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Abstract: Accurate prediction of the remaining useful life (RUL) of rolling bearings can effectively en-
sure the safety of complicated machinery and equipment in service. However, the diversity of rolling
bearing degradation processes makes it difficult for deep learning-based RUL prediction methods
to improve prediction accuracy further and provide generalizability for engineering applications.
This study proposed a novelty RUL prediction model for rolling bearings based on a bi-channel
hierarchical vision transformer to reduce the impact of the above problems on prediction accuracy
improvement. Firstly, hierarchical vision transformer network structures based on different-sized
patches were employed to extract depth features containing more degradation processes information
from input samples. Second, the dual channel fusion method is implemented into classic RUL predic-
tion networks based on a multi-layer fully connected network to improve prediction accuracy. With
two distinct validation experimental arrangements utilizing the datasets from PHM 2012, the predic-
tion accuracy of the proposed approach can be increased by up to 9.43% and 43.10%, respectively,
compared with the current standard method. The results demonstrate that the proposed method is
more suitable for rolling bearing RUL prediction.

Keywords: rolling bearing; remaining useful life prediction; deep learning; hierarchical vision
transformer; channel fusion

1. Introduction

Prognostic and health management (PHM) [1–3] has been a hot issue due to the in-
evitable trend for machinery equipment transitioning from routine maintenance to service
state-based maintenance. Rolling bearings, one of the major components of rotating machin-
ery equipment, are widely applied under harsh and complex working conditions [4,5]. This
scenario causes premature failure before the design life, reducing the service performance
of mechanical equipment [6,7]. The remaining useful life (RUL) prediction ensures the
reliability of mechanical equipment and reduces the negative effect. An accurate prediction
method can evaluate the service performance and calculate the remaining useful time
before replacement due to performance failure. This innovative technology can assist
technicians in arranging reasonable equipment maintenance plans and ensuring the safe
operation of equipment.

Scholars in PHM conducted a comprehensive and in-depth study [8–10]. The current
RUL prediction models of rolling bearings can be generally divided into model-driven and
data-driven models based on the differences in study techniques [11,12]. The model-driven
RUL prediction method establishes the RUL prediction model by analyzing the failure mech-
anism and degradation model using dynamics [13] and statistical methods [14]. Although
numerous studies have demonstrated that the model-driven method has a significant RUL
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prediction effect, practical engineering applications face numerous challenges because of
the complicated and unknown failure mechanism under harsh working conditions [15].

In contrast, the data-driven RUL prediction approach extracts features comprising
degradation process information from accumulated rolling bearing vibration samples using
an artificial intelligence system. These features can be utilized to construct a mapped
regression model for RUL prediction. Data-driven rolling bearing RUL methods can be
divided into two categories based on feature extraction methods: classical machine learning
and deep learning (DL). The RUL prediction method based on traditional machine learning
needs first to use expert experience and signal processing methods to extract degradation
features from original vibration signals. Then, the algorithms, such as support vector
machines [16], the Bayesian hierarchical model [17], and the hidden Markov model [18],
are utilized to realize regression mapping between extracted features and RUL. Although
this method is commonly accepted for RUL prediction, the model construction procedure
is highly dependent on expert knowledge. It results in the method’s intelligence being
insufficient to satisfy the demands of intelligent operation and maintenance. The DL-
based rolling bearing RUL prediction method can use the DL network directly to extract
the degradation information from the pre-processed rolling bearing signals and establish
an RUL prediction model [19,20]. The “end-to-end” mapping between input samples
and input results is achievable with this RUL prediction method. To extract effective
degradation features and build algorithms that have excellent RUL prediction accuracy, DL
methods such as a convolutional neural network (CNN) [21], full-convolutional variational
autoencoders [22], stack autoencoders [23], and others are currently used. Meanwhile,
other studies are trying to apply RUL prediction using recurrent neural networks [24], bi-
directional long short-term memory (Bi-LSTM) [25], bi-directional gated recurrent unit (Bi-
GRU) [26], and transformer [27]. Moreover, fusion networks are employed to ensure RUL
prediction. To increase the accuracy of RUL prediction, Zhao et al. [28] suggested a fusion
neural network model integrating a broad learning system algorithm with a long short-term
memory neural network. It demonstrates that the DL-based RUL prediction network can
more effectively guarantee the safety and dependability of mechanical equipment in service
in actual engineering.

To accomplish accurate prediction, the core of RUL prediction based on DL is currently
extracting depth features related to degradation processes [29]. A complicated DL network
structure capable of mining degradation process sensitive information from input samples
is required. As a result, it is critical to choose input samples that accurately reflect the
deterioration process. Because of the emphasis on failure information and its evolutionary
process, signal processing is now widely used to pre-process raw samples for network
input [30]. Zhang et al. [31] employed variational modal decomposition to extract essential
information from the raw sample that better reflects the RUL to improve RUL prediction. Su
et al. [32] used a short-time Fourier transform (STFT) to convert the time-domain vibration
data of rolling bearings into the time-frequency domain, ensuring RUL prediction accuracy.
Ding et al. [33] used wavelet transform to convert one-dimensional vibration signals from
the time domain to two-dimensional time-frequency domain samples (WT). The time-
frequency mentioned above domain analysis approaches, represented by STFT and WT,
may systematically highlight deterioration process information in three dimensions: time,
frequency, and amplitude. This systematic display of fault evolution information may be
better suitable for pre-processing the raw signal for better accurate RUL prediction.

Although network input samples converted to the time-frequency domain are ad-
vantageous for RUL prediction, effective DL network extraction remains difficult. As
a result, some studies suggest optimizing the DL network to ensure more accurate pre-
dictions [34,35]. For example, Zhang et al. [36] took a swarm optimization approach to
optimize the broad learning system network to improve RUL prediction accuracy. How-
ever, the degrading process of rolling bearings, which constitute fundamental mechanical
components, is complex and diversified [37]. Its degradation process is influenced by
a variety of factors, including working conditions and fault types, making it difficult to
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optimize directly and efficiently. Therefore, the DL network should effectively leverage
the frequency band association information from the input samples to reliably depict the
degradation process. The core of this information extraction is the effective acquisition of
its frequency band correlation. The DL network must be able to emphasize the internal
correlation between the input samples’ in-depth features hierarchically. The hierarchical
vision transformer using shifted windows (Swin transformer) proposed by Liu et al. [38] in
artificial computer intelligence meets the above requirements. However, the time-frequency
domain samples containing rolling bearing condition information differ from the image
samples. The excessive emphasis on the local correlation of time-frequency information
can easily lead to RUL prediction networks failing to attain greater prediction accuracy
and generalization.

Given the above problems, a rolling bearing RUL prediction approach is proposed
based on a bi-channel hierarchical vision transformer (BCHViT). At first, wavelet packet
decomposition was used for pre-processing to obtain wavelet packet coefficients from
the rolling bearing service monitoring vibration acceleration signal. The wavelet packet
coefficients, as the input of the RUL prediction network, reflect the degradation process
information when compared to the raw signal. Then, the BCHViT networks based on two
different patch size was proposed in this study to acquire more plentiful depth feature
carrying information on the degradation process to improve RUL prediction. Meanwhile,
the BCHViT’s special hierarchical vision transformer (HViT) networks can minimize the
negative effect of the Swin transformer in the extraction of time-frequency correlation
information. Finally, regression mapping between depth features and RUL is realized
using dual channel feature fusion and multi-layer fully connected networks. This mapping
network can take full advantage of different patch sizes for band information extraction and
improve RUL prediction performance. Specific contributions of this study are as follows:

(1) This study proposes a novelty degrading feature extraction network based on BCHViT.
The improved method is more effective at identifying important depth features that
characterize the degradation process from rolling bearing vibration signals’ wavelet
packet coefficients.

(2) Based on the multi-layer full connection layer, a dual-channel feature fusion technique
is implemented into the RUL prediction network. This improvement contributes to
guaranteeing RUL prediction accuracy at the degradation stage.

(3) The experimental results show that the RUL prediction method proposed in this
study can extract more common degradation information from the various rolling
bearing frequency bands. It shows the guaranteed reliability and universality of RUL
prediction when compared with current mainstream approaches.

The following are the remaining sections of this study: Section 2 explains the proposed
method’s theoretical foundation; Section 3 describes the improved method and its param-
eter optimization procedure; Section 4 is the experimental design and results analysis;
Section 5 is the conclusion.

2. Methods

This study offers an innovative strategy for improving the feature extraction effect
and prediction accuracy. Before describing the proposed approach, this section will briefly
overview the theory of the related methods of the vision transformer and Swin transformer
to understand the improved approach better.

2.1. Vision Transformer

The transformer, which is one of the most traditional DL networks in natural language
recognition, exclusively employs the attention mechanism (AM) to extract high-reliability
depth features from temporally correlated input samples [39]. Dosovitskiy et al. [40] were
inspired by this and proposed the Vision Transformer (ViT) network structure, as shown
in Figure 1. Firstly, the high-dimensional input sample is turned into patches, which are
flattened by linear projection to provide a series of samples with correlation. Based on
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the benefits of the transformer network, converted samples containing all patches are
utilized as the input of networks to achieve depth feature extraction. This network builds
the transformer encoder with multi-head self-attention (MSA), shown in Figure 2. MSA
first carries out mapping projection on query matrix Q, key matrix K, and value matrix V
through some different linear transformations. Finally, the converted results are spliced and
concatenated to extract trustworthy and efficient depth features. Scaled dot-product is used
in AM to address the issue that multi-linear transformation increases network complexity
while decreasing processing speed.

MultiHead(Q, K, V) = Concat(Head1, Head2, . . . , Headi)Wo (1)

Headi(Q, K, V) = Attention
(

QWQ
i , KWK

i , VWV
i

)
(2)

Attention(QWQ
i , KWK

i ), VWV
i = so f tmax[

QWQ
i
(
KWK

i
)T

√
dk

]VWV
i (3)
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Figure 2. Multi-head attention of ViT.

Moreover, sine and cosine functions of different frequencies are employed in ViT net-
works to add relative position information and solve the gradient disappearance problem
in previous deep recursive models.

PE(pos, 2i) = sin(
pos

100002i/dmodel
) (4)

PE(pos, 2i + 1) = cos(
pos

100002i/dmodel
) (5)
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2.2. Swin Transformer

Because a single patch size is utilized in the feature extraction procedure of ViT, features
containing essential information cannot be fully and accurately acquired. Furthermore,
the ViT model’s complicated network structure increases model complexity, which has
numerous disadvantages for engineering applications. Liu et al. [38] proposed a ViT
derivative network of the Swin transformer given the above problems. The network
structure is shown in Figure 3. The shift windows processing of each patch for Each
transformer block input is applied on the classic ViT network to realize the adaptive
sealing extraction of depth information in the input sample and further improve the
identification effect.
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Figure 3. Swin transformer network: (a) Network’s structure; (b) Swin transformer block.

Firstly, the input sample H ×W is divided into patches H
C ×

W
C , with the Swin trans-

former block extracting the depth features of the containing interdependence. C is the num-
ber of patch groups divided. Two successive Swin transformer block is shown in Figure 3b.
The network’s features are extracted using window multi-head self-attention (WMSA) and
shift window multi-head self-attention (SWMSA). Assuming that the input Swin Trans-
former block feature is Zl−1, WMSA output feature Zl and multi-layer perceptron (MLP)
module output feature Zl corresponds to block l is shown as follows, respectively:

Ẑl−1 = WMSA
(

LN
(

Zl−1
))

+ Zl−1 (6)

Zl = MLP
(

LN
(

Ẑl
))

+ Ẑl (7)

The SWMSA output feature Ẑl+1 and MLP module output feature Zl+1 corresponds
to block l + 1 is shown as follows respectively:

Ẑl+1 = SWMSA
(

LN
(

Zl
))

+ Zl (8)

Zl+1 = MLP
(

LN
(

Ẑl+1
))

+ Ẑl+1 (9)

LN denotes the layer normalization operation, which normalizes all neuron nodes in
each layer of a single sample. MLP is to calculate the features extracted from input samples
by multiple perceptrons, and the specific calculation equation is shown in (10). WMSA
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and SWMSA represent window MSA that have been set with rules and shifted window
divisions, respectively.

MLP(X) = WO ϕ(WHX + bH) + bO (10)

where WO and WH are corresponding weights of different perceptions. bO and bH are
the corresponding deviations of different perceptions. ϕ(·) is the multilayer perceptron
activation function.

3. RUL Prediction Method Based on BCHViT

This study proposes an RUL prediction approach based on BCHViT to extract and
employ highly correlated and diversified depth features in the degradation process for
accuracy improvement. The whole RUL prediction network structure and process are
shown in Figure 4. The proposed method’s main structure includes degradation feature
extraction based on BCHViT and RUL prediction based on dual channel feature fusion,
which is described in detail below.
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Figure 4. The network structure of RUL prediction based on BCHViT.

3.1. Degradation Feature Extraction Based on BCHViT

This study proposes a depth feature extraction method based on BCHViT inspired
by the Swin transformer. The network structure is shown in Figure 5. As network input,
wavelet packet coefficient samples of vibration signal decomposed by wavelet packet are
employed. Wavelet packet coefficients xj,m(n), as an important part of wavelet packet
decomposition [41], can effectively reflect the critical information of signals. It is the
decomposition coefficient of signal f (t) at scale j for the wavelet packet function µj,m. Its
calculation formula is listed as follows.

xj,2m(n) =
√

2 ∑
k∈Z

h(k− 2n)xj−1,m(k)

xj,2m+1(n) =
√

2 ∑
k∈Z

g(k− 2n)xj−1,m(k)
(11)

where m denotes the frequency band. The higher the value of m; the higher the frequency
band in which the coefficients are located; n indicates the time domain location; g(·) and h(·)
denote the high-pass filtering function and the low-barrel filtering function, respectively.



Processes 2023, 11, 1153 7 of 18

Processes 2023, 11, x FOR PEER REVIEW 7 of 19 
 

 

where 𝑚  denotes the frequency band. The higher the value of 𝑚 ; the higher the fre-

quency band in which the coefficients are located; 𝑛 indicates the time domain location; 

𝑔(∙) and ℎ(∙) denote the high-pass filtering function and the low-barrel filtering function, 

respectively. 

  

(a) (b) 

Figure 5. Networks used for degradation feature extraction: (a) Network’s structure; (b) HVIT block. 

Although wavelet packet coefficients can efficiently reflect high- and low-frequency 

information in vibration signal samples, this property cannot be employed directly for 

RUL prediction. Swin transformer has excellent depth feature extraction capacity, but the 

influence of patch size restricts its ability to be improved further. As a result of the wavelet 

packet co-efficient features, SWMSA and WMSA in the Swin transformer block also have 

a negative impact. 

BCHViT is offered in this work to overcome the difficulties described above. Given 

the impact of patch size on depth feature extraction, two patches of different sizes are 

selected to extract dual channel depth feature 𝑍𝑐ℎ𝑎𝑛𝑛𝑒𝑙1 and 𝑍𝑐ℎ𝑎𝑛𝑛𝑒𝑙2. The extraction pro-

cess of the dual channel depth feature is shown in Figure 5a. Firstly, the input sample 

𝐻 ×𝑊 is segmented into different patches to extract the depth features by using the HVIT 

block from two different channels. Meanwhile, the HVIT block proposed in this study 

removes SWMSA and WMSA from the typical Swin transformer block. Two successive 

HVIT block is shown in Figure 5b. The relationship between the input HVIT block feature 

is 𝑍𝑙−1 and output feature 𝑍𝑙+1 is shown as follows. 

𝑍𝑙 = 𝑀𝐿𝑃(𝐿𝑁(𝑍𝑙−1)) + 𝑍𝑙−1 (12) 

𝑍𝑙+1 = 𝑀𝐿𝑃(𝐿𝑁(𝑍𝑙)) + 𝑍𝑙 (13) 

The degradation feature extraction proposed in this study can reduce the model com-

plexity while extracting high-value information from the original vibration signal. This 

innovative method can improve the effect of RUL prediction. 

  

     

 
 
  
 
  
 
  
  
  
 

 
  
  

  
 
 
 
  

 
  
 

 
 
  

  
  
  

 
  
  

  
 
 
 
  

 
  
 

 
 
  

  
  
  

 
  
  

  
 
 
 
  

 
  
 

 
 
  

  
  
  

 
 
  
 
  

  
 
  
 

 
 
  

  
  
  

 
  
  

  
 
 
 
  

 
  
 

 
 
  

  
  
  

 
 
  
 
  

  
 
  
 

 
 
  

  
  
  

 
  
  

  
 
 
 
  

 
  
 

 
 
  

  
  
  

 
 
  
 
  

  
 
  
 

 
 
  

  
  
  

 
 
  
 
  
 
  
  
  
 

 
  
  

  
 
 
 
  

 
  
 

 
 
  

  
  
  

 
  
  

  
 
 
 
  

 
  
 

 
 
  

  
  
  

 
  
  

  
 
 
 
  

 
  
 

 
 
  

  
  
  

 
 
  
 
  

  
 
  
 

 
 
  

  
  
  

 
  
  

  
 
 
 
  

 
  
 

 
 
  

  
  
  

 
 
  
 
  

  
 
  
 

 
 
  

  
  
  

 
  
  

  
 
 
 
  

 
  
 

 
 
  

  
  
  

 
 
  
 
  

  
 
  
 

 
 
  

  
  
  

          

          

   

    

          

   

Figure 5. Networks used for degradation feature extraction: (a) Network’s structure; (b) HVIT block.

Although wavelet packet coefficients can efficiently reflect high- and low-frequency
information in vibration signal samples, this property cannot be employed directly for
RUL prediction. Swin transformer has excellent depth feature extraction capacity, but the
influence of patch size restricts its ability to be improved further. As a result of the wavelet
packet co-efficient features, SWMSA and WMSA in the Swin transformer block also have a
negative impact.

BCHViT is offered in this work to overcome the difficulties described above. Given
the impact of patch size on depth feature extraction, two patches of different sizes are
selected to extract dual channel depth feature Zchannel1 and Zchannel2. The extraction process
of the dual channel depth feature is shown in Figure 5a. Firstly, the input sample H ×W
is segmented into different patches to extract the depth features by using the HVIT block
from two different channels. Meanwhile, the HVIT block proposed in this study removes
SWMSA and WMSA from the typical Swin transformer block. Two successive HVIT block
is shown in Figure 5b. The relationship between the input HVIT block feature is Zl−1 and
output feature Zl+1 is shown as follows.

Zl = MLP
(

LN
(

Zl−1
))

+ Zl−1 (12)

Zl+1 = MLP
(

LN
(

Zl
))

+ Zl (13)

The degradation feature extraction proposed in this study can reduce the model
complexity while extracting high-value information from the original vibration signal. This
innovative method can improve the effect of RUL prediction.

3.2. RUL Prediction Based on Dual Channel Feature Fusion

The RUL prediction network based on dual channel feature fusion is employed to
realize the regression mapping between extracted depth degradation features and RUL,
as illustrated in Figure 6. The dual-channel feature fusion is used to combine the depth
features Zchannel1 and Zchannel2 from two different channels. As a result, the dropout
layer [42] is employed to improve the generalization of the RUL prediction and reduce the
effect of overfitting.

ZM = Dropout
(

Concat
(

Zchannel1, Zchannel2
))

(14)
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Figure 6. RUL prediction networks based on dual channel feature fusion.

Given that the present fully connected layer (FCL) has a positive predictive effect in
RUL prediction [43], this network selects the fully connected network to build a regression
mapping relationship between fusion features and RUL results. The following is the
calculation formula for the first, second, and third layers:

Zh1 = ReLU
(

W1ZM + b1

)
(15)

Zh2 = ReLU
(

W2Zh1 + b2

)
(16)

Zh3 = ReLU
(

W3Zh2 + b3

)
(17)

where Zh1,Zh2,Zh3 are the outputs of FCL 1, FCL 2, and FCL 3, respectively.W1, W2, and W3
are the weight matrices of each FCL, respectively. b1, b2, and b3 are the bias of each FCL,
respectively. Zh3 is the final prediction result of the RUL prediction network.

3.3. Model Optimization Objective and Training Process

The flow chart of networks proposed in this study is shown in Figure 7. As model
training input, this network picks the wavelet packet coefficients of rolling bearings with
labels. The Adam algorithm and optimization objective are used to optimize network
parameters to significantly increase RUL’s prediction accuracy.
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Figure 7. RUL prediction flow chart of this work.

The model proposed in this study is based on supervised training. The specific
algorithm flow is shown in Algorithm 1. It is assumed that the input sample is X, and the
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minimum batch of the sample is m. The training data extraction from degenerate samples
with labels is {xi, yi}m

i=1,2,...,N . The mapping functions of the degenerate feature extraction
network and RUL prediction network are fF(x, θF) : Rk → Rl and fR(x, θR) : Rl → R1 ,
respectively. θF and θR are training parameters of the degenerate feature extraction network
and RUL prediction network.

The optimization goal of the RUL prediction technique in this work is LRUL, which is
the mean square error between prediction results and labels. The following is the particular
calculating formula:

LRUL =
1
n

n

∑
i=1

(
fR

(
zM

i

)
− yi)

2
(18)

zM
i = Concat(z channel1

i , zchannel2
i ) (19)

zchannel1
i , zchannel2

i = fF(xi) (20)

Algorithm 1. Description of algorithm flow

Input: sample X = {x1, x2, . . . , xn}, minimum batch m
1. Initialization of parameters of networks, including θF and θR
2. do:
3. For i = 1, 2, ..., N :
4. Take m samples {xi}m from X
5. Extract degradation features based on BCHViT networks

zchannel1
i , zchannel2

i ← fF(xi)

6. Dual channel deep feature fusion

zM
i ← Concat(z channel1

i , zchannel2
i )

7. Take samples
{

zM
i , yi

}m

θF, θR ← θF, θR − 1
n

n
∑

i=1

(
fR
(
zM

i
)
− yi

)2

8. Until θF and θR sum converges

n is the number of samples. zchannel1
i and zchannel2

i are the degradation feature of the
output depth of two channels, respectively. zM

i is the result of dual-channel feature fusion
after two-channel depth degradation feature fusion.

min
θF ,θR

Loss = min
θF ,θR
{LRUL} (21)

The network proposed in this network optimizes the parameters by minimizing the
loss function through an “end-to-end” supervised training process.

4. Experimental Verification and Analysis
4.1. Experimental Data Introduction

The rolling bearing deterioration vibration signal dataset given by the IEEE PHM Data
Challenge conducted in 2012 [44] was utilized to test the reliability of this study. Figure 8
shows the PRONOSTIA test Platform for collecting rolling bearing samples. The degrading
vibration signals used in the verification were obtained from the acceleration measuring
devices installed in this platform’s horizontal and vertical directions. The datasets contain
vibration degradation information of 17 different rolling bearings. The sampling frequency
of the data was 25.6 kHz. The samples were taken every 10 s with a 0.1 s collection interval,
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totaling 2560 data points. Table 1 shows how 17 sets of data samples are separated into
three operating situations based on the difference in load and motor speed.
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Figure 8. PRONOSTIA test platform [44].

Table 1. Description of working conditions of PHM challenge 2012 bearing dataset.

Name Condition 1 Condition 2 Condition 3

Load (N) 4000 4200 5000
Motor Speed (rpm) 1800 1650 1500
Number of Bearings 7 7 3

Name of Bearings 1-1,1-2,1-3,1-4,1-5,1-6,1-7 2-1,2-2,2-3,2-4,2-5,2-6,2-7 3-1,3-2,3-3

4.2. Experimental Data Pre-Processing

The pre-processing approach used in this study is wavelet packet decomposition. As
the network’s input, the wavelet packet coefficients are employed. The DB13 wavelet is
chosen as the wavelet basis to facilitate the classification of patches and hierarchical depth
feature extraction for each collection of 2560 degenerate vibration samples. After wavelet
packet decomposition, the original 2560 rolling bearing vibration signals are transformed
into 64 × 64 two-dimensional wavelet packet coefficient samples. Samples before and after
processing are shown in Figure 9. According to the method in [35], the rolling bearing
degradation process generates degradation labels between [0, 1]. This degradation label is
conducive to using the gradient descent algorithm to solve the DL network optimization
process and improve the prediction accuracy of RUL.
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Figure 9. Visualization of raw signal and wavelet packet coefficient; (a) Raw signal at the beginning
of the degradation process; (b) Wavelet packet coefficient at the beginning of the degradation process;
(c) Raw signal at the end of the degradation process; (d) Wavelet packet coefficient at the end of the
degradation process.
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4.3. The Experiment Designs
4.3.1. Experimental Arrangement and Evaluation Index

The proposed method in this study is constructed and trained using Pytorch on a
Windows 10 and Python platforms. The training device has a CPU i5-9400, a GPU GTX
1650, and 8 GB RAM.

Test 1 evaluates the influence of differences in working conditions. As a result, only
the training and test sets for samples of the same working condition are divided in this
experimental arrangement. Throughout the experiment, a single bearing degradation
sample was chosen as the test dataset and the others as the training set samples. Because the
number of datasets differed across the working condition, seven verification experiments
were put up under working conditions 1 and 2, respectively. In comparison, only three
verification experiments were set up under working conditions 3. Because of the limited
space available, only Bearings 1-2, 2-2, and 3-2 are used as examples to demonstrate the
unique experimental arrangements shown in Table 2 under different working conditions.

Table 2. The specific experimental arrangement of 1-2,2-2, and 3-2 in Test 1.

Testing Bearing Training Datasets Testing Datasets

Bearing 1-2 1-1,1-3,1-4,1-5,1-6,1-7 1-2
Bearing 2-2 2-1,2-3,2-4,2-5,2-6,2-7 2-2
Bearing 3-2 3-1,3-3 3-2

This study used two sets of validation tests, called Test 1 and Test 2, to validate the
reliability and generality of the proposed method. Test1 was utilized for experimental
ablation and experimental comparison validation because of the maximum control of
influencing factors. Test 2 validates the training model’s prediction accuracy using all
historical samples. It is more suited for engineering application scenarios. Test 2 validates
the training model’s prediction accuracy using all historical samples. While the suggested
method’s engineering application value is highlighted in this validation experiment, Test 2
is only used in comparative analysis with other methods.

In practice, obtaining samples of the whole life cycle of rolling bearings is difficult.
As a result, historical samples collected under different working conditions are utilized
for training the model in real engineering in Test 2. A single bearing degradation sample
was chosen as the test dataset and the other 16 samples as the training dataset. Due to the
restricted space available in this article, only 7 sets of rolling bearing degradation samples
were chosen separately as the test dataset. The specific experimental arrangements are
shown in Table 3.

Table 3. The specific experimental arrangement in Test 2.

Testing Bearing Training Datasets Testing Datasets

Bearing 1-1
1-2,1-3,1-4,1-5,1-6,1-7,
2-1,2-2,2-3,2-4,2-5,2-6,

2-7,3-1,3-2,3-3
1-1

Bearing 1-2
1-1,1-3,1-4,1-5,1-6,1-7,
2-1,2-2,2-3,2-4,2-5,2-6,

2-7,3-1,3-2,3-3
1-2

Bearing 1-3
1-1,1-2,1-4,1-5,1-6,1-7,
2-1,2-2,2-3,2-4,2-5,2-6,

2-7,3-1,3-2,3-3
1-3
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Table 3. Cont.

Testing Bearing Training Datasets Testing Datasets

Bearing 1-4
1-1,1-2,1-3,1-5,1-6,1-7,
2-1,2-2,2-3,2-4,2-5,2-6,

2-7,3-1,3-2,3-3
1-4

Bearing 1-5
1-1,1-2,1-3,1-4,1-6,1-7,
2-1,2-2,2-3,2-4,2-5,2-6,

2-7,3-1,3-2,3-3
1-5

Bearing 1-6
1-1,1-2,1-3,1-4,1-5,1-7,
2-1,2-2,2-3,2-4,2-5,2-6,

2-7,3-1,3-2,3-3
1-6

Bearing 1-7
1-1,1-2,1-3,1-4,1-5,1-6,
2-1,2-2,2-3,2-4,2-5,2-6,

2-7,3-1,3-2,3-3
1-7

Because of the enormous quantity of testing sample data collected during the rolling
bearings’ life cycle, 200 groups of samples with degradation labels were extracted from the
test rolling bearings datasets using the equal interval descending sampling approach. The
average absolute error (MAE) is used to evaluate these networks’ prediction accuracy. The
computation formula is as follows:

MAE =
1
n

n

∑
i=1
|ŷi − yi| (22)

ŷi is the RUL prediction result. yi is the degradation label of the rolling bearing. n is
the total number of rolling bearing samples.

4.3.2. Parameter Setting

Model parameter Settings respectively include network parameters for extracting
degradation features (as shown in Table 4) and network parameters for RUL prediction (as
shown in Table 5). The degradation feature extraction network is constructed utilizing two
different-sized patches.

Table 4. Parameters of feature extraction network.

Parameters Channel 1 Channel 2

Patch size 4 8
The dimension of patch embedding 24

Window size 4
Depth of each HViT layer (2,2,6,2)

Number of attentions heads in different layer (3,6,12,24)

Dropout Rate Attention 0.2
Stochastic 0.1

MLP ratio 3

Table 5. Parameters of RUL prediction network.

No. Name of layers Units Channel Activation Function

1 FCL 1 (384,192) 1 ReLU
2 FCL 2 (192,64) 1 Leaky ReLU
3 FCL 3 (64,1) 1 ReLU

Each channel has four HViT layers, and each layer has a different number of attention
heads. The network employs two dropout rates, attention one and stochastic one, to
minimize the negative effects of over-fitting. The RUL predictive network has three full
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connection layers and one dropout layer. Only the second FCL employs the Leaky ReLU
function rather than traditional ReLU activation to reduce silent neurons’ presence of silent
neurons suitably. The dropout parameter of the RUL prediction network is set at 0.5.

This network was trained 10,000 times in each experiment using supervised “end-to-
end” training. The training batch size is 100. The network’s initial learning rate is 1 × 10−4.
The learning rate decreases as the network gradient increases. The training duration was
200 times, and the attenuation rate was 0.95. The Adam optimizer is employed for network
optimization, and the L2 regularization coefficient is 0.1. To eliminate noise interference,
the prediction results are smoothed using weighted average smoothing. The size of the
sliding window is 11.

4.4. Results and Analysis
4.4.1. Ablation Experiments

The ablation experiment was set up to evaluate the efficacy of the proposed method.
Swin Transformer and HViT with a single channel were carried out to validate the impact
of the strategy presented in the study. Firstly, bearings 1-3 and bearings 2-6 were chosen as
test samples to verify the predicted performance through the rolling bearing degradation
process. The prediction results are shown in Figure 10a,b, respectively. As compared to the
Swin transformer method, the special HViT proposed in this work can increase prediction
accuracy. However, the working conditions influence this improvement in prediction
accuracy. This prediction accuracy boost does not reflect the near-failure stages where the
impact of the failure is most severe for bearings 2-6. RUL predictions in engineering are
not guaranteed to be reliable. By utilizing BCHVit instead of HViT, the model’s prediction
accuracy is insufficient at the near-failure stage. The impact of inadequate prediction
performance improvement will be effectively reduced at the near-failure stages. The reason
is that a feature extraction network based on BCHViT can extract more effective and
diversified depth features that reflect the degradation process. The results show that the
BCHViT can assure the engineering reliability of RUL predictions.
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Figure 10. RUL prediction result of ablation experiment in Test 1: (a) Bearing 1-3; (b) Bearing 2-6.

Statistical analysis of the experimental data was also performed, considering the
influence of working conditions on prediction accuracy. The MAE of different rolling
bearings for each working condition is shown in Figure 11. Because of the differences
in individual degradation processes, the proposed approach in this study is unable to
have a lower MAE value in each tested sample. However, as shown in Figure 11, the
method proposed in this work can guarantee that more than 50% of the bearings have
superior prediction accuracy when the number of training samples is more than condition
3. The experimental findings demonstrate that the proposed approach extracts critical
depth features more effectively in the degradation process of rolling bearings under the
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same working conditions. This is essential to enhancing the RUL prediction method’s
engineering generality.
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Figure 11. The MAE of different rolling bearings for each working condition in the ablation experi-
ment: (a) Condition 1; (b) Condition 2; (c) Condition 3.

Meanwhile, the average MAE at each working condition is also calculated in Table 6.
As demonstrated by the statistical data, the method proposed in this study can maintain
higher prediction accuracy under most working conditions. Compared with the Swin
transformer and HViT, the proposed method improves average accuracy by 12.73% and
5.24%, respectively. This demonstrates that the novel method is more adaptive to the actual
engineering demand.

Table 6. Statistical results of ablation experiment under the different working conditions in Test 1.

Working Condition Swin Transformer HViT BCVHiT

Condition 1 0.1574+0.1253
−0.0869 0.1517+0.1383

−0.0808 0.1326+0.0768
−0.0640

Condition 2 0.2147+0.1197
−0.0971 0.1967+0.0643

−0.1148 0.1754+0.0482
−0.0316

Condition 3 0.2525+0.1341
−0.1138 0.2681+0.0448

−0.0684 0.2592+0.0526
−0.0610

Average 0.2082+0.0443
−0.0508 0.2055+0.0626

−0.0538 0.1891+0.0701
−0.0565

4.4.2. Comparative Analysis of Other Methods

Comparative tests were conducted in this study to verify the superiority of the pro-
posed method further. CNN used in [45], Bi-LSTM used in [25], Bi-GRU used in [46],
BiGRU used in [26], double-channel hybrid deep neural network based on CNN and
BiLSTM (DCHDNN) used in [47], and stacked residuals deep LSTM (SRDLSTM) used
in [48] were conducted for validation experiments. Because input samples include related
wavelet packet coefficients of vibration signals that differ from the original model, all com-
parison methods except CNN employ a convolutional pooling network for degradation
feature pre-extraction.

The experimental findings reveal that the suggested technique has a better prediction
performance throughout the deterioration process, particularly at the near-failure stage.
This suggests that the technique described in this work can better capture the exact moment
of rolling bearing failure, making it more capable of meeting the predictive maintenance
demands of mechanical equipment in actual engineering.

First, Bearing 1-3 and Bearing 2-6 are used to demonstrate the predictive performance
of the RUL prediction method in the full degradation process. The RUL results are shown in
Figure 12. The experimental results show that the proposed method has a higher prediction
performance in the whole degradation process, particularly at the near-failure stage. This
indicates that the approach proposed in this study can effectively reflect the exact moment
of rolling bearing failure, making it more capable of satisfying the predictive maintenance
requirements of mechanical equipment in actual engineering.
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Figure 12. RUL prediction result of different methods: (a) Bearing 1-3; (b) Bearing 2-6.

The RUL predicted accuracy of different rolling bearings under the three working
conditions in Test 1 was then analyzed accordingly independently. The analysis results
are shown in Figure 13 and Table 7. Figure 13 indicates that the method proposed in this
study can ensure better prediction accuracy for a greater amount of test rolling bearings.
Table 7 demonstrates that the proposed approach can predict much better under more
working conditions than other comparative approaches. The MAE is reduced by 7.42%,
5.53%, 7.90%, 4.44%, 9.43%, and 8.92%, respectively. The results demonstrate that the multi-
channel method used in this study can extract features with more degraded correlation
for RUL prediction than DCHDNN. After training with the same working sample, the
experimental results in Test 1 indicate the superiority of the proposed method.
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Figure 13. The MAE of different rolling bearings for each working condition in the comparative
experiment: (a) Condition 1; (b) Condition 2; (c) Condition 3.

Table 7. Statistical results of the comparative method under the different working conditions in
Test 1.

Method Condition 1 Condition 2 Condition 3 Average

CNN 0.1797+0.0655
−0.0611 0.2047+0.0863

−0.0703 0.2284+0.0930
−0.0608 0.2043+0.0241

−0.0245
BiLSTM 0.1948+0.0308

−0.0505 0.2148+0.0902
−0.0796 0.1909+0.0215

−0.0419 0.2002+0.0146
−0.0093

GRU 0.1580+0.0451
−0.0558 0.2415+0.2395

−0.1131 0.2165+0.0995
−0.0871 0.2053+0.0362

−0.0473
BiGRU 0.1644+0.0495

−0.0595 0.2196+0.1156
−0.0830 0.2096+0.0251

−0.0386 0.1979+0.0217
−0.0334

DCHDNN 0.1883+0.0845
−0.0749 0.1754+0.1185

−0.0789 0.1969+0.0520
−0.0541 0.1959+0.0065

−0.0076
SRDLSTM 0.1657+0.0476

−0.0564 0.2107+0.0979
−0.0646 0.2500+0.1110

−0.0795 0.2088+0.0412
−0.0431

BCHViT 0.1326+0.0768
−0.0640 0.1905+0.0482

−0.0316 0.2592+0.0526
−0.0610 0.1891+0.0701

−0.0565

Finally, the experiments arranged in Test 2 were used to validate the proposed
method’s excellence further. The experimental statistics are shown in Table 8. The current
study proposes methods for reducing the MAE to 36.20%, 32.34%, 16.78%, 25.72%, 37.02%,
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and 43.10%, respectively, when compared to the current mainstream prediction approaches.
Because of the effect of different work conditions on the DL network is purposefully ignored
in Test 2, the result shows that the depth features extracted by this proposed approach
reflect the common information of the degradation process of different rolling bearings.
This depth feature is more suitable for the current mechanical equipment to achieve RUL
prediction based on DL.

Table 8. Statistical results of different RUL prediction methods in Test 2.

Testing
Bearing CNN Bi-LSTM GRU BIGRU DCH-DNN SRD-LSTM BCVHIT

Bearing 1-1 0.1316 0.1670 0.0932 0.1267 0.1248 0.13405 0.1402
Bearing 1-2 0.1726 0.1829 0.1640 0.1815 0.1614 0.1873 0.0697
Bearing 1-3 0.1425 0.1637 0.1210 0.1281 0.1511 0.1633 0.1044
Bearing 1-4 0.2977 0.1314 0.0637 0.1389 0.3145 0.4106 0.0941
Bearing 1-5 0.1830 0.1976 0.1718 0.1731 0.1895 0.1855 0.0917
Bearing 1-6 0.2337 0.2078 0.2307 0.2193 0.2306 0.2243 0.2453
Bearing 1-7 0.1747 0.2093 0.1798 0.1798 0.1813 0.1929 0.1069

Average 0.1908 0.1800 0.1463 0.1639 0.1933 0.2140 0.1218

5. Conclusions

An RUL prediction approach based on BCHViT is proposed further to improve the
RUL prediction demands of rolling bearings and meet the essential maintenance needs of
complicated mechanical equipment. Based on the Swin Transformer and rolling bearing
degradation features, this approach innovatively optimizes the process of degradation
feature extraction. To improve prediction accuracy, dual channel degrading feature fusion
is included in the traditional RUL prediction network. The proposed method is effective,
as evidenced by public datasets following conclusions are followed:

(1) Compared to the Swin transformer model, the special HViT network structure pro-
posed in this study can better use the DL network structure to extract depth features
containing more significant degradation information. This feature meets the require-
ments of bearing RUL prediction in practical engineering by providing a higher
prediction effect of RUL in the nearing failure stage.

(2) Compared with current mainstream RUL prediction methods, the proposed method
can extract depth features comprising degradation process common information from
different rolling bearing degradation processes. This depth feature effectively ensures
that the RUL prediction method is more general and accurate.

Although the method proposed in this study can effectively improve the RUL predic-
tion accuracy of rolling bearings, the prediction accuracy will be decreased significantly
when the rolling bearing degradation process is incomplete. In the future, the RUL pre-
diction method based on the sample incompleteness condition will be carried out so
that the RUL prediction model of rolling bearings based on DL can better meet practical
engineering needs.
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