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Abstract: Differences in the synthesis methods can affect the performance of nanocomposite materials.
The synthesis methods of SiO2-based nanocomposite pour point depressants synthesized by chemical
hybrid are mostly in situ polymerization and chemical grafting. However, there are still some gaps
in the synthesis of nanocomposites using chemical grafting. In this paper, the amino-modified
Nano-SiO2 and octamethyl methacrylate-maleic anhydride copolymer was used to prepare PM18-g-
NSiO2 by an amidation reaction, and the product was compared with PM18/SiO2 prepared by the
solution blending method. The characterization results of FT-IR and SEM showed that the chemical
bond formed between PM18 and NSiO2 and PM18-g-NSiO2 showed a more regular morphology
structure. The results of rheological tests showed that the optimal concentration of PM18-g-NSiO2

and PM18/SiO2 is 300 mg·kg−1, but the decrease of PM18-g-NSiO2 is 19 ◦C, while the decrease of
PM18/SiO2 is only 13 ◦C. The lowest viscosity of model oil added PM18-g-NSiO2 was only 214 mPa·s
while PM18/SiO2 reached 453 mPa·s. The wax crystal structure after adding PM18-g-NSiO2 is also
more regular and smaller compared to PM18/SiO2. We concluded that differences in the synthesis
methods may lead to the different coverage of the polymer on the surface of the nanoparticle.

Keywords: nano-SiO2; polymethacrylate; nanocomposite pour point depressant; flow properties;
wax crystal

1. Introduction

Unconventional crude oil occupies an important proportion of crude oil production.
As a kind of unconventional crude oil, the significance of waxy crude oil in production
and life is also obvious [1]. In order to solve the problem that wax crystals are easy to
precipitate, connect and deposit at low temperatures due to the high paraffin content of
waxy crude oil, which leads to economic losses and serious safety risks [2,3], the chemical
reagent method has gradually become the focus of research due to its advantages of
low cost and high efficiency. Pour point depressant (PPD) is a commonly used chemical
reagent [4,5]. Polymethacrylate [6,7] is a typical comb-like polymer PPD. Because of its
long side chain alkyl structure, it is easy to crystallize with wax and has an excellent effect
of pour point reduction and the function of shear resistance. However, the complexity
of crude oil composition leads to the selectivity of polymer PPDs for crude oil, which
means single polymer PPDs cannot satisfy the needs of various types of crude oil [8]. For
this problem, the common modification method is to introduce new monomers [9–11] or
perform nanohybridization [12–14].

Because it is cheap and easy to obtain and has stable properties as well, Nano-SiO2
is widely used to modify polymer PPDs. The synthesis methods of nanocomposite pour
point depressants (NPPDs) can be divided into the physical blending method (solvent
blending method [15], melt blending method [16]) and chemical hybrid method (chemical
grafting method [17], in-situ polymerization method [18]). Yao et al. [19,20] found that
different physical mixing methods can lead to different sizes of modified nanoclay/POA
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nanocomposites, which affects the dispersity in crude oil. Yang’s research group [21,22]
also found that the melt blending method enhanced the interaction between polymer
and nanoparticles, thus promoting the adsorption of polymer and further enhancing the
nucleation of EVA. These results all indicate that the different synthesis methods of the
nanocomposite particles can affect the properties of the nanocomposite materials.

The nanocomposites synthesized by SiO2 are mainly prepared by the physical blend-
ing method [23–25], but the physical blending method is faced with the problem of poor
compatibility between the nanoparticles and polymer. Norrman [26] and Yang [27] et al.
showed that when the POA/SiO2 NPPD was formed by solution blending, POA was
adsorbed to the surface of nanosilica by mono-layer adsorption, and the coverage of POA
was an important factor affecting the performance of NPPDs. However, for long-distance
pipeline transportation, POA is easy to desorb from the nanosilica surface, thus reducing
the properties of nanocomposites. In order to improve dispersion and stability, NPPDs
synthesized by the chemical hybridization method mainly use carbon-carbon double bonds
for in-situ polymerization [28]. However, there are still some problems with complex
processes, requiring additional reagents and low yield. Compared with in-situ polymer-
ization, the chemical grafting method provides a new approach for the industrialized
production of high-performance nanocomposite pour point depressants due to its mild
synthesis conditions and simple operation. Liu [17] used the esterification reaction to
branch GO with EVAL. The results showed that EVAL-GO had good oil dispersion and
compatibility with organic solvents. EVAL-GO has a better effect than EVAL on the waxy
crude oil and significantly improves the low-temperature fluidity of Daqing waxy crude
oil. Due to the low price of nano-silica, it has potential market value to study the prepa-
ration of high-performance silica nanocomposite pour point depressants by the chemical
grafting method.

So, in order to obtain a simpler and more rapid method of preparing polymethacrylate/
nano-SiO2 NPPDs, polymethacrylate/nanosilica NPPDs were prepared by an amidation
reaction for chemical grafting. By co-polymerizing MAH and methacrylate high carbon
alcohol esters, a certain amount of anhydride group is introduced in the methacrylate
polymer and then reacted with amino-modified nano-silica to obtain the desired product.
At the same time, this paper compared the nanoparticles synthesized by the solution
blending method with the chemical grafting method. By comparing with the NPPDs
prepared by the traditional solution blending method, we found that the nanocomposite
particles synthesized by the grafting method show better oil dispersion and stability, and
their effect is also more excellent, which further proves that the different synthesis methods
of NPPDs will affect the performance of NPPDs.

2. Materials and Methods
2.1. Materials

Nanosilica (average particle size 30 nm), Octadecyl methacrylate (AR), 3-Aminopropyl
triethoxysilane (KH550) (AR), dodecane (AR), maleic anhydride (AR) and Dibenzoyl
peroxide (BPO) (CP) were purchased from Shanghai Aladdin Bio-Chem Technology Co.,
Ltd. (Shanghai, China). Ethanol (AR) was purchased from Shenyang Huadong Reagent
Factory (Shenyang, China). Toluene (AR) was purchased from Tianjin Damao Chemical
Reagent Factory (Tianjin, China). -35# diesel was obtained by PetroChina Co., Ltd. (Beijing,
China). 59# paraffin was supplied by Daqing Petrochemical Company (Daqing, China).

2.2. Sample Prepartiom
2.2.1. Preparation of Octadecyl Methacrylate/Maleic Anhydride Copolymer (PM18)

The reaction used toluene as a solvent, and BPO as an initiator. PM18 was pre-
pared from Octetanyl methacrylate and maleic anhydride (where the molar ratio between
Octetanyl methacrylate and maleic anhydride is 6:1) in a three-neck flask. The reaction
continued for 6 h at 80 ◦C. Finally, the products were washed several times with cold
methanol solution. PM18 was obtained after the solid was vacuum-dried [29].
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2.2.2. Preparation of PM18/SiO2 Nanocomposite Pour Point Depressant

PM18 was added into toluene, stirring with ultrasound at 60 ◦C until PM18 was
completely dissolved. SiO2 whose mass is equaled to PM18 was added into the solution,
stirring with ultrasound for 3 h at 80 ◦C. Finally, PM18/SiO2 NPPDs were separated by
vacuum distillation.

2.2.3. Preparation of Amino Modified Nanosilica

Amminated NanoSilica was modified with silane coupling agent KH550 via grafting
the amino group onto the surface of Nano-SiO2. The reaction steps are as follows: KH550
whose weight is 5 wt% of Nano-SiO2 was added into a three port flask containing ethanol
aqueous solution (where the mass ratio between ethanol and water is 9:1), and stirred at
30 ◦C for 1.5 h. Then nano-SiO2 was added to the above solution. After ultrasonic stirring
for 0.5 h, the mixture was heated to 75 ◦C and then refluxed for 3 h. The finished solution
was separated by centrifugation to obtain the product. The solid was washed using ethanol
and deionized water 2~3 times, respectively, and then dried in a vacuum at 50 ◦C for 12 h
to obtain amino modified SiO2. After grinding, the amino modified nano SiO2 was labeled
as NSiO2. The modification mechanism is shown in Scheme 1.
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Scheme 1. Synthesis Mechanism of NSiO2.

2.2.4. Preparation of PM18-g-NSiO2 Nanocomposite Pour Point Depressant

PM18 was weighed and added into toluene, stirring it with ultrasound at 60 ◦C
until PM18 was completely dissolved, then NSiO2 whose mass is the same as PM18 was
added into the solution, stirring it with ultrasound for 3 h at 90 ◦C. The product was
separated by vacuum distillation and washed several times with a methanol solution to
obtain PM18-g-NSiO2 NPPD. The specific synthesis mechanism is shown in Scheme 2.
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2.2.5. Preparation of Waxy Model Oil

-35# diesel oil was used as solvent oil. A certain amount of 58# paraffin section was
added to -35# diesel oil (the mass ratio between 58# paraffin and -35# diesel oil is 3:17), then
stirred at 70 ◦C for 2 h to mix paraffin components and diesel oil. After that, the mixture
was cool to room temperature.

2.3. Characterization
2.3.1. Nanocomposite Pour Point Depressant Properties Characterization

The NPPDs were analyzed by Fourier transform infrared (FT-IR) spectrometry (TEN-
SOR27, Bruker, Germany), Scanning Electron microscopy (SEM) analysis (Σ IGMA scanning
electron microscope, Zeiss, Jena, Germany).

2.3.2. Model Oil Properties Characterization
Pour Point Test

The pour point of the model oil before and after dosing was measured using the
Chinese petroleum and natural gas industry standard SY/T 0541-94 [30]. First, the model
oil is kept constant for 1 h in a water bath at 60 ◦C. Then a certain quality of model oil
and PPD were mixed and stirred evenly at 60 ◦C for 0.5 h. The sample was put into the
pour point measuring device and was cooled at the cooling rate of 0.5 ◦C/min. When
the temperature reached 50 ◦C, the measuring tube was taken out and tilted 45◦ after
each 2 ◦C temperature drop. When the sample temperature was close to the estimated
pour point, the above steps were repeated after each 1 ◦C temperature drop. When the
measuring tube is tilted for 5 s, and the oil sample remains stationary, the temperature
can be recorded as the pour point of the sample. For each sample, the test was repeated
three times.

Viscosity Curves Test

The rheological properties of model oil without and after the addition of the agent were
measured by Brookfield rotational viscometer (DV-II+Pro) equipped with a heating/cooling
system. First, the model oil was kept for 1 h in a water bath at 60 ◦C. Model oil and PPD
were mixed and stirred evenly at 60 ◦C for 0.5 h. The sample was put into the measuring
device while cutting for 5 min at a constant shear rate of 20 S−1. The apparent viscosity
was measured from 60 ◦C to 20 ◦C at a cooling rate of 0.5 ◦C/min.

Polarized Optical Microscopy (POM)

The results of POM can effectively observe the morphological changes of wax crystals
before and after adding PPDs [31]. A polarizing microscope fitted with an IMc5 camera
(Zeiss, Germany) was used to test the model oil. The model oil which had been heated for
1 h at 60 ◦C was stirred for 0.5 h at 60 ◦C each time after adding agents. The sample was put
into the sample table and cooled to 15 ◦C at a cooling rate of 0.5 ◦C/min for observation.
The same steps were finished after treating PPDs.

3. Results
3.1. Characterization Analysis
3.1.1. FT-IR Analysis

The FT-IR spectra of PM18, PM18/SiO2 and PM18-g-NSiO2 are shown in Figure 1.
According to the FT-IR spectrum of PM18, the stretching vibration peaks of C-H pro-
vided by octadecyl methacrylate are at 2847 cm−1 and 2924 cm−1. The C=O stretching
vibration peak of octadecyl methacrylate is at 1730 cm−1, and the C=O and C-O-C stretch-
ing vibration peaks of maleic anhydride are at 950 cm−1 and 1780 cm−1. The above
absorption peaks show that the product is the target product. As shown in Figure 1b–d,
SiO2, PM18/SiO2 and PM18-g-NSiO2 display Si-O-Si bending and stretching vibration
peaks at 800 cm−1 and 1096 cm−1. Both PM18/SiO2 and PM18-g-NSiO2 have the charac-
teristic absorption peaks of PM18 at 1730 cm−1, 2847 cm−1 and 2924 cm−1 [32]. These
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results combined with the results of SEM indicated that PM18 had been successfully
covered on the surface of nano silica. Compared with Figure 1c,d, PM18-g-NSiO2 dis-
plays a new characteristic absorption peak belonging to amide N-C=O that appeared
at 1640 cm−1, indicating that the NSiO2 surface formed a chemical bond with PM18 in
PM18-g-NSiO2 [33].
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Figure 1. FT-IR spectra of (a) PM18; (b) SiO2; (c) PM18/SiO2; (d) PM18-g-NSiO2.

3.1.2. SEM Analysis

The SEM picture of the NPPD dispersed in dodecane solvent after 48 h is shown in
Figure 2. It can be seen from Figure 2A that the unmodified nano silica agglomerated
seriously because the surface energy of nano silica is large, and the surface of nano
silica is rich in active hydroxyl groups, which can be bonded to each other through
hydrogen bonding. As shown in Figure 2B,C, when a certain amount of PM18 is coated
on the surface of nanosilica, the size of nanosilica increases while the surface energy
decreases, and the agglomeration of nanoparticles is improved [34]. It is worth noting
that comparing the morphology of PM18/SiO2 and PM18-g-NSiO2, the morphology
of PM18-g-NSiO2 is more regular, and the particle size is larger and the dispersion is
more uniform. Combined with the result of FT-IR that PM18 did not form a chemical
bond with unmodified SiO2 and the conclusion of monolayer adsorption by Jing [23]
and Norrman [26], we may suppose that the nanosilica in PM18/SiO2 prepared by
physical adsorption alone has poor compatibility with PM18. When PM18/SiO2 is
dispersed in dodecane solvent for a period of time, part of PM18 will be desorbed from
the surface of the nanosilica, reducing the stability of PM18/SiO2 in organic solvents and
causing the agglomeration of nanocomposites; In PM18-g-NSiO2, because of the stable
chemical bond formed between the surface of nano silica and PM18, PM18 is firmly
wrapped on the surface of the nanosilica, which improves the stability of PM18-g-NSiO2
in organic solvents.
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3.2. Effect Evaluation of Nano-SiO2 PPD Synthesized by Different Method on Model Oil
3.2.1. Pour Point

The pour point change of 15 wt% wax-containing model oil after adding different
kinds and doses of PPDs is shown in Figure 3. With the increase in PPD dose, the pour
point of model oil shows a trend of decreasing first and then increasing. At the same
time, compared with the traditional methacrylate PPD PM18, the optimal dosage of
NPPD is significantly reduced, and all NPPDs show a better effect on decreasing the
pour point. The best pour point depressing performance is obtained with a 300 mg·kg−1

dosage of PM18/SiO2 and PM18-g-NSiO2, in which the pour point drops from 30 ◦C
to 17 ◦C and 11 ◦C, respectively. At the same time, compared with the same dosage
of PM18/SiO2, PM18-g-NSiO2 can further improve the low-temperature fluidity of oil.
This is because the coverage of polymer on the surface of nanoparticles is the key factor
to determine the effect of NPPD. Compared with simple physical adsorption, making
the surface of nanoparticles form a stable chemical bond with polymer through grafting
can effectively improve the stability of polymer on the surface of nanoparticles, prevent
polymer shedding from the surface of nanoparticles, and effectively improve the effect
of NPPD.
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3.2.2. Rheology Properties

The viscosity curves of the model oil before and after adding different doses of PM18-
g-NSiO2 are presented in Figure 4 while the viscosity of model oil with different additives
is presented in Figure 5.
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In Figure 4, adding a spot of PM18-g-NSiO2 can significantly reduce the low-temperature
viscosity of model oil. With the increase in PM18-g-NSiO2 dosages, the trend of the viscosity
of the model oil system first decreases and then increases. When adding 200 mg·kg−1,
300 mg·kg−1, and 500 mg·kg−1, the viscosity of the model oil at 20 ◦C is 573 MPa·s,
214 MPa·s and 259 MPa·s, respectively. The above results may be related to the fact that
PM18-g-NSiO2 can provide the nucleation site, and will promote wax crystallization and
change the wax crystal structure [35]. With the increase in the dose of PM18-g-NSiO2, the
NPPD will induce the formation of more and smaller wax crystals. Although the smaller
size has weaker structural strength at lower temperatures and is easier to be destroyed,
with a further decrease in temperature the excessive wax crystals form a three-dimensional
network structure with a stronger structure, resulting in the viscosity of the oil increasing
and the fluidity becoming poor.

In Figure 5, it is shown that the viscosity of the model oil adding PM18 is lower in a
certain temperature range below WAT, compared with the model oil containing any NPPD.
However, Compared with PM18, the overall viscosity of the system with NPPDs changed
gently, and NPPDs can effectively promote the flow of oil samples at low temperatures.
At 20 ◦C, the model oil viscosity of the three kinds of PPD are 1217 mPa·s, 453 mPa·s,
214 mPa·s, respectively. This result is consistent with the experimental result in Figure 3 to
a certain extent. This is because NPPDs dispersed in the model oil system are more likely to
interact with wax crystals and act as crystal nuclei to promote wax crystallization resulting
in more small wax crystals being formed in the model oil [36]. The smaller wax crystals
are more likely to inhibit the flow of the model oil, exhibiting a higher viscosity than the
model oil with PM18. At the same time, it would be easier to destroy at lower temperatures.
Therefore, the model oil system with NPPDs added has better fluidity at low temperatures.

It is worth noting that PM18-g-NSiO2 can further improve the low-temperature fluidity
of oil samples compared with PM18/SiO2 prepared by conventional physical adsorption.
Compared with the model oil system with PM18/SiO2 at 20 ◦C, the viscosity of model
oil with PM18-g-NSiO2 is further reduced by 52.8%. These results show that the grafting
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method can effectively improve the stability of polymer on the surface of nanosilica, inhibit
the desorption of polymer from the surface of silicon dioxide to maintain stable polymer
coverage and improve the effect of the nanocomposite pour-point depressant.

3.2.3. Microscopic Study

In order to further analyze the action mechanism between NPPD and model oil, the
changes in wax crystal morphology and structure in model oil before and after adding
agents were studied using a polarizing microscope [37,38]. The results are shown in
Figure 6. It can be seen that the shape, size and quantity of wax crystals are different in
the model oil before and after adding different kinds of PPDs. Wax crystal morphology
in pure model oil shows large flake growth, and the NPPD can change the wax crystal
morphology, reduce the size of the wax crystal and disperse the wax crystal by interacting
with the wax crystal through heterogeneous nucleation. As shown in Figure 6c,d, after
adding PM18/SiO2 and PM18-g-NSiO2, the wax crystal morphology in the model oil
changed from a large irregular crystal shape to an irregular small block structure and
regular elliptical structure, indicating that the heterogeneous nucleation effect of PM18-
g-NSiO2 is significantly enhanced compared with PM18/SiO2. This is because, in the
PM18/SiO2 NPPDs, there is no chemical bond between PM18 and the SiO2, and only
physical adsorption in action, which lead to the poor compatibility between PM18 and
SiO2. As a result, PM18 is easy to desorb from the surface of nano SiO2, and the stability of
PM18/SiO2 in the waxy oil is poor. At the same time, the desorbed PM18 and PM18/SiO2
have crystallization competition for wax crystals, resulting in the formation of irregular
small block structures in the system. Compared with simple physical adsorption, the stable
chemical bond formed between the surface of nanoparticles and polymer by the grafting
method can effectively improve the stability of polymer on the surface of nanoparticles and
prevent the polymer from desorbing from the surface of nanoparticles, so as to effectively
improve the heterogeneous nucleation of NPPD and form the regular elliptical structure. At
the same time, compared with the irregular small block structure, the regular oval structure
releases more originally wrapped liquid oil, greatly reducing the wax oil interface area, and
thus further improving the low-temperature fluidity of the wax-containing model oil [39].
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3.3. Proposed Mechanism

Based on the above experimental results, we analyzed the mechanism of PM18-g-
NSiO2 NPPD on model oil (shown in Figure 7). As shown in Figure 7, compared with
simple physical adsorption, the grafting method can form a stable chemical bond between
the surface of nanoparticles and polymers, and prevent the polymer from desorbing from
the surface of nanoparticles, so as to effectively improve the stability of polymers on the
surface of nanoparticles and enhance the dispersion of NPPDs in the oil phase. Furthermore,
due to the NPPDs can provide the nucleation site of wax crystal, the guiding effect on
the nucleation of wax crystal is enhanced through the long-chain molecular structure of
polymer on the surface of nanoparticles and the eutectic of wax crystal [40,41]. On the other
side, nanomaterials have high surface energy. In order to maintain the energy stability
of the system, wax crystals in the model oil with added NPPDs tend to be more compact
than those in the model oil with the same amount of pure polymer PPDs [42], so as to
reduce the interface area and reduce the surface energy. In addition, the precipitated wax
crystals grow evenly on the surface of the nanoparticles to form a regular morphology and
structure. The compact wax crystal aggregate makes more liquid oil originally wrapped to
be released [43], greatly reducing the wax oil interface area, reducing the friction dissipation
energy between wax crystal and liquid crude oil when crude oil flows, further reducing the
viscosity of crude oil at low temperature and further improving the fluidity.
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Figure 7. Schematic diagram of the flow improving mechanism of PM18-g-NSiO2 on waxy model oil.

4. Discussion

In this work, PM18-g-NSiO2 was synthesized simply and efficiently by the amidation
reaction. The results of the rheological tests showed that when adding 300 mg·kg−1

PM18-g-NSiO2 and PM18/SiO2, and the pour points were reduced by 19 ◦C and 13 ◦C,
respectively. The viscosity of model oil after adding PM18-g-NSiO2 at the optimal dose
was only 214 mPa·s while that of added PM18/SiO2 reached 453 mPa·s. Compared
with PM18/SiO2, PM18-g-NSiO2 has the best flow modification effect on the model oil,
which can effectively change the wax crystal into smaller irregular block structures and
regular ellipses, and the heterogeneous nucleation effect is significantly increased [44]. We
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concluded that different synthesis methods of nanocomposite pour-point depressant can
effectively affect the coverage of polymer on the surface of nanoparticles and thus affect
the effect of pour-point depressant.
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