11}, and the set of service
quality is {0.744, 0.744, 0.736, 0.736, 0.727, 0.705, 0.705, 0.705}, service cost collection is
{8.0, 8.0, 7.1, 7.1, 6.8, 5.5, 5.5, 5.5}, in the range of A node after the p6 takes S1 testing
station detection, the beta βq1 = 0.910, beta βc1 = 8.0. Some paths were eliminated due to
exceeding the production time limit constraints, such as the path from ƒ(p1,0) to ƒ(p1,3).
After the rest of the path to the reprocessing: ƒq(p1,4) = 0.727 + 0.727 × (1−0.727) = 0.926,
ƒq(p1,5) = ƒq(p1,7) = 0.705 + 0.705 × (1−0.705) = 0.913. After comparing the second most
significant factors, it can be concluded that the production time of the ƒ(p1,4) path is shorter
and has the highest accumulated production quality. Hence, the current stage’s Pareto opti-
mal solution set is ƒq(p1,4) = 0.926, ƒt(p1,4) = 18 days, ƒc(p1,4) = 7.8. The optimal path through
forward scheduling interval A is as follows: RA = {S, p1(t11), p[2–5](t23,t32,t41,t52), p6(t61)}.

Interval B is the subsequent workflow to interval A, and the deadline for interval B is
15. After analysis, it was determined that interval B satisfies the requirements for virtual
reconstruction and there is no N-route. The execution domains for interval B’s nodes are
as follows: HSY(p7) = [0,8]. HSY(p8) = [2,10], HSY (p9) = [5,13]. The calculation process is
illustrated in Table 3.

Interval B is a subsequent workflow that follows interval A. The production times of
node p7 in interval B are {13,12,13,12,10,10,9,8,7}, and the corresponding production quality
collection is {0.778,0.761,0.761,0.761,0.753,0.753,0.737,0.730,0.713}. The production cost for
these nodes is {3.9,3.6,3.9,3.6,3.0,3.0,2.7,2.4,2.1}. When reaching node p9, the production pro-
cess needs to pass through S2 test station for quality inspection with parameters βq2 = 0.935
and βc2= 5.0. After inspection, all production paths require secondary processing, and
the revised production times become {16,17,16,17,14,14,13,12,11}. Among them, ƒ(p7,4)
to ƒ(p7,8) meet the requirements of production parameter monitoring stations, and their
production quality collection is {0.939,0.939,0.937,0.927,0.918}. The production cost for these
nodes is {4.9,4.6,4.9,4.6,4.0,4.0,3.7,3.4,3.1}.There is a group of the same quality in the service
set, and the solution set with the highest cumulative production quality is preferentially
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selected according to the Pareto optimal rule. Therefore, the Pareto optimal solution set
at the current stage is ƒq(p7,4) = 0.939, ƒt(p7,4) = 14 days, ƒc(p7,4) = 5.0. The optimal path
through forward analysis interval B is as follows: RB = {p7(t71), p8(t82), p9(t92), E}.

Table 3. DVSP method interval B optimization steps.

Task/pi Quality/fq(pi,t) & Cost/fc(pi,t)

ƒq(p9,13) = max{0.92} = 0.92; ƒc = 0.6;
ƒq(p9,12) = max{0.92} = 0.92; ƒc = 0.6;

P9
ƒq(p9,11) = max{0.92,0.95} = 0.95; ƒc = 1.2;

. . .
ƒq(p9,5) = max{0.92,0.95} = 0.95; ƒc = 1.2;

ƒq(p8,10) = max{ƒq(p9,13)0.91} = 0.837; ƒc = 1.5;
ƒq(p8,7) = max{ƒq(p9,11)0.93} = 0.884; ƒc = 1.8;

P8
ƒq(p8,6) = max{0.884,ƒq(p9,12)} = 0.884; ƒc = 2.1;

. . .
ƒq(p8,2) = max{ƒq(p9,8)0.94} = 0.893; ƒc = 4.0;

ƒq(p7,8) = max{ƒq(p8,10)0.92} = 0.770; ƒc = 2.1;
ƒq(p7,7) = max{ƒq(p8,9)0.92} = 0.788; ƒc = 2.4;
ƒq(p7,6) = max{ƒq(p8,8)0.92} = 0.796; ƒc = 2.7;

P7 . . .
ƒq(p7,2) = max{ƒq(p8,4)0.92,ƒq(p8,9)0.95} = 0.822; ƒc = 3.2;
ƒq(p7,1) = max{ƒq(p8,3)0.92ƒq(p8,8)0.95} = 0.822; ƒc = 4.5;
ƒq(p7,0) = max{ƒq(p8,2)0.92ƒq(p8,7)0.95} = 0.840; ƒc = 5.4;

According to the DVSP algorithm, intervals A and B are combined, and the global
Pareto optimal production parameter solution set is obtained using the inter-segment
accumulation method. Under the condition that the total time constraint is satisfied,
the global Pareto optimal solution set is Rm = RA + RB = {S, p1(t11), p[2–5](t23,t32,t41,t52),
p6(t61), p7(t71), p8(t82), p9(t92), E}. Final cumulative production quality: ƒq(S-E) = 0.869; the
cumulative time: ƒt(S-E) = 18 + 14 = 32 days; the cumulative cost of ƒc(S-E) = 7.8 + 5.0 = 12.8.

5. Comparative Performance Analysis of Algorithms DVSP
5.1. Algorithm Comparison

Figure 7 shows a comparison of the production quality achieved by the DVSP algo-
rithm, the MCP [2], and the PCP-B2 [21] as the number of task nodes increases. The results
demonstrate that the production quality achieved by the DVSP algorithm is consistently
higher than that of the other two algorithms, while also achieving shorter production
cycle times compared to the MCP and PCP-B2 algorithms. This indicates that the DVSP
algorithm is more effective in optimizing production parameters and achieving a better
balance between production quality and time in the experimental simulation environment.

To ensure a fair and relevant comparison experiment, all algorithms used the same
set of task and service sets. After the equivalent parameter calculation for different
algorithms, the optimization results of the MCP algorithm were obtained, as follows:
ƒq(p1,3) = 0.925, ƒt(p1,3) = 20 days, ƒc(p1,3) = 8.1 in interval A; the optimal set in inter-
val B is ƒq(p7,3) = 0.875, ƒt(p7,3) = 13 days, ƒc(p7,3) = 5.5. Therefore, the final production
time, cost, and quality after the whole process optimization are ƒq= 0.809, ƒt = 33 days,
ƒc= 13.6. Similarly, the optimization results of the PCP-B2 algorithm are as follows: in
the range of A ƒq(p1,2) = 0.912, ƒt(p1,2) = 17 days, ƒc(p1,2) = 9.0, interval B ƒq(p7,2) = 0.923,
ƒt(p7,2) = 16 days, ƒc(p7,2) = 5.3, The final production time, cost, and quality after opti-
mizing the whole process are ƒq = 0.841, ƒt = 33, and ƒc = 14.3, respectively. The same
calculation was carried out for the improved NSGA-II [12] algorithm, and the relevant data
pairs are shown in Table 4.
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Table 4. Comparison of the results of different algorithms.

Algorithm
Interval A Interval B Total Interval

ƒq ƒt ƒc ƒq ƒt ƒc ƒq ƒt ƒc

MCP 0.925 20 8.1 0.875 13 5.5 0.809 33 13.6
NSGA-II 0.882 17 8.2 0.910 15 4.7 0.802 32 12.9
PCP-B2 0.912 17 9.0 0.923 16 5.3 0.841 33 14.3
DVSP 0.926 18 7.8 0.939 14 5.0 0.869 32 12.8

The optimization of production quality and time can significantly affect the cost of
industrial production due to the large number of products involved. In comparison, it is
observed that the DVSP optimization algorithm proposed in this paper achieves a higher
final optimized production quality while satisfying the constraints, compared to traditional
single-objective algorithms. Additionally, the production cycle time is relatively shorter
compared to the MCP and PCP-B2 algorithms. Thus, in the experimental simulation
environment, the DVSP is more effective.

5.2. Analysis of Factors Affecting Algorithm Performance

After conducting research and analysis, it was determined that the primary factors
affecting the algorithm include the number of distinct inspection stations Sm, the different
times of constraint restrictions Rt, and the number of task nodes. Thus, this study focuses
on these three key factors to evaluate the optimization performance of the algorithm in
terms of production quality.

5.2.1. Effect of Different Numbers of Testing Stations on the Accuracy of the Algorithm

To investigate how the algorithm’s performance is affected by different numbers of
detection stations, various numbers were tested, and the results are presented in Figure 8.
The figure shows the impact of different numbers of detection stations on production
quality, and it is apparent that the production quality of PCP-B2 remains steady, but the
algorithm’s production time exceeds the specified delivery date, making it impractical. In
contrast, both MCP and the proposed DVSP algorithms exhibit similar results. When five
detection stations are used, the production quality of DVSP is 0.961, while that of MCP is
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0.929. Notably, the final results of the DVSP algorithm outperform those of the traditional
critical path algorithm, and the overall production quality improves by 2.6%.
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5.2.2. Effect of Different Limiting Constraints on Time Conditions of the Algorithm

To investigate the impact of the finite-time Rt on the DVSP algorithm, we selected
different finite times as variables and obtained the relevant Rt sets: {(1 + 10%), (1 + 15%),
(1 + 20%), (1 + 25%), (1 + 30%)}. Simultaneously, the study selected three different numbers
of tasks as research variables. Figure 9 illustrates the effect of different confinement
times on the accuracy of the DVSP algorithm. As depicted in the figure, the limited
time significantly affects the execution performance of DVSP. The accuracy rate increases as
the limit time increases, while still satisfying the production cost. The specific data changes
are demonstrated in Figure 9.
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5.2.3. Effect of Different Numbers of Nodes P on the Performance of the Algorithm

Considering the impact of varying numbers of nodes on different algorithms, the
experiment selected the number of nodes as a variable. Figure 10 illustrates how the
accuracy of the algorithm is affected by different node numbers. As shown in the figure, the
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DVSP, MCP, and PCP-B2 algorithms exhibit significant variations in execution performance
based on the number of nodes. As the number of nodes increases, the accuracy gradually
decreases while still satisfying the constraints. DVSP exhibits an overall higher optimization
effect than the other two algorithms, with an average increase of 2.5% in total production
quality. The trend of the influence is demonstrated in Figure 10.
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6. Conclusions

This paper proposes a multi-objective workflow optimization algorithm based on a
dynamic virtual stage pruning strategy to address the issue of mismatch between produc-
tion time and quality in complex multi-stage nonlinear production processes. By analyzing
the logical sequence relationship between tasks, a virtual workflow model is established
and a pruning strategy is proposed to eliminate the indirect constraint relationship be-
tween tasks. The virtual hierarchical strategy is used to divide the task node set, and
virtualization technology is utilized to generate virtual nodes and a virtual workflow
graph. The Pareto optimal service set is calculated through backward iteration in stages,
the optimal path is determined by forward scheduling, and the global optimal solution is
obtained through algorithm integration. Compared to several algorithms, DVSP is found
to effectively address the optimization problem of multi-stage nonlinear production pro-
cesses, achieve effective balance between production quality, time, and cost, and improve
enterprise production efficiency.

Currently, the DVSP algorithm has demonstrated significant optimization effects for
small-scale production scheduling. The next step could involve focusing on intensive
production and optimizing scheduling through multi-plant cooperation.
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