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Abstract: Maize is one of the world’s major food crops, and its yields are closely related to the
sustenance of people. However, its cultivation is hampered by various diseases. Meanwhile, maize
diseases are characterized by spots of varying and irregular shapes, which makes identifying them
with current methods challenging. Therefore, we propose an adversarial training collaborating
multi-path context feature aggregation network for maize disease density prediction. Specifically,
our multi-scale patch-embedding module uses multi-scale convolution to extract feature maps of
different sizes from maize images and performs a patch-embedding operation. Then, we adopt the
multi-path context-feature aggregation module, which is divided into four paths to further extract
detailed features and long-range information. As part of the aggregation module, the multi-scale
feature-interaction operation will skillfully integrate rough and detailed features at the same feature
level, thereby improving prediction accuracy. By adding noise interference to the input maize image,
our adversarial training method can produce adversarial samples. These samples will interfere
with the normal training of the network—thus improving its robustness. We tested our proposed
method on the Plant Village dataset, which contains three types of diseased and healthy maize leaves.
Our method achieved an average accuracy of 99.50%, surpassing seven mainstream models and
showing its effectiveness in maize disease density prediction. This research has theoretical and
applied significance for the intelligent and accurate detection of corn leaf diseases.

Keywords: maize disease; adversarial training; context feature aggregation; patch embedding

1. Introduction

Crop yields are an instrumental factor in ensuring sustainable economic growth [1].
Maize has excellent adaptability, a wide planting area and distribution system, a variety of
applications, and the potential to have its production increased [2,3]. As one of the most
widely distributed crops in the world, it ranks second only to rice and wheat in terms
of sowing area and production [4,5]. In spite of this, maize yield is impacted by many
factors—including soil, heat, water, natural disasters, and disease—which result in a loss
of 6–10% of corn production every year [6]. It is therefore crucial to detect and monitor
diseases as early as possible during the growth of maize. Statistics indicate that there are
more than 80 kinds of maize diseases in the world [7]. Among the most common maize
diseases are large and small leaf spots, curved spore leaf spots, rust, brown spots, etc.—all
of which adversely affect maize yield [8]. Presently, the identification of maize diseases is
largely dependent on manual observations by growers [9]. This is time-consuming and
laborious and can result in misjudgments due to a lack of professional knowledge [10]. At
the same time, this makes it difficult to implement timely preventive and control programs.
As a result, there is an urgent need for an intelligent and effective method that can be used
for identifying maize diseases and increasing maize yields [11,12].
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Up to now, many researchers have proposed various methods for crop disease identi-
fication. These methods are mainly divided into two categories: machine learning methods
based on traditional features and automatic feature-learning methods based on deep learn-
ing [13–15]. For machine learning methods, an example is the work of Zhang et al. [16], in
which a genetic support vector machine (SVM) was trained to classify six maize diseases
with an average classification accuracy of 90.25%. Aravind et al. [17] used an SVM classifier
to classify maize diseases and achieved an average accuracy rate of 83.7%. Zhang et al. [18]
first segmented significant disease features from maize pictures, and then followed this by
further classifying maize diseases using the k-nearest neighbor (KNN) with an accuracy of
over 90%. Alehegn [19] applied an SVM to extract color, grain, and shape information from
Ethiopian maize leaves, achieving an average accuracy of 95.63% in a dataset containing
800 maize leaves. Nonetheless, machine learning methods require training data and hand-
designed features that are high quality, and thus the feature extraction ability for some data
is poor and lacks robustness, which leads to unsatisfactory recognition accuracy. As for
deep learning methods, they benefit from the powerful feature-extraction capabilities of
convolution neural networks (CNNs). Waheed et al. [20] proposed an optimized dense
CNN architecture (DenseNet) for the identification and classification of three types of
diseased maize leaves in addition to healthy maize leaves. Gui et al. [21] proposed an
improved CNN model for plant disease identification in the field by exploring the potential
and generalization ability of CNN models, achieving a 72.03% accuracy. Qian et al. [22]
explored the effect of a Transformer on maize disease identification, and then proposed an
improved model on the basis of self-attention, which outperformed five mainstream CNN
models. Dechant et al. [23] developed an automatic identification system for leaf blight
detection in the field environment. Their method overcame the irregular leaf interference in
the field environment and achieved 96.7% accuracy. For a four-class maize leaf recognition
task, Xu et al. [24] implemented the Inception module in AlexNet, designed TCI-ALEXN,
and avoided overfitting by using a global pooling layer. Ahila et al. [25] proposed a mod-
ified CNN-based LeNet method for diseased maize leaf identification and classification,
and achieved 97.89% accuracy. Even though all of the above methods are capable of gen-
erating better detection results, the majority of them only use a CNN or a Transformer.
This method does not consider detailed and long-range features, making it difficult to
accurately predict and identify maize diseases [26]. This paper attempts to make maize
disease density predictions by combining a depth convolution and a Transformer. Our main
objective was to extract different features from various types of corn disease images with
similar characteristics. At the same time, we needed to overcome the complex background
noise to improve the prediction accuracy. To this end, we proposed an adversarial training
collaborating multi-path context-feature aggregation network for maize disease density
prediction. Specifically, we used multi-scale patch embedding to initially obtain multi-scale
features in maize disease images, and multi-path context-feature aggregation to further
obtain detailed and long-range feature information and aggregate it at the same feature
level. Lastly, we used the adversarial training method to obtain adversarial samples by
adding noise to the input maize images. This perturbed the training process—thus further
improving the model’s robustness and resistance to noise. The contributions of this paper
are summarized as follows:

(1) We employ a multi-scale patch embedding module to extract multi-scale features
from various types of maize images using multi-scale convolution with overlapping
parts—thus adapting to different maize disease characteristics.

(2) Our proposed multi-path context feature aggregation module uses a depth convo-
lution and Transformer encoder to further extract detailed features and long-range
features, and allows these two to interact in the same dimension in order for the multi-
scale features to effectively improve the network’s ability to characterize features.

(3) We use the adversarial training method to generate adversarial samples by adding
noise perturbations to the input maize images; this disrupts the normal training of
the network—thus improving the robustness of the network.
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2. Materials and Methods
2.1. Dataset

The experimental data used in this paper were primarily derived from the Plant Village
international common dataset, which contains a large number of images depicting plant
diseases. We used three kinds of diseased maize leaves as well as healthy maize leaves
in this dataset as experimental data. The three maize disease species that were identified
included leaf blight disease [27], gray leaf disease [28], and leaf rust disease [29]—with a
total of 7701 images. Figure 1 illustrates some data images of the diseased and healthy
maize leaves.
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Figure 1. Depiction of diseased and healthy maize leaves from the Plant Village dataset. Note that
the red rectangles correspond to maize disease characteristics.

Figure 1 illustrates the individual characteristics of the diseased maize leaves and
healthy maize leaves. The leaf surfaces of healthy leaves are bright and smooth, showing
no obvious disease symptoms; blighted leaves show gray or yellow–brown spots that do
not expand, but spread parallel to the leaf veins; gray leaves have no obvious brown spots
on the edges, but have more spots appearing parallel to the leaf veins; and rusted leaves
show herpetic patches with colors from yellow to brown on both sides of the leaves, which
are surrounded by yellow haloes.

The original resolution of the images in the dataset was 256 × 256 pixels, and in order
to better fit our proposed network structure, we adjusted the images to be 224 × 224 pixels.
In addition, the overall dataset was divided into a training set and a testing set. Specifically,
the training set rate for leaf blight, gray leaf, healthy leaf, and leaf rust images was 78%,
75%, 75%, and 80%, respectively. Table 1 summarizes the number of images in the training
set and testing set after the dataset division.
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Table 1. Distribution details of the maize disease dataset.

Type Leaf Blight Gray Leaf Healthy Leaf Leaf Rust

Training Set 1743 750 1935 1523
Testing Set 500 250 500 500

Total 2243 1000 2435 2023

2.2. Overview of Network

Figure 2 shows the overview of the proposed adversarial training collaborating multi-
path context feature aggregation network. The implementation process of our method
was mainly divided into four steps, and each step was further divided into two parts:
multi-scale patch embedding and multi-path context-feature aggregation, with the aim
of obtaining multi-scale maize disease characteristics. Specifically, the multi-scale patch-
embedding module extracted feature maps of different sizes by multi-scale convolution and
performed a patch embedding operation. During the embedding of the multi-scale patch,
it was flattened into tokens of different scales. Features with the same sequence length
were output after adjusting the filling step of the convolution. In addition, the multi-path
context feature aggregation module transferred the tokens with the same sequence length
independently and simultaneously to the deep convolution and Transformer encoder
through multiple paths for the further extraction of detailed features, and then performed a
multi-scale feature interaction—thus identifying coarse and detailed feature representations
at the same feature level. At the same time, our adversarial training module added noise to
the input image to obtain the adversarial sample to improve the network’s resistance to
noise and ultimately improve its robustness.
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Figure 2. Overview of the proposed adversarial training, collaborating, multi-path context-feature
aggregation network.

2.3. Multi-Scale Patch Embedding

Since the selected diseased maize leaves had small disease spots on the blighted leaves
and large rust spots on the rusted leaves, conventional convolution could not take into
account both detailed and large-scale disease features. To this end, we adapted multi-
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scale convolution—which is different from conventional convolution—to obtain multi-level
disease-feature information. As shown in Figure 3, our multi-scale convolution was divided
into overlapping 3 × 3, 5 × 5, and 7 × 7 parts.
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Figure 3. Schematic diagram of the multi-scale patch embedding.

The three convolution kernels were cascaded to obtain tokens with rich maize-disease
information at multiple scales, and the height and width of the token feature map dimen-
sions were calculated as follows:

Hi =

[
Hi−1 − k + 2p

s
+ 1

]
, Wi =

[
Wi−1 − k + 2p

s
+ 1

]
(1)

where k represents the size of the convolution kernel in a 2D convolution, s represents
the stride, and p represents the padding. We can adjust the sequence length of the token
by changing the stride and padding; this ensures that the output of different convolution
kernel sizes attains the same size patch for embedding after convolution. In addition, the
Hardswish activation function was executed once after each convolution.

2.4. Multi-Path Context-Feature Aggregation

Although multi-scale convolution can focus on locally connected information and
retain a sense of local details, it tends to ignore correlations between patches. On the
other hand, a Transformer is capable of obtaining long-range information. When detecting
healthy leaves, it is imperative to ensure that local patches are in a healthy condition; this
requires not only detailed information at the regional level, but also long-range informa-
tion. Accordingly, our proposed multi-path context-feature aggregation module further
processes multi-scale patches by performing depth convolution and Transformer encoder
operations. Thus, local details and long-range information on maize leaves can be obtained
simultaneously. Specifically, depth convolution is a composite component that consists of a
1 × 1 convolution, a 3 × 3 DW convolution, and a 1 × 1 convolution with the same channel
size. Our Transformer encoder used FactorAtt, which was proposed for a CoAT in [30] and
is calculated as follows:

FactorAtt(Q, K, V) =
Q√
C
(so f tmax(K)TV) (2)

where Q, K, and V are the linearly projected queries, keys, and values of the Transformer
encoder, respectively. Since the pieces of extracted detailed and long-range feature informa-
tion are currently independent of each other, we could not maximize their value. Therefore,
we performed a multi-scale feature-interaction operation to allow for interactions between
detailed and long-range features for enriched representations:

Ai = Concat([Di, Li,0, . . . , Li,j]) (3)

where Di represents the detailed feature at stage i, j represents the path of the Transformer
encoder, and Li,j represents the long-range feature at stage i in path j. In our implementation,
j = 3, which means that there are three Transformer encoder paths, and Ai refers to the final
aggregated feature.
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2.5. Loss Function

Since our maize disease prediction is actually a multi-classification task with four
categories in total, we used cross-entropy loss—which is common in classification tasks—
as the loss function. In our implementation, each class was compared against all others
(as one). We used the softmax function to transform numerical results into probability
values. Moreover, the predicted maize type was determined with the maximum probability
values—thus achieving multi-classification. Cross-entropy loss was calculated as follows:

L(pc) = −
K

∑
c=1

yc log(pc) (4)

where K is the total number of maize leaf species, c is the current predicted maize leaf
species, yc is the current actual maize leaf species, and pc is the probability that our method
will predict the current sample as maize leaf species c.

It is possible to smooth losses by using adversarial training under the given input
conditions, which is also an effective technique for data enhancement. Training for deep
learning is often sensitive to perturbing or noisy data. In the case of maize disease images,
there are differences between samples due to the diversity of the data, which poses a
challenge for the model training process. Thus, we adapted adversarial training loss for the
purpose of regularization, which was calculated as follows:

LAT = D[p(y|x), p(y|x + radv, θ)] (5)

where rcn represents the added counter noise to the input maize images; this was calculated
as follows:

rcn ≡ argmax
r
{D[p(y|x), p(y|x + r, θ]; ‖r‖2 ≤ λ} (6)

In the above equations, x represents the input data and y represents the output results.
D represents the non-negative measurement of the output after adding noise to the input
maize data. p(y|x) represents the conditional probability of the input x. ‖·‖ represents the
L2 norm, limiting the noise value between 0 and 1. r represents the noise in the input maize
image, and its distribution follows a mean value of 0 and a variance of 1. The specific noise
value is 1 × 10−6, and λ represents the tolerance value, which is set at 0.5.

KL divergence, sometimes referred to as information divergence, is basically a measure
of the relative entropy between characteristics. It is an asymmetric measure that was
employed to quantify the difference between the perturbed samples and the initially
expected samples in the probability distribution. We calculated it as follows:

DKL(P‖Q) ≡
N

∑
i=1

[P(xi) log P(xi)− P(xi) log Q(xi)] (7)

where N represents the number of input maize samples, P(xi) represents the actual predic-
tion probability of sample i, and Q(xi) represents the prediction probability after noise has
been added. It is noteworthy that this loss produces a perturbation for the output results of
the network rather than the actual corn disease species. Then, the optimization process was
performed by measuring the predicted probabilities before and after the addition of noise.

Therefore, we combined the cross-entropy loss and adversarial training loss as the
loss function.

3. Experiments and Results
3.1. Experimental Settings

We performed all of our experiments on a tower server running the Ubuntu 20.04.2 LTS
operating system on an Intel(R) Xeon(R) Gold 6226R CPU @ 2.90 GHz CPU (Santa Clara,
CA, USA) and an Nvidia Tesla A100 with 80 GB of GPU (Santa Clara, CA, USA) memory. To
speed up the training process, our experiments were implemented using the PyTorch deep
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learning framework. For training, all the experiments were run with a batch size of 32, and
the total number of epochs was 200. Our input image size was resized to 224 × 224 pixels.
We used the Adam optimizer with an initial learning rate = 0.00008 and a weight decay
α = 0.00004 for the rest of the epochs. The specific settings for the hyperparameters during
our adversarial training were a perturbation value of 1 × 10−6 and a tolerance value of 0.5.

3.2. Evaluation Metrics

We chose accuracy, precision, and recall metrics to evaluate the performance of each
method in terms of accurate identification, missed detection, and false identification. These
metrics were defined as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(8)

Precision =
TP

TP + FP
(9)

Recall =
TP

TP + FN
(10)

where TP represents the number of true positives, TN represents the number of true
negatives, FP represents the number of false positives, and FN represents the number of
false negatives.

3.3. Quantitative Analysis

The receiver operating characteristic (ROC) and precision-recall (PR) curves are shown
in Figure 4a,b, respectively, and both demonstrate the excellent prediction performance
of our method. Since the values of the curves were close to 1, there was an overlap of
the curves. Therefore, to facilitate observations with the experimental results, we further
zoomed in on the images. The larger the area formed by the curve with the horizontal axis
for either the ROC curve or PR curve, the better the performance. Clearly, our method
generated near-perfect metric results, as the two curves were very close to the upper-left and
upper-right corners. This shows that our method, which uses multi-scale patch embedding
and multi-path context-feature aggregation, can further enhance the overall prediction
performance for maize disease density prediction. It is evident that our method, which
makes use of multi-scale patch embedding and multi-path context-feature aggregation,
allows us to extract and characterize the features of diseased and healthy maize leaves
more accurately.
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As shown in Figure 5a, we computed the confusion matrix to obtain explanatory
insights into the maize disease density prediction results. The dark-colored squares on
the diagonal indicate correct predictions, while the other light-colored squares indicate
incorrect predictions. We can see that the diagonal prediction values were close to 1. It is
evident from these results that our method was capable of obtaining the corresponding
features for the three types of diseased maize leaves and the healthy maize leaves—thereby
allowing us to make correct density predictions.
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Figure 5. Results of the quantitative analysis. (a) Confusion matrix. (b) Correlation matrix of
51 randomly chosen testing maize samples.

Our network was divided into four stages, with each stage progressively refining
the acquired features. At the final stage of the net process, we chose 51 random samples
from the validation set; first, we clustered them, followed by calculating the Euclidean
distances between each pair, computing similarity scores (ranging from 0 to 1), and finally,
plotting the correlation matrix in Figure 5b. The highest value is highlighted on the
diagonal of the correlation matrix, which indicates that the distance between the two feature
maps was relatively close to zero. In addition to the diagonal data, the similarity scores
for the remaining data were also high, which indicates that the feature representations
learned by our method through multi-scale patch embedding and multi-path context-
feature aggregation were very similar to the actual feature representations in the Euclidean
distance space—demonstrating that our method can obtain robust representations of
feature information.

As shown in Table 2, we compared the results of the various methods (VGG11 [31],
EfficientNet [32], Inception-v3 [33], MobileNet [34], ResNet50 [35], ViT [36], and Improved
ViT [22]) by using three metrics on the Plant Village dataset. Among them, VGG11, Effi-
cientNet, Inception-v3, MobileNet, and ResNet50 had an average accuracy of 97.9%, 91.6%,
97.2%, 90.2% and 96.6%, respectively. Benefiting from the self-attentive mechanism in
the Transformer, ViT, Improved ViT, and our method achieved an average accuracy of
93.9%, 98.7%, and 99.5%, respectively—which is much higher than that of other CNN-
based methods. For the precision and recall metrics, we tested the results of predictive
metrics for each of the three types of diseased maize leaves as well as the healthy leaves
according to the distribution of the dataset. As a result of the clever combination of depth
convolution and a Transformer encoder, we achieved precision and recall metrics of 98.6%
and 99.8% on healthy leaves, respectively. In addition, our method detected gray leaves
with a recall value of 100%; this is an encouraging result, indicating that our multi-scale
patch embedding module can effectively extract gray leaves’ disease characteristics.
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Table 2. Comparison of three metrics to the results of other methods.

Metrics VGG11 EfficientNet Inception-
v3 MobileNet ResNet50 ViT Improved

ViT
Our Proposed

Method

Accuracy 97.9% 91.6% 97.2% 90.2% 96.6% 93.9% 98.7% 99.5%

Precision
Leaf Blight 99% 90% 97% 88% 99% 92% 99% 98.4%
Gray Leaf 100% 97% 99% 99% 100% 96% 100% 99.6%

Healthy Leaf 96% 88% 96% 88% 94% 91% 97% 98.6%
Leaf Rust 98% 94% 98% 92% 96% 98% 99% 99.8%

Recall
Leaf Blight 96% 86% 94% 86% 91% 90% 97% 98.4%
Gray Leaf 97% 89% 98% 85% 97% 92% 99% 100%

Healthy Leaf 100% 92% 98% 93% 99% 95% 99% 99.8%
Leaf Rust 99% 98% 100% 96% 99% 97% 100% 99.8%

3.4. Interpretability Analysis

By utilizing the t-distributed stochastic neighbor embedding algorithm (t-SNE) [37],
the regional variation in data density is represented by distance, and the size of the cluster-
ing set does not reflect the actual distance. Taking advantage of this nonlinear generative
relationship, t-SNE is able to classify data results more accurately. As shown in Figure 6,
the various colors indicated similarities between the three types of diseased maize leaves
and the healthy leaves. Except for a small number of blight samples scattered far from
the set, the other three types of samples were well grouped in their own neighborhoods.
As a result, we can conclude that our proposed method is able to learn to identify similar
representations from different maize samples.
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4. Discussion

Maize disease recognition is of paramount importance in the agricultural field, and
many researchers have studied a variety of algorithms for disease recognition; however,
there are still defects. Traditional machine learning methods have a poor feature extraction
ability, lack of robustness, and high requirements for training data quality—resulting in a
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low recognition accuracy. Deep learning methods are mostly based on neural networks;
detecting and predicting maize diseases effectively and accurately is difficult because only
local characteristics are taken into account and global information is not incorporated.

Despite the fact that we used images of three different varieties of diseased maize
leaves in addition to healthy maize leaves, their appearance features were relatively similar—
in particular, their predominant color was green. In terms of lesion characteristics, there
were no significant differences between the three types of diseased leaves (mostly small
spots), which presented an additional challenge for the detection method.

In our experiments, we tested eight methods: five CNN-based and three Transformer-
based methods. CNN-based approaches rely primarily on convolutional methods for
implementation and have the advantage of extracting local features. Our experimental
results indicated that VGG-11 achieved an average accuracy of 97.6%. In addition, Thakur
et al. [38] created a lightweight VGGNet to detect three crop diseases with an accuracy of
99.16%. Li et al. [39] combined inflated convolution and attention mechanisms to detect
corn diseases in a field environment.

The CNN-based methods produced good results; however, the overall effect was not
as effective as the Transformer-based methods due to the complex backgrounds of the corn
images in natural environments and the close relationships between the spots—whereas
convolution ignored long-range information, which is extremely important [40]. From our
experimental results, we can see that the patch-embedding operation segmented the maize
image into multiple patches and enhanced the correlation between the regions—thereby
improving the feature representation of the disease. The Improved ViT and our method
both achieved 100% recall metrics for two maize diseases—leaf rust and leaf blight—further
demonstrating the Transformer’s effectiveness for maize disease detection.

Based on the above discussion, our adversarial training collaborating multi-path
context feature aggregation network is able to obtain tokens of different scales through
multi-scale patch embedding, which can be independently input into Transformer encoders
through multiple paths. In the process of multi-path context feature aggregation, multi-scale
feature interactions can connect local features extracted by convolution with global features
obtained by the Transformer, which can maximize the advantages of the local connectivity
of convolution and the global relevance of the Transformer. Finally, the robustness and
feature extraction ability of the model are further improved by the adversarial training
method. On the Plant Village dataset—consisting of three diseases (blighted leaves, gray
leaves, and rusted leaves) and healthy maize leaves—we achieved an average accuracy of
99.50%. Our method has a strong practical application value; it can help planters detect
disease in a timely and accurate manner. It can also prevent and control pests and diseases,
improve maize yield, and increase economic benefits.

5. Conclusions

In this paper, we proposed an adversarial training collaborating multi-path context
feature aggregation network for maize disease density prediction. Multi-scale patch em-
bedding is capable of extracting multiple tokens with corresponding features from various
maize disease images, while multi-path context feature aggregation independently inter-
acts with the extracted tokens at different scales through multiple paths—thus achieving
effective multi-scale feature aggregation. Finally, we used the adversarial training method
to reduce the problem of network overfitting and further improve the robustness and gener-
alization of the model. We conducted quantitative analysis and interpretability analysis on
the Plant Village dataset. As a result, we achieved high-quality results—with a recognition
accuracy of 98.4%, 99.60%, 98.62%, and 99.80% for leaf blight, gray leaf, healthy leaf, and
leaf rust images, respectively. In the future, we will further optimize the network structure
to improve its recognition accuracy, and also apply it for the recognition of more kinds of
plant diseases.
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