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Abstract: Work-flow scheduling is for finding the allocation method to achieve optimal resource
utilization. In the scheduling process, constraints, such as time, cost and quality, need to be considered.
How to balance these parameters is a NP-hard problem, and the nonlinear manufacturing process
increases the difficulty of scheduling, so it is necessary to provide an effective heuristic algorithm.
Aiming at these problems, a multi-objective nonlinear virtual work-flow model was set up, and a
multi-objective staged scheduling optimization algorithm with the objectives of minimizing cost and
time and maximizing quality was proposed. The algorithm includes three phases: the virtualization
phase abstracts tasks and services into virtual nodes to generate a virtual work-flow model; the
virtual scheduling phase divides optimized segments and obtains the solution set through reverse
iteration; the generation phase obtains the scheduling path according to the Pareto dominance. The
proposed algorithm performed 10.5% better in production quality than the minimum critical path
algorithm, reduced the time to meet the time constraint by 9.1% and saves 13.7% more of the cost
than the production accuracy maximization algorithm.

Keywords: work-flow; multi-objective; staged scheduling optimization; pareto; manufacturing process

1. Introduction

Work-flow technology is a kind of automatic program flow that is used often for
commercial and research purposes because of its efficient and clear organization of the work
process. Exploiting work-flow technology, the manufacturing process can be interconnected,
sharing data between production machines and analytics systems [1,2]. This increased
flow of data enables a clear view in the manufacturing process, making it possible to
automatically and better schedule processes.

With the development of technology and the change of consumer demand, enterprises
are inclined toward personalized and non-standardized design and manufacturing [3]. In
this kind of complex manufacturing system, the process route presents the characteristics
of being nonlinear and highly selective. Current research focuses on solving scheduling
problems from two aspects: problem models and solution methods [4–6]. Scheduling
processes directly affect the efficiency and cost of manufacturing. Nonlinear manufacturing
processes are constrained by the requirements of the production time, product quality and
overhead costs. In addition, each customer may have different quality of service (QoS)
requirements based on their workload. How to dynamically balance these parameters is an
NP-hard problem [7].

Multi-objective optimization has become a hot research topic over the last decades, as
it has been proven to be an easy and effective approach for solving real-world optimiza-
tion problems [8]. The conflict within multi-objective optimization limits the scheduling
direction of feasible solutions, and the existing algorithms have difficulty balancing the
parameters or cannot find the optimal solution in solving the multi-objective nonlinear
scheduling problem [9,10]. This paper proposes a heuristic approach to address this restric-
tion in scheduling nonlinear manufacturing. We intend to determine a schedule for the
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tasks to select a proposal service. To obtain this schedule, we formulate a multi-objective
optimization problem: the enterprises may seek a tradeoff among processing time, cost
and quality. In this work, we establish the virtual work-flow model of the multi-objective
nonlinear manufacturing process and propose a three-stage approach to solve the problem.
The first stage is the virtualization stage; the core of this stage is simplification, and the
nonlinear work-flow instance is abstracted to a non-linear virtual work-flow model. The
second stage is the virtual scheduling stage; the work-flow is segmented, and each segment
is scheduled through a backward reduction iteration to obtain the feasible solutions. The
third stage is the generation stage; the solution set is obtained by forward scheduling, and
the scheduling sequence is generated by the Pareto domination relation.

2. Related Work

According to the optimization objective, work-flow scheduling problems can be di-
vided into single-objective optimization and multi-objective optimization. For single-
objective optimization problems, scholars often use precise algorithms, heuristic algorithms
and intelligent algorithms to solve problem. At present, most multi-objective optimization
problems consider 2–3 optimization objectives. To solve these different problems, schol-
ars usually use intelligent algorithms, heuristic algorithms, hybrid algorithms, etc. The
problem of resource provisioning and scheduling has been extensively addressed in the
literature by considering different perspectives. To achieve the optimal resource scheduling
scheme, various scheduling algorithms have been proposed.

In paper [11], the authors proposed two scheduling heuristics for complex application
jobs, which reduce scheduling overhead by reducing queue rearrangement and processing
task priority constraints. In paper [12], the authors investigated the single-machine schedul-
ing problem that considers the due date assignment and past-sequence-dependent setup
times simultaneously, and they designed an algorithm that can jointly find the optimal
sequence and optimal due dates. In paper [13], the authors proposed a Pareto-based, multi-
objective, discrete Ant Lion Optimization Algorithm that involves a new encoding scheme
for ants and antlions to address the discrete nature of work-flow scheduling. Subsequently,
they used the Pareto dominance and crowding distance approach to tackle the optimization
of multiple objectives and to achieve the optimal solutions. In paper [14], the authors
used the multi-objective Black Widow Optimization Algorithm to solve the multi-objective
optimization problem of a power system; the weighting factor method was adopted to
handle the multi-objective optimal scheduling problem by simultaneously maximizing
profit and minimizing emissions, while satisfying the related constraints. In paper [15], to
deal with the combinatorial problem, the authors presented the three main phases of hybrid,
discrete Particle Swarm Optimization, which combined with the Hill Climbing technique
at the third phase to enhance the overall performance. In paper [16], the authors formu-
lated the cyber–physical cloud systems work-flow scheduling problem under reliability,
security and time constrains, and proposed a dependable hybrid scheduling scheme with
statically scheduled tasks and dynamically assigned recoveries. In paper [17], the authors
proposed a dynamic, deadline- and budget-aware work-flow scheduling algorithm that is
designed for multiple instances or dynamic behavior work-flow in WaaS environments. In
paper [18], a variable neighborhood search-based method and a hybrid heuristic method
are developed to solve problems with practical order picking and a distribution system.
In paper [19], the authors proposed an efficient priority and relative distance algorithm to
minimize the task scheduling length for precedence-constrained work-flow applications
without violating the end-to-end deadline constraint. In paper [20], based on a generalized
backward strategy, the authors built timed Petri net models for two transient processes and
derived two linear programs to search a feasible schedule with a minimal makespan. In
paper [21], combining the merits of an artificial bee colony (ABC) and cuckoo search (CS)
in a multi-cloud environment, the authors proposed a new resource provisioning model
using the hybrid CS algorithm; the approach can provide seamless service to the users in an
efficient manner. In paper [22], the authors propose an enhanced, multi-objective, harmony
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search algorithm and a Gaussian mutation to solve flexible flow shop scheduling problems
with a sequence-based setup time, transportation time and probable rework. In paper [23],
the authors proposed a Dynamic Multi-Stage Schedule Optimization Algorithm to seek a
tradeoff among processing time, energy consumption and other cost functions in flexible
manufacturing. In paper [24], after analyzing the combined effects of cloud uncertainty
and probabilistic constraints, the authors proposed a customized Genetic Algorithm to
minimize the expected work-flow execution time and monetary cost under probabilistic
constraints on the deadline and budget. In paper [25], the authors proposed a multi-
objective optimal dispatch model of an interconnected gas–electricity energy system, and
an improved cuckoo algorithm is used to optimize the multi-objective scheduling model.
In paper [26], the authors proposed a semi-multi-objective problem by considering inter-
mediate storage with a tolerable maximum completion time, and a two-step evolutionary
algorithm solution was proposed to solve the problem. In paper [27], the authors proposed
an improved multi-objective Ant Lion Algorithm that aims to minimize the maximum
completion time and energy consumption, and simultaneously optimize the maximum
completion time, energy consumption cost and carbon emissions. In paper [28], based on
the reliability assessment results, the authors designed a migration strategy, with reliability
as the optimization goal while considering costs, and proposed a service function chain
reliability evaluation method and reliability optimization algorithm. In paper [29], based on
an improved version of the Rainfall Algorithm and the Salp Swarm Algorithm, the authors
presented a novel scheduling scheme for real-time home energy management systems.

3. Problem Description
3.1. Work-Flow Definitions

Definition 1 (Original work-flow model W). Defined as W = <P,T,L,S>, where P is the process
nodes set, denoted as P = (p0, p1, . . . ,pn); T is the transfer node set, denoted as T = (t0, t1, . . . , tm);
L is the directed edges set, denoted as L = (l0, l1, . . . , ly); S is the resources set, denoted as
S = (s0, s1, . . . , sz), which corresponds to the optional resources of each transfer node, and each
optional resource sk corresponds to the production attribute ai = (qi, ci, hi), including three parts,
namely, production quality qi, production cost ci and production time hi.

Definition 2 (Virtual node p′). Tasks in work-flow can be reconstructed to a virtual node, p′[i–j]
denotes the virtual node is reconstructed from node pi to pj, and p′[i,j] denotes the virtual node is
reconstructed of the adjacent node pi and pj. In addition, the virtual nodes pb and pe are set in the
virtual work-flow model to represent the beginning and end of the business process.

Definition 3 (Virtual work-flow VW). Defined as VW(W, DP, P′, T′, Id, Od), where VW is
obtained from the original work-flow model W through virtualization; DP is the abstract set of
detection nodes set in the model according to the process requirements, denoted as DP = (dp1,
dp2 . . . dpi . . . dpk); dpi = (σiq, σic) indicates that when the work-flow is executed to detection
department i, the quality pass rate σiq and cost pass rate σic are set in this node according to the
process requirements, and the cumulative production quality fw(pj, hj) and cumulative production
cost fc(pj, hj) of the precursor process node pj are detected respectively. If the σiq is met, the work-flow
will continue to execute; otherwise, it will enter the feedback path for adjustment until the σiq is
met. Id is the abstract set of in-degree of each node, denoted as Id = (id1, id2 . . . idi . . . idz); Od is
the abstract set of the out-degree of each node, denoted as Od = (od1, od2 . . . odi . . . odz). P′ is the
abstract process nodes set through reconstruction, denoted as P′ = (p1

′, p2
′ . . . pi

′ . . . pn
′); T′ is the

virtual transfer node set after reconstruction, denoted as T′ = (t1
′, t2
′ . . . ti

′ . . . tm
′).

Definition 4 (Virtual work-flow diagram VG). Defined as VG(VW, E), where E is the abstract
set of directed edges reflecting the dependencies of the nodes in VW, denoted as E = (e1, e2 . . . ei . . . en).

Definition 5 (Manufacturing expectation ME). Refers to the product parameters that the man-
ufacturing process represented by the nonlinear work-flow expects to obtain when the product
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is delivered. Set ME = (H, C, Q), where H is the time constraint, the latest completion time of
the work-flow; C is the cost constraint, the cost limit of the selected processing service; Q is the
production quality constraint, the minimum quality to be achieved when the product is delivered.

Definition 6 (Task interval TFi). TFi reflects the time range in which process node pi can choose
the optimal manufacturing service, and is denoted as TFi[FBi,FEi], which can be calculated by
Equation (1), where FBi is the earliest start time of process node pi, FEi is the latest start time of process
node pi, FBq is the direct predecessor of process node pi, and FEp is the direct successor.

FBi = Max
{

FBi−1 + Min
(

hij

)}
, FBi−1 ∈

{
. . . , FBq, . . .

}︸ ︷︷ ︸
k

FEi = Min
{

FEi−1 − Min
(

hij

)}
, FEi−1 ∈

{
. . . , FEp, . . .

}︸ ︷︷ ︸
l

FB1 = 0, FEn = ME.H
s.t.k = 1, 2, . . . , idi; l = 1, 2, . . . , odi

(1)

Definition 7 (The execution domain θ). θ = [θmin,θmax] is the manufacturing interval of the
virtual node transformed by the partial virtual node P’(P’ ∈ P) in the reconstructed virtual work-flow
graph VG, which can be obtained from Equation (2).{

θmin = max
{

FBj − FBi
}

θmax = min
{

FEj − FBi
} (2)

Definition 8 (Special different path SDP). If there exists a node pi in the virtual work-flow
graph VG with Od > 1, which can be reconstructed with node pj as a virtual node p’[i,j], but another
out-degree of node pi can be reconstructed with node pk as another virtual node p’[i,k], then the path
formed by pi and pk is SDP.

Definition 9 (Manufacturing attribute A). Defined as A = (AQp, ACp, AHp), it represents the
cumulative production attributes at node p, including the cumulative production quality AQp,
cumulative production cost ACp and cumulative production time AHp. It can be calculated by
Equation (3), where q is the predecessor node of node p, when lij = 1 denotes the selection of
the corresponding resource in the manufacturing resource set, and when p = E denotes that the
scheduling is complete; AE denotes the final manufacturing attribute.

AHp= Max
{

. . . , AHp, . . .
}︸ ︷︷ ︸

k

+ lpjhqj ≤ ME.H

ACp = Max
{

. . . , ACp, . . .
}︸ ︷︷ ︸

k

+ lpjcpj ≤ ME.C

AQp = ∏
ni∈N′

lijwij ≥ ME.Q

s.t.
k
∑

j=1
lij = 1,lij ∈ {0, 1}, q < p, k = 1, 2, . . . , idp

(3)

3.2. Nonlinear Virtual Work-Flow Model VWF Generation Algorithm

The essence of the work-flow scheduling problem is to establish the mapping rela-
tionship between multiple tasks and optional services. In order to improve the resource
waste and time loss caused by irrational process selection in the nonlinear manufacturing
process, this paper proposes a virtual stage scheduling model of nonlinear work-flow,
which is composed of three parts: virtual work-flow model, virtual work-flow diagram
and manufacturing resource set, which can be defined as VWF(Re, Map, VW, VG), where
Re is the manufacturing resources set consisting of the set P and the set T; Map is the set of



Processes 2023, 11, 1147 5 of 15

mapping relations from the set of manufacturing resources to the model VW, which can be
expressed as Map = (map1, map2 . . . mapi . . . , mapn + m).

When users submit work-flow tasks and requirements, the available resources in
each task and resource collection are abstracted to form a virtual manufacturing resource
collection, which is mapped to the virtual work-flow after virtualization. Tasks with
associated dependencies are divided according to the manufacturing process characteristics
and actual requirements, and detection nodes are preset to schedule tasks in each phase one
by one to generate a virtual work-flow graph. Combined with previous research [7], the
design modeling algorithm of the nonlinear virtual work-flow model VWF is as follows.

Step 1 Abstract the production as the process node set P and T, the optional resources
corresponding to the conversion form as resource set S, and the partial order
relationship of each process node as directed edge set L to construct the original
work-flow model W.

Step 2 Add the set of detection nodes DP and the virtual nodes PB and PE to the work-flow
model W and update the set of directed edges L.

Step 3 Input process nodes with od or id greater than 1 into the Queue, except for the
feedback predecessor structure.

Step 4 Output the process node pj with od > 1 in Queue, find the nearest feedback in-degree
process node pi, and delete all process nodes between pi and pj from the queue.

Step 5 Reconstruct all process nodes between nodes pi and pj, save node pi
′ temporarily

to the virtual process node set P′, reconstruct the transfer nodes involved in this
process as virtual transfer nodes, and save them to the virtual transfer node set T′.

Step 6 Iterate virtual process node pi
′ in the set P′ and determine whether there is an SDP

generated due to virtual reconstruction. If so, divide the virtual process node pi
′

and the virtual transfer node ti
′ and restore the process nodes and transfer nodes

that constitute the virtual node. Otherwise, delete the pi
′ and ti

′, repeat until the
set P′ or T′ is empty, and then output the VW.

Step 7 Traverse model VW; count all paths from adjacent process node pi to pj(pi 6= pj);
establish directed edge ejk, where k = 1, 2, . . . , idpj; calculate the parameters hjk, cjk
and qjk of directed edge ejk; and mark these parameters to form a virtual work-flow
diagram VG.

3.3. Virtual Work-Flow Example

The production process of a sheet metal workshop contains process classification, part
programming, machine setup, cutting, mass production, quality inspection and other links.
It can be extracted as a set of 12 process nodes P and the corresponding set of transfer nodes
T, as shown in Table 1.

Table 1. Sheet metal manufacturing process node sets P and T.

Node Meaning Node Meaning Node Meaning

p1 Process classification p2 Programming p3 Machine adjustment
p4 Profile processing p5 Material calculation p6 Material collection
p7 Cutting p8 Bulk processing p9 Adjustment
p10 Process allocation p11 Batch production p12 Warehouse
t1 Category ready t2 Program ready t3 Machine ready
t4 Processing ready t5 Material preparation t6 Distribution
t7 Cutting ready t8 Processing ready t9 Adjustment ready
t10 Allocation ready t11 Production ready t12 Storage ready

The production process presents nonlinear characteristics. A nonlinear virtual work-
flow can be used to optimally schedule its production time, production quality and produc-
tion cost, with multiple objectives, and input the information of each node into the model
generation algorithm VWF to obtain the work-flow model shown in Figure 1.
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Figure 1. Non-linear production process work-flow model schematic.

According to the requirements of users, the principal tasks and the corresponding
services are extracted from the production process as a process node set P and a transfer
node set T, and their execution order is mapped to the original work-flow graph. On this
basis, according to the virtualization rules, the nodes are transformed into virtual nodes,
and the directed edge relationship is reconstructed to generate a virtual work-flow graph
to decide the execution order of each task.

4. Multi-Objective Nonlinear Virtual Work-Flow Staged Scheduling Algorithm Based
on Pareto Optimization

Definition 10 (Pareto optimal). Refers to an ideal state of manufacturing resource allocation,
which is the equilibrium point of the optimal strategy. In the process of moving from one allocation
state to another, making one attribute improve without making another attribute decrease is called
Pareto improvement, and the state where there is no Pareto improvement is called Pareto optimal.

Definition 11 (Pareto domination). Suppose there are functions ƒq with the objective of max-
imizing the cumulative production quality AQp and functions ƒc and ƒh with the objectives of
minimizing the cumulative production time AHp and cumulative production cost ACp. xi = (p1/t1Sk,
p2/t2Sk, . . . , pn/tnSk) and xj = (p1/t1Sk, p2/t2Sk, . . . , pn/tnSk) are two sets of solution vectors consist-
ing of the process node pi and the transfer node tiSk on this path. When fq (xi) ≥ fq (xj), fh (xi) ≤ fh
(xj), fc (xi) ≤ fc (xj) and at least one of the strict inequalities holds, the solution vector xi dominates
the solution vector xj, denoted as xi > xj.

Definition 12 (Pareto-optimal solution). Let X be the set of feasible solutions of a multi-objective
optimization problem, and the set of solutions of all Pareto feasible solutions constitutes the Pareto
optimal solution set of this multi-objective optimization problem. xi is a Pareto optimal solution if
there is no xj in X, such that all the objective attributes corresponding to xi are elevated.

Assuming that the functions ƒq(pi,hpi) and ƒc(pi,hpi) denote the highest production
quality and lowest cost, respectively, of process node pi(pi ∈ P′) selected in its task interval
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TFi[FBi,FEi] at moment hpi for the virtual work-flow, ƒq(pi,hpi) and ƒc(pi,hpi) can be calculated
using Equation (4).

ƒq(pi, hpi) = max
{

qk
pi

}
ƒc(pi, hpi) = min

{
ck

pi

}
hpi ∈ TFpi

[
FBpi, FEpi

]
, 0 < k ≤ idpi

s.t.hpi + hpik ≤ ME.H, cpi + cpik ≤ ME.C, wpi × wpik ≥ ME.Q

(4)

Let pj be the precursor node of process node pi(pi ∈ P′,pj ∈ P′) and use Equation (5) to
calculate the cumulative production quality and cost of node pj.

ƒq(pj, hpj) = max
{

fq(pi, hpj + hpi)× qk
pj

}
ƒc(pi, hpj) = min

{
fc(pi, hpj + hpi) + ck

pj

}
hpj ∈ TFpj

[
FBpj, FEpj

]
, 0 < k ≤ idpj

s.t.hpj + hpjk ≤ ME.H, cpj + cpjk ≤ ME.C, wpj × wpjk ≥< ME.Q

(5)

The calculation of each attribute of the last task of each layer can be completed
using Equation (4), and then combined with Equation (5), can be iterated backwards to
calculate the cumulative attributes obtained by scheduling resources for each task within
the maximum range allowed by the task interval TFi.

The Multi-objective Nonlinear Virtual Work-flow Staged Scheduling Algorithm (VWFA)
uses virtual technology to transform tasks into virtual nodes, which are used as the basis
for the subsequent simplification and merging of serial and feedback paths. The relative
execution order of tasks in different stages in the optimization segment is limited by the task
interval to ensure that the constraints are met and the available resources are scheduled in
the maximum range. The results of the backward iteration are integrated to form a feasible
solution set, and the feasible solutions are ranked according to the Pareto dominance
relation, which can avoid the local optimal solution or the unreasonable local resource
allocation caused by the limitation of local parameters, and select the optimal scheduling
scheme that meets the needs of users. Based on the above strategy, the steps of algorithm
VWFA are as follows.

Step 1 Invoke the modeling algorithm VWF to process each parameter of the nonlinear
manufacturing process and form a nonlinear virtual work-flow model.

Step 2 Combine the manufacturing expectations ME and manufacturing characteristics
to reverse the work-flow hierarchy, mark the last node of each layer, traverse
backwards to the virtual node PB, and analyze and calculate the task interval TFi
of each process node pi formed by each layer using Equation (1).

Step 3 Compute and mark the ƒw(E0,hE0) and ƒc(E0,hE0) of the process node E0 of the
ending layer at each moment within its active interval TFi using Equation (4).

Step 4 Traverse the process nodes set P and determine whether there is an SDP. If not,
then process the nodes at each stage, combine the process nodes on the serial path
as virtual nodes pi, use Equation (4) to calculate the ƒq(pi,hpi) and ƒc(pi,hpi) available
to the virtual node at each moment in its execution domain, and record the local
feasible solution path. If it exists, however, turn to Step 5.

Step 5 If SDP exists, first calculate the execution domain θ of SDP using Equation (2), then
calculate ƒq(pi,hpi) and ƒc(pi,hpi) available at different moments for each process
node in this domain using Equation (4), and record the local feasible solution path.

Step 6 If the cumulative production parameters fail to meet the requirements when exe-
cuted to detect node dp, a feedback correction is made, and the scheduling results
are adjusted according to the dp, and some scheduling strategies are eliminated.

Step 7 Using Equation (3) with manufacturing expectation ME as a constraint, fully pro-
cess the set of marked model process nodes P and deposit the feasible scheduling
sequence into the Pareto solution set X according to the stage accumulation rule.
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Step 8 Determine the dominance relationship based on the manufacturing attributes of
each scheduling sequence in the Pareto solution set X and output the optimal
scheduling route x*.

5. Algorithm Analysis
5.1. Experimental Environment and Data

The server operating system used for the experiments was Windows Server 2016, with
a memory configuration of 4G. The VWF model and the optimized scheduling algorithm
VWFA code were constructed in Java. To verify the performance of the optimization
algorithm, a sheet metal shop production example described in Section 3.3 was chosen for
analysis, setting the manufacturing expectation as ME = (Q, C, H) = (0.93, 50, 51) and a
batch of sheet metal production parameters, as shown in Table 2.

Table 2. Nodes and corresponding resource set.

Node Resources Set S Node Resources Set S

t1 (2, 0.94, 0.2), (3, 0.96, 0.3) t2 (1, 0.98, 1.2)
t3 (1, 0.97, 0.3), (2, 0.99, 5) t4 (1, 0.97,1.4)
t5 (2, 0.97, 0.5), (3, 0.99, 0.7) t6 (1, 0.99, 0.6)

t7
(2, 0.90, 0.8), (3, 0.92, 1.0),

(4, 0.95, 1.3) t8 (15, 0.93, 19)

t9 (2, 0.94, 0.7), (4, 0.98, 1.2) t10 (3, 0.92, 0.3), (4, 0.95, 0.5), (6, 0.98, 0.6)
t11 (10, 0.94, 14) t12 (2, 0.96, 0.7), (3, 0.98, 1)

After inputting the process model shown in Figure 1 and the data shown in Table 2
into the algorithm VWFA, the optimal solution x* that conforms to the Pareto dominance
rule is formed by the process shown in Figure 2.
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5.2. Model Optimization Process

The scheduling process in Figure 1 is divided into three optimization segments based
on the characteristics of this sheet metal manufacturing process. ME.H = 51 day, and
the time constraints of the three optimized sections are set as follows: the first section is
equipment commissioning ME.H1 = 6, the second segment is primary process machining
ME.H2 = 25, and the third segment is finish machining ME.H3 = 20. According to the
requirements set in the detection set DP = {dp1, dp2, dp3}, in the first segment to detect
the equipment commissioning situation, set the detection point dp1 = (σ1q, σ1c), where
σ1q = 0.980, σ1c = 2.5; when converting to this detection node, if ƒq(pi,hpi) < 0.980, it is
necessary to feedback to the precursor node to recommission the equipment with a delay
of 1 day, increasing the cost by 0.5 thousand dollars and eliminating the current scheduling
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scheme if ƒc(pi,hpi) ≥ 3 thousand dollars. In the second segment, to detect the primary
process machining, set the detection node dp2, where σ2q =0.950; when converting to this
detection node, if ƒq(pi,hpi) < 0.950, it needs to be fed back to the precursor node to adjust
the processing, delaying 2 days and costing an additional 5 thousand dollars with no
cost constraint. Set the detection node dp3 in the third segment, where σ3q =0.970; when
converting to this node, if ƒq(pi,hpi) < 0.970, feedback to the predecessor node to adjust
the processing, which delays 2 days and costs an additional 3 thousand dollars with no
cost constraint. The selected scheduling scheme should satisfy ƒc(pi,hpi) ≤ 50 thousand
dollars. The manufacturing attributes of each segment can be passed cumulatively, and the
calculation procedure to obtain the Pareto solution set X according to the VWFA algorithm
is as follows.

In the first optimization segment, according to Equation (1), the active intervals of
process nodes p1, p2 and p3 are respectively TF1 = [0,2], TF2 = [2,4] and TF3 = [3,5]. The ƒq
and ƒc of process nodes p1, p2 and p3 that start at the different moments hpi are as follows.

Calculation process of process node p3:

ƒq(p3,5) = max{0.97} = 0.970; ƒc(p3,5) = 0.3;
ƒq(p3,4) = max{0.97} = 0.970; ƒc(p3,4) = 0.5;
ƒq(p3,3) = max{0.97,0.99} = 0.990; ƒc(p3,3) = 0.5.

Calculation process of process node p2:

ƒq(p2,4) = max{0.98 × ƒq(p3,5)} = 0.951; ƒc(p2,4) = 1.2;
ƒq(p2,3) = max{0.98 × ƒq(p3,4)} = 0.970; ƒc(p2,26) = 1.2;
ƒq(p2,2) = max{0.98 × ƒq(p3,3)} = 0.970; ƒc(p2,25) = 1.2.

Calculation process of process node p1:

ƒq(p1,2) = max{0.94 × ƒq(p2,4)} = 0.894; ƒc(p1,2) = 0.2;
ƒq(p1,1) = max{0.94 × ƒq(p2,3),0.96×ƒq (p2,4)} = 0.913; ƒc(p1,1) = 0.3;
ƒq(p1,0) = max{0.94 × ƒq(p2,2),0.96×ƒq (p2,3)} = 0.931; ƒc(p1,0) = 0.3.

The above process shows that the reverse iteration to p1 in this domain produces
three local scheduling paths with a cumulative production quality of ƒq(p1,0) = 0.931,
ƒq(p1,1) = 0.913 and ƒq(p1,2) = 0.894; the cumulative production times are 6, 5 and 5, and
the cumulative production costs are 2, 1.8 and 1.7, respectively. According to the rules
described in Definition 8, it is reconstructed as a virtual process node p′[1–3], and the
execution domain of p′[1–3] is obtained according to Equation (2): θ1 = [3,5]. The scheduling
process and results of p′[1–3] is in Table 3.

Table 3. Scheduling process and results of p′[1–3] under different deadlines.

Deadline Process

5

Production quality ƒq = 0.931, production time ƒh = 6 and cost ƒc = 2; because
ƒq < σ1q, execute correction processing, then ƒ′q = 0.931 + 0.931 × (1 − 0.931) = 0.995.
ƒ′h = 6 + 1 = 7, ƒ′c = 2 + 0.5 = 2.5. Due to ƒ′h exceeds ME.H1, it does not meet the
requirements and is discarded.

4

The maximum production quality is equivalent to the maximum production
accuracy of p1 when it begins at time 1, that ƒq = 0.913, production time ƒh = 5 and
cost ƒc = 1.8; because ƒq < σ1q, execute correction processing, and ƒ′q = 0.913 + 0.913
× (1 − 0.913) = 0.992, ƒ′h = 5 + 1 = 6, ƒ′c = 1.8 + 0.5 = 2.3. Meets the requirements
of dp1.

3

The maximum production quality is equivalent to the maximum production
accuracy of p1 when it begins at time 2, that ƒq = 0.894, production time ƒh = 5 and
cost ƒc = 1.7; because ƒq < σ1q, execute correction processing, and ƒ′q(p1,2) = 0.894 +
0.894 × (1 − 0.894) = 0.989, ƒ′h = 5 + 1 = 6, ƒ′c = 1.7 + 0.5 = 2.2. Meets the
requirements of dp1.

Record the feasible solutions path1a1 and path1a2 for the first optimization segment
according to Table 3. The serial path consisting of p4 and p5 in the first optimization seg-
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ment without detection nodes produces two locally feasible solutions: path1b1 and path1b2,
reverse scheduling to p4 with cumulative production quality and cost of ƒq(p4,0) = 0.940
and ƒc(p4,0) = 1.9, ƒq(p4,0) = 0.960 and ƒc(p4,0) = 2.1, respectively. Cross-combining the
locally feasible solutions, four locally feasible solutions, namely, path11, path12, path13 and
path14, are obtained.

The second optimization segment according to Equation (1) yields the active intervals
of process nodes p6, p7, p8 and p9 as TF6 = [0,5], TF7 = [1,6], TF8 = [3,8] and TF9 = [18,23],
respectively. The ƒq of process nodes p6, p7, p8 and p9 at the different start moments hpi
are calculated with the same strategy in the first segment. Six local scheduling paths are
generated when the reverse iteration is to p6. With the cumulative production quality
of ƒq(p6,0) = 0.857, ƒq(p6,1) = 0.857, ƒq(p6,2) = 0.830, ƒq(p6,3) = 0.822, ƒq(p6,4) = 0.796 and
ƒq(p6,5) = 0.779, the cumulative production times used are 24, 24, 23, 22, 21 and 20, re-
spectively. According to the rules described in Definition 8, the path meets the virtual
reconstruction requirements, and there is no SDP, so it is reconstructed as a virtual process
node p′[6–9], and the execution domain of p′[6–9] is obtained according to Equation (2):
θ2 = [18,23]. The scheduling process and results of p′[6–9] are shown in Table 4.

Table 4. Scheduling process and results of p′[6–9] under different deadlines.

Deadline Process

23
Production quality ƒq = 0.857 and production time ƒh = 24; because ƒq < σ2q, execute
correction processing, then ƒ′q = 0.857 + 0.857 × (1 − 0.857) = 0.980. ƒ′h = 24 + 2 = 26.
Due to ƒ′h exceeds ME.H2, it does not meet the requirements and is discarded.

. . . . . .

19

The maximum production accuracy is equivalent to the maximum production
accuracy of p1 when it begins at time 4, that ƒq = 0.796 and production time ƒh = 21;
because ƒq < σ2q, execute correction processing, and ƒ′q = 0.796 + 0.796 × (1 − 0.796)
= 0.958, ƒ′h = 21 + 2 = 23. Meets the requirements of dp2.

18

The maximum production accuracy is equivalent to the maximum production
accuracy of p1 when it begins at time 5, that ƒq = 0.779 and production time ƒh = 20;
because ƒq < σ2q, execute correction processing, and ƒ′q = 0.779 + 0.779 × (1 − 0.779)
= 0.951, ƒ′h = 20 + 2 = 22. Meets the requirements of dp2.

The corrected cumulative production quality is ƒ′q(p6,2) = 0.971, ƒ′q(p6,3) = 0.968,
ƒ′q(p6,4) = 0.958 and ƒ′q(p6,5) = 0.951, and 4 locally feasible solutions, namely, path21, path22,
path23, and path24, are recorded.

The third optimization segment according to Equation (1) yields the active intervals of
process nodes p10, p11 and p12 as TF10 = [0,4], TF11 = [3,7] and TF12 = [13,17], respectively.
The ƒq and ƒc of process nodes p10, p11 and p12 at different start moments hpi are calculated
with the same strategy in the first segment, and 5 local scheduling paths are generated, with
ƒq(p10,0) = 0.903, ƒq(p10,1) = 0.883, ƒq(p10,2) = 0.875, ƒq(p10,3) = 0.860 and ƒq(p10,4) = 0.823,
and the cumulative production times are 21, 20, 19, 18 and 17, respectively. According to the
rules described in Definition 8, the path meets the virtual reconstruction requirements, and
it is reconstructed as a virtual process node p′[10–12], and the execution domain of p′[10–12]
is obtained according to Equation (2): θ3 = [13,17]. The scheduling process and results of
p′[10–12] are shown in Table 5.

The paths whose cumulative production quality does not meet the requirements of σ3q
are fed back to the corresponding nodes for correction. The paths starting from moments 0
and 1 are eliminated due to the corrected cumulative production time exceeding ME.H3,
and the corrected cumulative production quality is ƒ′q(p10,2) = 0.984, ƒ′q(p10,3) = 0.980
and ƒ′q(p10,4) = 0.969; the cumulative production cost is 18.5, 18.5, 18.6 and 18.6, which
meets the requirement of σ3c; and the three local feasible solutions path31, path32 and path33
are recorded.



Processes 2023, 11, 1147 11 of 15

Table 5. Scheduling process and result of p′[10–12] under different deadlines.

Deadline Process

17

Production quality ƒq = 0.903, production time ƒh = 21 and cost ƒc = 15.6; because ƒq
< σ3q, execute correction processing, then ƒ′q = 0.903 + 0.903 × (1 − 0.903) = 0.990.
ƒ′h = 21 + 2 = 23, ƒ’c = 18.6. Due to ƒ′h exceeds ME.H3, it does not meet the
requirements and is discarded.

. . . . . .

14

The maximum production accuracy is equivalent to the maximum production
accuracy of p1 when it begins at time 3, that ƒq = 0.986 ƒh = 18 and ƒc = 15.6; because
ƒq < σ3q, execute correction processing, and ƒ′q = 0.860 + 0.860 × (1 − 0.860) = 0.980,
ƒ′h = 18 + 2 = 20 and ƒ’c = 18.6. Meets the requirements of dp3.

13

The maximum production accuracy is equivalent to the maximum production
accuracy of p1 when it begins at time 4, that ƒq = 0.823 ƒh = 17 and ƒc = 15.6; because
ƒq < σ3q, execute correction processing, and ƒ′q = 0.823 + 0.823 × (1 − 0.823) = 0.969,
ƒ′h = 17 + 2 = 19, ƒ’c = 18.6. Meets the requirements of dp3.

6. Algorithm Process and Results Analysis
6.1. VWFA Reconstruction Process

The VWFA algorithm divides the set of process nodes P in the VWF model into three
optimization segments according to the process characteristics, none of the three optimized
segments has SDP, and the process nodes of the three optimized segments are fictitiously
formed into p′[1–5], p′[6–9] and p′[10–12] according to the rules. The virtual reconstruction
process of the VWFA algorithm is shown in Figure 3.
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Table 6 shows the local feasible solutions generated by the three optimization segments.
On the basis of the characteristics of the accumulative transferability of the manufacturing
attributes in each segment, the scheduling solutions of the three optimization segments are
cross-integrated to obtain a Pareto solution set X.

Table 6. Local feasible solutions for each optimization section.

Segment Local Solution Path

First segment

path11 pB/tB→p1/t1S2→p2/t2S1→p3/t3S1, B0→p4/t4S1→p5/t5S1
path12 pB/tB→p1/t1S2→p2/t2S1→p3/t3S1, B0→p4/t4S1→p5/t5S2
path13 pB/tB→p1/t1S1→p2/t2S1→p3/t3S2, B0→p4/t4S1→p5/t5S1
path14 pB/tB→p1/t1S1→p2/t2S1→p3/t3S2, B0→p4/t4S1→p5/t5S2

Second
segment

path21 p6/t6S1→p7/t7S2→p8/t3S1→p9/t9S2
path22 p6/t6S1→p7/t7S3→p8/t3S1→p9/t9S1
path23 p6/t6S1→p7/t7S2→p8/t3S1→p9/t9S1
path24 p6/t6S1→p7/t7S1→p8/t3S1→p9/t9S2

Third segment
path31 p10/t10S2→p11/t11S1→p12/t12S2→pE/tE
path32 p10/t10S2→p11/t11S1→p12/t12S1→pE/tE
path33 p10/t10S1→p11/t11S1→p12/t12S1→pE/tE
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Take the ƒq, ƒc and ƒh as the object function. According to the domination rule
in Definition 11: determine the dominant relation of each feasible solution; the solu-
tion without Pareto improvement is the optimal solution; the Pareto optimal solution
x* = path11→path21→path31 is obtained; the final cumulative ƒq = 0.947, ƒc = 50.5 and
ƒh = 50. Under this resource allocation and scheduling strategy, one can get the optimal
equilibrium property.

6.2. Results Analyses

The data from the example described in Section 3.3 and Table 2 are input into the mini-
mum critical path algorithm (CPM) and the production accuracy maximization algorithm
(PAM). To ensure the validity and fairness of the comparison results, all three algorithms
use the experimental environment described in Section 5.1 and set the placement manu-
facturing expectation ME = (Q, C, H) = (0.93,50,51). Three different scheduling paths path
were obtained, as shown in Figure 4.
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According to the scheduling path shown in Figure 4, the CPM or PAM algorithm
has the deficiency of the single optimization goal or the lack of prediction in service
selection. The VWFA algorithm determines the executable range of each task by dividing
the work-flow into scheduling segments and calculating the execution domain of the virtual
tasks. In this domain, the service selection scheme of each task under different conditions
is simulated to expand the solution space and avoid the imbalance of overall resource
allocation caused by the optimization of the local tasks. Finally, the optimal solution of
time, cost and quality balance is obtained. Table 7 compares the scheduling results of the
three algorithms.

Table 7. Scheduling results of different algorithms.

Algorithm and Parameter
CPM PAM VWFA

ƒq ƒc ƒh ƒq ƒc ƒh ƒq ƒc ƒh

First segment 0.929 5.0 5 0.995 7.8 6 0.989 6.2 6
Second segment 0.951 26.1 22 0.969 32.1 28 0.971 25.8 25
Third segment 0.970 18.0 17 0.990 18.6 21 0.986 18.5 19

Cumulative 0.857 50.1 44 0.955 58.5 55 0.947 50.5 50

Compared with CPM, the optimized production quality improvement of VWFA under
the constraint of expectations is ∆ = (ƒq − ƒq1)/ƒq1 × 100% = 10.5%. Compared with PAM,
VWFA reduces the time by 9.1% to meet the time constraint and saves 13.7% of the cost.
This result demonstrates that the algorithm VWFA has scheduling advantages under a
limited range of EC constraints.
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7. Impact of Other Parameters on the Performance of VWFA
7.1. Impact of the Number of Process Nodes

Since the algorithm is influenced by many factors during execution, this paper only
investigates two important influencing factors: the number of process nodes and the
performance impact of the finite range of engineering expectations EC.H on the algorithm.

The cumulative production quality of the work-flow model is directly influenced by
the production quality of each process node. A random number containing {10, 15, 20, 25}
process nodes set P, corresponding to the number of {1, 2, 3, 4, 5} in the transfer node set
T, is randomly generated. The effect of the change in the number of process nodes on the
performance of the CPM and VWFA algorithms is shown in Figure 5.
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Figure 5 shows that the number of process nodes is inversely proportional to the
cumulative production quality ƒq. Compared with the CPM algorithm, the algorithm
VWFA proposed in this paper improves on the cumulative production quality ƒq by 12.6%,
17.1%, 20.7% and 26.8%, respectively.

7.2. Impact of Time Constraints on Algorithm Performance

The deadline is the latest completion time of the business process, and usually the
production quality increases with the increase of the time constraint. Randomly generating
{10,15,20} process nodes, the number of service pools Si is taken from the interval [2,5] for
any integer, increasing the deadline EC.H proportionally to 10%, 15%, 20%, 25% and 30%
as the deadline and analyzing the impact on the algorithm VWFA. The results are shown in
Figure 6.
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In Figure 6, the experimental results show an increase in production quality as the
deadline is delayed. The reason is that with the increase of the deadline, so does the execu-
tion domain increase, which means that some tasks can choose services with production
accuracy. Therefore, the deadline can be increased appropriately to improve the efficiency
of the algorithm.



Processes 2023, 11, 1147 14 of 15

8. Conclusions

Because of the complexity of a multi-objective nonlinear process, it is difficult to
obtain high-quality solution results by a single-objective algorithm. This paper proposes a
virtual work-flow model, VWF, and a staged scheduling optimization algorithm, VWFA,
to address this challenge. The complex paths in the nonlinear work-flow are simplified
and combined by virtualization, and the work-flow is divided into multiple optimization
segments. To ensure the constraints can be satisfied and the utilization of resources can be
maximized, the execution domain of the task is calculated to expand the solution space
and avoid insufficient local resource scheduling. The feasible solution is obtained by
combining backward and forward scheduling, and the optimal solutions satisfying the
multi-objective optimization are selected according to the Pareto domination relation. The
experimental results analysis shows that our approach performed better than the CPM and
PAM algorithms. Using the proposed algorithm can provide a scheduling scheme to the
users in an efficient manner, but there is still room for improvement. For example, when
task parameters change due to proficiency or workpiece wastage, the effect of parameter
changes on the algorithm should also be considered. In the future, we plan to include an
adjustment strategy to improve the robustness of the algorithm and to provide better QoS.
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