
Citation: Mouellef, M.; Vetter, F.L.;

Strube, J. Benefits and Limitations of

Artificial Neural Networks in Process

Chromatography Design and

Operation. Processes 2023, 11, 1115.

https://doi.org/10.3390/pr11041115

Academic Editor: Alexander

Novikov

Received: 7 March 2023

Revised: 29 March 2023

Accepted: 3 April 2023

Published: 5 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

processes

Article

Benefits and Limitations of Artificial Neural Networks in
Process Chromatography Design and Operation
Mourad Mouellef, Florian Lukas Vetter and Jochen Strube *

Institute for Separation and Process Technology, Clausthal University of Technology, Leibnizstraße 15,
D-38678 Clausthal-Zellerfeld, Germany
* Correspondence: strube@itv.tu-clausthal.de

Abstract: Due to the progressive digitalization of the industry, more and more data is available not
only as digitally stored data but also as online data via standardized interfaces. This not only leads to
further improvements in process modeling through more data but also opens up the possibility of
linking process models with online data of the process plants. As a result, digital representations
of the processes emerge, which are called Digital Twins. To further improve these Digital Twins,
process models in general, and the challenging process design and development task itself, the new
data availability is paired with recent advancements in the field of machine learning. This paper
presents a case study of an ANN for the parameter estimation of a Steric Mass Action (SMA)-based
mixed-mode chromatography model. The results are used to exemplify, discuss, and point out the
effort/benefit balance of ANN. To set the results in a wider context, the results and use cases of other
working groups are also considered by categorizing them and providing background information to
further discuss the benefits, effort, and limitations of ANNs in the field of chromatography.

Keywords: parameter estimation; machine learning; mixed-mode chromatography; chromatography
modeling; artificial neural networks; hybrid models

1. Introduction

With the ongoing digitalization of the industry, the so-called Industry 4.0, previously
inaccessible or barely accessible data are now available. Previously handwritten or printed
process data is digitalized or accessible via standardized interfaces like OPC UA [1–3]. This
digitalization also enables new opportunities in process development and optimization [3,4].
One concept is the implementation of Digital Twins of the process. These digital twins
are digital copies of the process [5,6]. In the context of process engineering, these are
sophisticated models of the processes, as shown in Figure 1. These do not only support
process development in the early stages but also enable the tracking of the process itself
and its deviations. This can be utilized to predict consequences and improve process
performance and/or quality [7,8].
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Figure 1. Concept of a scalable digital twin, based on the concepts of Sixt et al. [9], Zobel-Roos
et al. [10], and Uhl et al. [11]. It is based on an experimentally validated mechanistic model with
possibly hybrid parts while considering the Quality by Design (QbD) [12] approach.

Digital twins need to be scalable to be useful in process development, manufacturing,
and piloting. However, certain aspects, such as phase equilibrium behavior and mass
transfer kinetics, do not change with scale, while others, like fluid dynamics and energy
distribution, do. To create a predictive process model, it is important to separate these
effects and determine the model parameters at the laboratory scale. Then only the fluid
dynamics have to be changed at larger scales. In order to rely on any model-based decisions,
these models must be validated experimentally with accuracy and precision. Such model
validation is distinctly based on a statistical design of experiments (DoE) plan at mini
plants. The scalable digital twin concept is shown in Figure 1 [9]. Artificial neural networks
(ANN) can be used in a number of ways. They can serve as regressors for process analyt-
ical technology (PAT) sensor data or replace methods like the partial least squares (PLS)
algorithm. ANN can also be used to determine model parameters instead of minimizing
the sum of least square errors between experimental and simulated datasets. Additionally,
ANNs can be used to adapt the digital twin’s process and model parameters to real-time
operation data. Another application of ANN is in process models or as part of such models,
e.g., hybrid models. A complete framework for total process design and operation has
already been established [10,11,13].

Concerning process chromatography, over the years, many methods for modeling and
optimization of process chromatography have been suggested and implemented [14–20].
Instead of only exploiting existing methods, new methods like the utilization of machine
learning algorithms are explored. These range from common data analysis tools like
the Partial Least Squares (PLS) algorithm to the utilization of artificial neural networks
(ANN) [21–24], which are considered universal approximators [25].

For the sake of simplicity, this work focuses on artificial neural networks (ANNs). The
ANNs can be utilized in all levels of Figure 2. In the context of process chromatography, cur-
rent ANN approaches can be simplified into the following categories (Figure 3). Depending
on the category, different types of solutions can be realized. On the other hand, different
types of training and different perquisites and amounts of data samples are necessary for a
successful implementation.
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Figure 2. Levels of digital twins based on Udugama et al. [8].

Figure 3. ANN application categories. (a) The ANN serves as a regressor. (b) The ANN regressor
supplies a mathematical model with data. (c) The ANN is incorporated in the mechanistic model.
(d) A physics-informed neural network (PINN) model.

Figure 3a describes a general regressor, which is a type of ANN that maps inputs to
outputs without considering any underlying mechanistic relationships. This type of ANN
works best within its training area and may not be able to extrapolate data beyond its limits.
The outputs are produced in a fraction of seconds [26–35].

Figure 3b describes an ANN that is still a general regressor but tries to identify model
parameters from measurements. In this case, the ANN supplies parameters to the model.
It is necessary to consider the model input, which affects the input of the ANN, in the
training dataset. The outputs are also produced in fractions of a second [22,36–41].

Figure 3c describes an ANN that is part of the equation system of the model. The
ANN receives input from the equation system and delivers results back to the equation
system. In this case, the ANN is a function that can adapt to the problem, meaning it learns
to be the missing equation(s) of the mechanistic model based on supported data. In other
words, in the classical approach, only parameters of a function are adjusted to match the
data, while in this approach, an entire function is evolved to match the reference data.
Therefore, this is called a hybrid model in the context of this paper because the model itself
consists of data-driven and mechanistic elements. In this scenario, the output of the model
is primarily constrained in terms of speed and accuracy by the limitations of the equation
system and the information contained within the available data [23,42,43].
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Figure 3d depicts a so-called physics-informed neural network (PINN) that constitutes
the model, or at least a significant portion of it. In this scenario, the ANN learns the
underlying mechanistic equations, ranging from algebraic equations to partial differential
equations, and can account for any unknown effects through the data supplied. The
model output is generated quickly, within a fraction of a second, making it a valuable
tool for real-time applications. This type is still in an early stage of research in the field of
chromatography [44–46]. Further information about PINNS can be found in [47–49].

Before discussing the benefits and drawbacks of each approach, it is important to
understand how the training in each of the approaches works in general. This is also
essential for a better understanding of the effort and opportunities ANN offers. A simplified
scheme is shown in Figure 4. During training, the ANN receives an input and a desired
output. The current result is then compared to the desired result, and the error is calculated
based on a user-defined formula. The training algorithm then tries to minimize this error
by adjusting the ANN parameters accordingly via backpropagation [50,51]. This process is
repeated until there is no more improvement over a specified number of training epochs or
a certain threshold is met. To avoid overfitting or underfitting, several approaches are taken.
At first, an ANN architecture has to be developed that is able to perform the mapping
from inputs to outputs of the given data without overfitting. This is mostly influenced
by the underlying complexity of the information in the data itself [50,51]. In practice,
different amounts of layers and neurons and different activation functions are tested until a
promising candidate emerges [31,37,44,52]. In chromatography, these architectures mostly
follow the fully connected feed-forward scheme. Further performance-enhancing options
are different loss functions and different training algorithms with different parameters.
Additionally, techniques such as dropout or regularization are utilized to increase the
generalization ability of ANNs. Thereby, generalization means the error of the ANN on
unseen data [50,51]. This generalization ability is also greatly influenced by the amount
of training data, as shown by Pirrung et al. [31]. In the end, the optimization of all those
so-called hyperparameters leads to multiple networks being trained and evaluated during
the whole ANN development process. Detailed information concerning ANNs in general
and the training process can be found in Fausett [50] and Goodfellow at el. [51].

Figure 4. ANN training alternatives. (a) ANN as a regressor, e.g., isotherm parameters from
chromatograms or retention time prediction (b) Training of a PINN. (c) A hybrid model with ANN as
part of the model/equation system.

Figure 4a shows the case of the Figure 3a category regressor and the Figure 3b category
regressor with the subsequent model. Information exists only in the data. In this case,
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an appropriate amount of data is required for training, and the training duration mainly
depends on the network architecture and the amount and complexity of the data. This type
of model may not be predictive outside the bounds of the training data. An example is a
regressor for isotherm parameters or retention time.

Figure 4b shows the simplified training scheme of a physics-informed neural net-
work (PINN) from Figure 3c. To train a PINN, physical principles are first formulated as
mathematical equations, which are then incorporated into the loss function used in the
training process. The physical constraints can range from simple algebraic equations to
complex partial differential equations (PDE). The neural network then tries to optimize
the loss function by minimizing the error between predicted and actual outcomes while
satisfying the imposed physical constraints. The error can be calculated by using automatic
differentiation [47–49], thus no human interaction is necessary. By doing so, the network
learns the underlying physical principles governing the system being studied, leading to
more accurate and reliable predictions. This type of model is predictive because it follows
the rules of the underlying PDEs. On the other hand, the model has to be retrained if the
initial conditions or boundary conditions are changed, as stated by Subraveti et al. [46].

Figure 4c shows most of the information is in the model equation system, and the
missing information (e.g., the isotherm) is in the data. In this case, the ANN is part of the
equation system, and the data is only needed for the non-mathematically described part
of the model. The whole model has to be solved for each ANN training epoch, and the
training is limited by the complexity of the missing data and the model itself [23,42,43].
This hybrid model learns the behavior that is not described in the model equation, and the
ANN is modified so that the whole model fits the data. This is a form of fitting, but instead
of modifying parameters, a whole function is modified. The model is only predictive within
the range of the input data [23].

Most examples of ANNs as regressors, as shown in Figure 3a, are used for process
optimization. First, an ANN is developed to predict certain values. Then a standard
optimization algorithm is used to perform the optimization with the ANN’s inputs and
outputs. Examples are Golubović et al. [28], Nagrath et al. [30], and Pirrung et al. [31].

Golubović et al. [28] used ANNs for retention factor optimization of mycophenolate
mofetil (MFM) and its degradation products. The ANN predicted the retention factors
based on buffer composition, flow rate, and column temperature. A purely experimental
dataset of 33 samples based on the Central Composite Design (CCD) was used, which is
able to detect linear and quadratic effects. The ANN outperformed standard Multilinear
Regression (MLR) and enabled the reduction of the experiment duration from 6.2 min to
5.2 min. The drawbacks of this approach may be the limitations on the area and information
of the CCD design space and the experimental effort. Designing and performing these
experiments on a preparative chromatography scale may also not be possible. On the other
hand, no process knowledge or process modeling is necessary for this approach. Even no
ANN knowledge is necessary, as the network was optimized by trial and error.

Nagrath et al. [30] used, in contrast to Golubović et al. [28], simulated data instead of
experimental data to overcome the experimental bottleneck, which becomes more relevant
the more complex the task becomes. As stated by Nagrath et al. [30], a rising number of
parameters has become a critical issue in optimization procedures solely based on mecha-
nistic models as proposed by Narayanan et al. [53]. The reasons for that are local minima
and the overall computation time. Therefore, the utilization of ANNs for target variable
prediction for preparative chromatography optimization is proposed. In this approach for
a three-component separation, the gradient slope, flow rate, feed load, and column length
were varied in simulations, and their effect on the target variables—production rate, yield,
and maximum concentration—was determined to create a training set. In addition, an
extra dataset with softer conditions was created to avoid a bias of 0 productivity on the
middle component because this overlaps with the left and right components. Additionally,
this approach showed good optimization results and greatly benefited from the shorter
computation times. On the other hand, prior knowledge is necessary, not only to model
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the process itself but also to generate suitable data for the ANN training, as shown by
the extra dataset for the middle component. In addition, the ANN may be flexible for the
trained system, but it has to be completely retrained for new systems and other numbers of
components. Therefore, to make an informed decision between the ANN approach and the
classical approach, it is crucial to take into account the extra effort needed for data design,
generation, and ANN training.

The most complex variant of this approach was performed by Pirrung et al. [31], who
utilized ANNs for downstream process optimization. The variable process part consisted
of anion exchanger (AEX), cation exchanger (CEX), and hydrophobic interaction (HIC)
columns in arbitrary combinations. The maximum number of columns was three. Each
column could only be utilized once in a process setup to satisfy the orthogonality principle.
The goal was to find an optimal process setup with optimal process parameters without
the drawbacks of sequential optimization (suboptimal processes) and the benefits of global
parallel process optimization, which yields the possibility of finding the optimal process but
also a larger computational effort. Therefore, at first, an ANN-based global optimization
was performed, followed by a mechanistic model-based search. The optimization goal was
defined as maximizing the yield subject to a purity of greater than 99.9% by manipulating
the initial and final salt concentrations and the two cut points for the product pooling
and column setup. Similarly, for Nagrath [30], three networks were trained. For each
column, a separate ANN with yield and all protein concentrations served as output, while
initial and final salt concentrations and the two cut points for the product pooling served
as input. The dataset consisted of 1000 samples, but Pirrung et al. showed [31] that the
ANN accuracy reached a plateau at dataset sizes of 3000–5000 samples and concluded
that a trade-off between accuracy and simulation effort has to be made. The decision for
a smaller dataset showed the anticipated worse performance of the ANN global search.
This was compensated by the following mechanistic model based on local search. The total
optimization time was reduced from 24.7 h to 7.5 h, including dataset generation and ANN
training, with a mechanistic model simulation time of 3 s for a single column. Neverthe-
less, the aforementioned inaccuracies of the ANNs led to an additional evaluation step.
Therefore, the authors proposed to always implement a plausibility check. Additionally,
accumulating ANN errors may render this method ineffective with an increasing number
of neural networks.

Examples for ANNs who act as regressors as depicted in Figure 3b are given by
Wang et al. [39,40], Xu et al. [37], and Mouellef et al. [22,36]. In all approaches, the ANNs
are used as fast solvers for inverse problems. In other words, they determine mechanistic
model parameters from chromatogram simulations of hopefully dedicated experimentally
distinct validated models, which is not done in most cases [9]. While Wang et al. [39],
Mouellef et al. [22], and Xu et al. [37] only investigated adsorption parameters (Wang:
SMA, Mouellef: competitive Langmuir, Xu: competitive Bi-Langmuir), Wang et al. [40]
considered maximal loading and salt gradient length in a root cause investigation, and
Mouellef et al. [36] considered fluid dynamics and adsorption parameters. However, in
later works [22,40], a much smaller parameter area was covered, as only the deviations from
a predefined process were to be tracked. On the other hand, references [22,37,39] considered
a wide parameter area to realize a parameter estimator for arbitrary three-component mix-
tures for a fixed column under predefined process conditions. The development procedure
of all approaches was nearly the same. Therefore, not every approach is explained in detail.
All approaches used simulations for dataset generation. The main reason was the size
of the dataset and the associated experimental effort. The used training datasets ranged
from 235 [40] simulations to 38,100 simulations [37]. The first step was to design a suitable
parameter range based on expert knowledge and sensitivity analysis. Inside that range, the
simulations were performed with uniformly distributed parameter variations. After the
simulations, the input layer of the ANN had to be designed. A chromatogram itself is a
time series of concentrations (or their corresponding UV values) over a range of several
minutes to hours, with resolutions that still have to track the peaks’ main characteristics.
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Accordingly, a single chromatogram consists of a huge number of sample points, with most
of its values being constant, as shown in Figure 5.

Figure 5. Example chromatogram of a mixed mode separation of three components. In addition to
salt elution chromatography, a pH gradient is also used in mixed-mode chromatography. Elution
information is limited to the area between 300 s and 650 s. There is no additional information outside
of that area.

Thus, Wang et al. [39,40] and Mouellef et al. [22,36] decided to reduce the data amount
and complexity by reducing the chromatogram to the necessary information to achieve
shorter ANN training durations and reduce the necessary amount of training data, while
Xu et al. [37] used the whole chromatogram. Wang et al. [39,40] modified Gauß, fit-
ted the noisy data, normalized it, and cut off all values below 0.2 to reduce the data.
Mouellef et al. [22,36] extracted the time points at which certain % values of the maxi-
mum peak height were reached and used these as ANN inputs together with the actual
peak height. With this approach, different sample rates, which result in different amounts
of points in the time series, have not been taken into account (the ANN input structure
is fixed after training), while still considering non-ideal peak shapes. The training pro-
cess itself is similar to other approaches. All groups showed good results and could
reduce the parameter determination process to a fraction of a second. On the other hand,
Mouellef et al. [22] and Xu et al. [37] showed that the prediction performance shrinks for
more complex isotherms (a higher number of parameters), which has to be countered by
higher amounts of data. Additionally, the result only works on predefined columns and
process conditions, thus limiting its flexibility, especially if column aging is considered. The
data generation and ANN training have to be repeated for other amounts of compounds
and other conditions. Additionally, the necessary effort for data generation, evaluation,
and training may exceed the effort of standard inverse methods, especially if an expert
provides good initial values. Therefore, this method may only be beneficial if arbitrary
n-component mixtures are to be modeled on exactly the same column.

The only known examples by the authors for Figure 3c, where the ANN is incorporated
into the model itself in the area of chromatography, are given by Gao et al. [23] as the first
hybrid modeling approach, and Narayanan et al. [43], who follow a comparable path
about 10 years later. Both groups used ANNs to model the adsorption behavior on a
chromatography resin instead of setting standard isotherm types a priori like Langmuir [54].
Gao [23] used the ANN-based isotherm to replace a flawed Bi-Langmuir isotherm in a
Simulated Moving Bed (SMB) enantiomer separation. Narayanan et al. [43] compared
different levels of hybridization on a batch capture chromatography step. Both groups
showed better results than using the standard isotherm models and stated the methodology
as straightforward. In contrast to the aforementioned approaches, the resulting ANN can
be used in different process conditions because the ANN-isotherm itself is not influenced
by parameters like flow rate or feed concentration, thus rendering it more flexible. Another
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benefit is the low amount of necessary data compared to the aforementioned approach
in Figure 3b. In the end, Gao et al. only utilized one band profile, while Narayanan et al.
needed nine data samples. On the other hand, Gao et al. [23] pointed out an obstacle that
has to be considered. One is to design experiments that contain enough information for the
ANN’s training. They discovered that heavily overloaded peaks worked best. It may be
that the ANN needed more information about the asymptotic, i.e., saturation area, of the
isotherm. Another obstacle, as pointed out by Narayanan et al. [31], is that the network
may attempt to compensate for other deficiencies in the model during training, in addition
to the missing isotherm equation. Consequently, while the ANN may produce an isotherm
that closely resembles the actual one, there is no guarantee that it will be an exact replica
with the exact mechanism, but only an overall fit over the phase equilibrium range chosen.

There are also two currently known authors for physics-informed neural networks
(PINNs), as depicted in Figure 3d. Both working groups, Subraveti et al. [44,46] and San-
tana et al. [45], showed excellent results by replacing the whole chromatography model
with PINNs and achieved immense speedups in model computation time, namely in
fractions of seconds. Both Santana et al. [45] and Subraveti et al. [46] showed that no
experimental data is needed as long as all necessary mechanistic equations are provided.
Subraveti et al. [46] also showed that the more complex process setups, like the Pressure
Swing Adsorption (PSA), can be modeled and compared using different approaches regard-
ing computation time. Additionally, it was shown by Subraveti et al. in [44] that no implicit
or explicit isotherm equations are needed if the PINNs are supported by experimental data.
Nevertheless, the prerequisite for this method is sophisticated mechanistic models. As
a consequence, PINNs may be ineffective in early model development stages due to the
computational effort needed for the training needed after each model adjustment. Because
the authors of this paper themselves did not work with PINNs previously, we are hesitant
to highlight any further potential problems and benefits as stated by [44–49].

An overview of previous publications and their classification in Figure 2 is given in
the following Figure 6. Despite promising results, it should be noted that the authors are
unaware of any industrial applications utilizing the early publications from Zhao et al. [55]
and Gao et al. [23].

Figure 6. Publication overview over ANN application categories based on Figure 3. The mentioned
publications comprise: Wang et al. [39,40], Mahmoodi et al. [41], Mouellef et al. [22,36], Xu et al. [37],
Zhao et al. [55], Madden et al. [29], Marengo et al. [32], Malenovic et al. [33], Golubovic et al. [28],
Pirrung et al. [31], Gao et al. [23], Narayanan et al. [43], Santana et al. [45], and Subraveti et al. [44,46].
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The following sections present a case study demonstrating how mixed-mode chro-
matography model development, as the complex end of chromatography mechanism
modeling, could be expedited by the utilization of an ANN. The main goal was to fasten the
Steric Mass Action (SMA)-based mixed-mode isotherm parameter determination. The pa-
rameter determination via inverse methods proved to be too laborious and time-consuming
for non-mixed-mode experts because of the sheer number of parameters and parameters
with similar effects on the binding behavior, i.e., seven per component. Therefore, a solution
was sought that is both flexible enough to accommodate different substances and applicable
to nonprofessionals using machine learning. The solution was the development of an ANN
of category Figure 3b, which determines the model parameters from chromatograms and
supplies these to the actual model. Until now, no other approach to mixed-mode SMA
model parameter determination via machine learning is known to the authors. Because of
the expected minimum size of the training dataset, all data was generated via simulations.

2. Materials and Methods
2.1. Chromatography Modeling

The chromatography model has been explained in detail before by Vetter et al. [56]
as a modified SMA model for Mixed-Mode based on the Steric Mass Action Isotherm of
Nfor et al. [57], which considers the pH and salt concentration changes typical for mixed-
mode chromatography (MMC) and the lumped pore diffusion model (LPD) [16]. The mass
balance of the two fractions of the mobile phase can be written as Equation (1) [16].

∂ci
∂t

= −uint·
∂ci
∂x

+ Dax·
∂2c
∂x2 − ke f f ·

6
dP

(1 − εs)

εS
·
(

∂ci
∂x

−
∂cp,i

∂x

)
(1)

where uint is the interstitial velocity of the mobile phase, Dax is the axial dispersion coeffi-
cient, ke f f is the effective transfer coefficient, dp is the particle diameter, εS is the porosity, c
is the concentration in the liquid phase, and cp is the concentration in the pore. x denotes
the position in the column of length L and t the time. The index i denotes the i-th com-
ponent. The boundary conditions are described by Equation (2) for the column inlet and
Equation (3) for the column outlet. L depicts the length of the column [16].

uint·cin,i(t) = uint·ci(t, 0)− Dax
∂ci
∂x

(t, 0) (2)

∂ci
∂x

(t, L) = 0 (3)

The mass transfer coefficient ke f f ,i is given by Equation (4). Here, k f ,i is the film mass
transfer coefficient, rp is the particle radius, and Dp,i is the pore diffusion coefficient [58].
The pore diffusion coefficient Dp,i was calculated according to the correlation of Carta [14]
and k f ,i according to Wilson and Geankoplis [59].

ke f f ,i =
1

1
k f ,i

+
rp

Dp,i

(4)

The mass balance between the fluid and solid phases for mixed-mode ligands with the
same number of each functional group (ΛIEX = ΛHIC = Λ) is given by Equation (5) [57].

qp,i

cp,i
= Ai·

(
1 −

m

∑
j=1

qp,j

qmax
pMM,j

)νi+ni

(5)



Processes 2023, 11, 1115 10 of 20

where qp is the loading, cp is the concentration in the pores, v is the stoichiometric coefficient
of the salt counterion, and n is the stoichiometric coefficient of the hydrophobic ligand with
Ai as given in Equation (6) [57].

Ai = Λ(vi+ni)·(zscs)
−vi ·c−ni ·eKs,i ·cp,1 ·eKp,i ·cp,i ·Keq (6)

where Λ is the total number of binding sites, zs is the charge of the salt counterion, cs is
the molar concentration of salt, Ks is the interaction constant for the IEX part, Kp is the
interaction constant for the HIC part, and Keq is the equilibrium constant. Additionally,
v can be expressed as a function of the pH value and can be written as proposed by
Hunt et al. [60] in the linear Equation (7)

νi(pH) = ν0,i + pH·ν1,i (7)

The spatial discretization of the partial differential system was done via orthogonal
collocation on finite elements. All chromatography simulations were performed on 10 Dell
Latatitude E5470 Systems, which were managed by a Dell Precision 3630 System in a
client-server setup to increase the simulation speed via parallelization.

2.2. Dataset

The dataset was generated based on expert knowledge from previous mixed-mode
monolith experiments for the purification of mRNA after the transcription step from pDNA
to mRNA [7,61]. The components will be called component A, B, and C in the context of
this paper. The mixed-mode data is based on the results of Schmidt et al. [61]. The values
of Kp are known to be insensitive at values below 1500 M−1, but were included to test the
ANN’s capabilities to perform on insensitive data. All parameter variations followed a
uniform distribution in the ranges given in Table 1. For each variation, a chromatogram
was simulated for the gradients 15 CV, 20 CV, and 25 CV, where the pH value started at pH
3 and ended at pH 6, and the salt started at 0.05 mol/L and ended at 1.0 mol/L. Therefore,
a single sample consisted of three simulations. In total, 4800 simulations were performed,
which resulted in 1600 samples.

Table 1. Varied parameters and their ranges for dataset generation. The charge of the salt counterion
(zs) was deemed constant.

Parameter Lower Boundary Upper Boundary

Ks,A

[
M−1

]
−5.5 × 101 −2.0 × 101

Kp,A

[
M−1

]
1.0 × 100 3.0 × 1051

v0,A [−] 2.8 × 10−3 1.0 × 101

v1,A [−] −1.5 × 100 −1.7 × 10−4

qmax
pMM,A

[mg
mL
]

4.0 × 101 3.0 × 102

Ks,B

[
M−1

]
−5.5 × 101 −5.0 × 100

Kp,B [M]−1 1.0 × 100 3.0 × 1051

v0,B [−] 7.0 × 10−3 1.0 × 101

v1,B [−] −2.0 × 100 −4.0 × 10−5

qmax
pMM,B

[mg
mL
]

4.0 × 101 3 × 102

Ks,C

[
M−1

]
−5.5 × 101 −2.0 × 101

Kp,C [M]−1 1 × 100 4 × 1041

v0,C [−] 4.0 × 10−3 1.0 × 101

v1,C [−] −2.0 × 100 −3.0 × 10−4

qmax
pMM,C

[mg
mL
]

4.0 × 101 3 × 102

To reduce the amount of input data, the chromatogram data was reduced with 2 differ-
ent approaches. In the first approach, we followed the method described in [22] to extract
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the time points where specific % values of the maximum peak height were achieved. In this
case, these % values were every 5% of the maximum peak height. This results in 360 input
points for the ANN in each sample. This method is defined as the Time-Stamp-Method
(TSM) in the context of this paper. The second approach involved fitting the chromatograms
using Equation (8) from Li [62] and subsequently replacing the chromatogram data with
the fit parameters.

Y(t)m =
H(

1 + λlekl(tl−t)
)(tl−t)α

+
(
1 + λtekt(t−tt)

)(t−tt)
β

− 1
(8)

There tl and tt, which are the times at which half of the maximum concentration is
reached at the leading and tailing sides of the peak. Additionally, in this approach, the
actual sample rate of the data is irrelevant for the ANN. This method results in 81 input
points for the ANN in each sample. The method will be called the fit-parameter-method
(FPM) in the context of this paper.

2.3. ANN Development

All ANN development was done within the Keras Framework 2.4.3 [63], using the
Tensorflow backend version 2.4.1 [64] in Python 3.8.7 [65]. The Spyder IDE [66] was
used to facilitate Python development. ANN training was performed on a Dell Precision
3630 system. In all cases, the Keras Hypertuner [67] was used for initial hyperparameter
tuning and fine tuning. The hyperparameter range and initial guesses were informed by
both previous experience and the publications cited earlier in this paper. Since two different
representations of the data were used, two separate ANNs were developed. The dataset
was randomly split into 70% training and 30% validation data.

For the Time-Stamp-Method the best-performing ANN was trained with the optimizer
Adam [68], with a learning rate of 10−3 and a batch size of 16 over 27,931 epochs with early
stopping. The architecture is a fully connected feed-forward network with 197 neurons
with selu [69] activation functions in the first layer, followed by a dropout layer [70] with a
40% dropout chance as a regularization technique. The output neurons consist of a linear
activation function. The longest training time was 5 h. The best performing ANN was
trained in 43 min with a loss of 0.50 in the training set and a loss of 0.49 in the validation set.

The best-performing ANN for the fit parameter approach was trained with the opti-
mizer Adam [68], with a learning rate of 10−4 and a batch size of 16 over 7653 epochs with
early stopping. The architecture is 49 neurons with an elu [69] activation function in the
first layer, followed by a dropout layer [70] with a 40% dropout chance as a regularization
technique. The output neurons consist of a linear activation function. The longest training
time was 1 h. The best-performing ANN was trained in 14 min. With a loss of 0.72 in the
training set and 0.68 in the validation set.

3. Results
3.1. Time-Stamp Method (TSM)

As shown in Table 2, the performance of the ANN with the TSM is insufficient based
on training and validation data. With Keq and v1 performing the worst without any correla-
tion between reference data and predicted data. Previous works of Mouellef et al. [22,36]
showed that such behavior is often caused by insensitive parameters in certain parame-
ter combinations.

The effect on insensitive parameters can be seen especially well in Figure 7. In subplots
Figure 7a–c, the prediction performance is low at low values of Kp. In that area, a horizontal
trend is observable for Kp < 1500 M−1. As mentioned before, this is exactly the area
where Kp is insensitive. Above that area, prediction performance increases significantly. A
similar trend for qmax

pMM can be seen in subplot Figure 7d–f. It is known that qmax
pMM is only

relevant in the nonlinear area of the isotherm, where the loading is nearing saturation.
Therefore, this parameter can only be determined properly if the injected mass is close to



Processes 2023, 11, 1115 12 of 20

the maximum loading capacity. A similar obstacle was reported by Gao et al. [23], which
led to an experimental design with heavily overloaded columns. To prove this theory,
simulations were performed with the ANN’s predicted parameters. One of the better
results and one of the worse results of these simulations are depicted in Figure 8.

Table 2. Coefficients of determination (R2) of reference over ANN predicted values for all parameters
of components A, B, and C of the Time-Stamp-Method.

Parameter R2 of Component A [−] R2 of Component B [−] R2 of Component C [−]

Training Validation Training Validation Training Validation

Ks 85% 76% 81% 76% 85% 74%
Kp 60% 76% 68% 71% 61% 74%
n 89% 84% 85% 78% 88% 84%

Keq 21% 3% 27% 3% 25% 1%
qmax

pMM 68% 60% 47% 30% 52% 19%
v1 47% 35% 48% 35% 43% 23%
v0 86% 77% 79% 65% 77% 68%

Figure 7. Predicted over reference value plots for Kp (a–c) and qmax
pMM (d–f) of all three components.

Each plot shows the R2 values for the training and validation sets. The training set values are shown
as blue dots. The validation data is shown as orange triangles. Column one represents the parameters
of component A, column two of component B, and column three of component C.
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Figure 8. Two simulated 20 CV gradient mixed-mode chromatograms with original parameter values
(solid lines) and ANN predicted parameter values (dotted lines). (a) Depicts one of the good results
(not the best), with an R2 of 97% for component A, 45% for component B, and 73% for component C.
(b) Shows the worse simulation results with ANN predicted values, with an R2 of 0.8% for component
A, 7% for component B, and 0.3% for component C.

Both subplots of Figure 8 show clearly insufficient a priori prediction capabilities.
This also applies to the not shown simulations with a median R2 of 52%; an overview
of the retention time offset is shown in Figure 9. Therefore, previous theories cannot
be exclusively validated. On the other hand, both pictures suggest a trend, which can
be seen in the data: the ANN shows a relatively good performance with mainly small
retention time offsets on chromatograms with fewer overlapping peaks, like Figure 8a.
Conversely, chromatograms with highly overlapping peaks, such as those in Figure 8b,
are correlated with poor prediction performance regarding retention time and peak shape.
This is related to the fact that the majority of the samples in the dataset consist of baseline
separated peaks, let alone triple overlapping peaks. Thus, the ANN may be lacking the
information to learn the interaction between the components or to handle overlapping
peaks at all. In addition, the dataset is relatively small for the complexity of the mixed-
mode isotherm (Equations (5) and (6)) and the amount of ANN input and output values.
Nevertheless, the application of low data amounts due to limitations in availability and
efforts is realistic for industrialization. Additionally, appropriate separation, i.e., avoiding
completely overlapping peaks, is a fundamental aspect of chromatography performance
and operation.

To at least reduce the number of input parameters, the fit parameter method was also
performed with the given samples for training and validation.
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Figure 9. Box plot of the retention time ∆tret offset from reference and ANN parameter predicted
simulation.

3.2. Fit Parameter Method

For the sake of brevity, only the coefficients of determination (R2) are given in Table 3.
The plots themselves show similar trends as seen in Figure 7, but with a much worse
overall performance. As shown in Tables 2 and 3, the performance of the ANN with the fit
parameter method is even worse than the TSM method on training and validation data.
However, the general trends from the TSM are still conserved. Therefore, the authors
assume that the prediction performance is not limited by the utilized data preparation
methods but by the data or problem itself.

Table 3. Coefficients of determination (R2) of reference over ANN predicted values for all parameters
of components A, B, and C for the Fit-Parameter-Method.

Parameter R2 of Component A [−] R2 of Component B [−] R2 of Component C [−]

Training Validation Training Validation Training Validation

Ks 76% 66% 77% 67% 75% 64%
Kp 48% 40% 41% 0% 31% 65%

qmax
pMM 49% 29% 37% 14% 27% 6%
v1 25% 9% 32% 12% 29% 9%
v0 64% 49% 61% 43% 57% 37%

Nevertheless, the ANN predicted validation data was used for simulating chro-
matograms for the sake of completion. The results are shown in Figure 10. Figure 10a
indicates that using the fitting parameters as input for an ANN may be possible. In this
case, this allowed a factor of 21 shorter training time. Nevertheless, the performance
is not sufficient, and with an average R2 of 27% significantly worse than the previous
timestamp approach. However, it can still be observed that the retention time is causal for
the deviations.
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Figure 10. Two simulated 20-CV gradient mixed-mode chromatograms with original parameter
values (solid lines) and ANN predicted parameter values (dotted lines). (a) Depicts one of the
good results (not the best), with an R2 of 98% for component A, 98% for component B, and 75% for
component C. (b) Shows the worst simulation results with ANN predicted values with R2 of 0.1% for
component A, 0.1% for component B, and 0.2% for component C.

4. Discussion

Since two separate networks with quite different input data encounter similar prob-
lems, it can be firmly inferred that the cause lies in the data itself, in the design of the
simulation experiments, or, to some extent, in the nature of the mixed-mode isotherms and
not in the developed ANNs. However, this could only be verified by massively increasing
the number of samples. Only Xu and Zhang [71] considered an isotherm of almost similar
complexity to the Bi-Langmuir isotherm. However, they required over 38,000 samples
for an R2 between 88% and 93%. In the context of this publication, this would mean
over 100,000 individual simulations for still unsatisfactory results. However, this would
contradict the defined task and conflict with realistic, feasible efforts to enhance efficiency
in process design and development. As exemplified, the ANN results for regression of
highly complex mixed-mode interacting mechanisms of binding and displacements as
functions of pH, conductivity, buffer, and multi-component interactions do not show nearly
satisfactory results. The authors state, based on the results of this study, that either the
amount of data or the capabilities of the ANNs may be exhausted by the mixed-mode
isotherm. To the knowledge of the authors, this work investigates the most complex of all
considered isotherms with the most parameters. The effort-to-benefits ratio for the defined
task in process design and development is disproportionately low compared with classical
and well-established approaches for model validation [56,72–75]. With this number of
simulations needed, the general question of reasonableness already arises, since these data
are usually not available in the necessary range of variation. The generation of the data
based on a distinct experimentally validated model requires, on the one hand, a chro-
matography expert who is able to write appropriate models, estimate possible parameter
variation ranges, and evaluate the results of the ANNs. On the other hand, necessary
computing capacities are required to simulate and train the ANNs. Accordingly, there is a
risk that the actual goal of offering a nonprofessional a simple way to quickly determine
model parameters will be completely missed, since the chromatography expert could
ultimately invest more time in the development of the ANN than is gained by using the
ANN. The chromatography expert, who is necessary anyway, is able to find good starting
parameters for the common solution of these inverse problems due to his experience and
model parameter data from different projects. Thus, he is already reducing the necessary
computing time to a minimum. In addition, the chromatography expert can adapt his
initial parameter estimates to changing process conditions such as different flow rates,
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injection volumes, or component numbers. The proposed ANNs in this work and related
literature are, in most cases, not able to adapt without retraining on new data. Previous
training considering such adjustments would further increase the already large amount
of required data due to increasing complexity, as can be deduced from the preliminary
work [22,39,40,71]. Therefore, the approach presented here for competitive isotherms of
higher complexity is not suitable for the intended objective. To be discussed is whether
this would be of any benefit. ANNs are powerful tools to circumvent high computation
times and mathematically insufficiently described phenomena by using data, as described
in Chapter 1. Yet, ensuring the availability of necessary data is crucial for the successful
implementation of data-driven approaches. However, even with data availability, it is
important to note that the majority of the previously mentioned approaches rely on val-
idated mechanistic models, which are ready for use. This highlights the ongoing need
for chromatography experts, including process modeling. Moreover, in the regulatory
environment, initiatives such as Process Analytical Technology (PAT) [76,77] emphasize
the importance of deep process comprehension. Such fundamental comprehension cannot
be achieved by relying on pure black-box models, which are able to show correlations
from input to output data but cannot present the cause of this correlation, which is an
imminent problem shared by all regression algorithms. On the other hand, the excellent
ANN regression capabilities can be combined with online multivariate data measurements
to extend the PAT algorithm repertoire, like the partial least squares algorithm (PLS) for
online monitoring [24,58,78,79]. At first glance, hybrid models or PINNs supplied with
data (Figure 3c,d) appear to be a valid compromise, but these presuppose a largely error-
free model and data with sufficient information. This obstacle was already discovered by
Gao et al. [23] in 2004. If the model or data are flawed, the ANN may lose its predictive
power when operating outside the range of the data provided, and the modeler may not
realize this due to a lack of process knowledge, which can make model validation more
challenging or even impossible. This may also be the reason why this method has not yet
been widely used in the industry since 2004. Exceptions may arise in cases where rigorous
modeling using partial differential algebraic equation systems for real-time process control
proves to be too computationally demanding. However, in this context, hybrid methods
still have to prove their superiority in terms of performance and economics when directly
compared to established and mathematically proven methods from control engineering in
general and advanced process control. Such examples are simple linearization around the
operation point, observers for state estimation, or model-predictive controllers based on
in-depth process comprehension [80–83].

5. Conclusion

As shown in the sections before, the predefined goals of this work are reached to point
out the benefits and efforts of the hot topic of ANN application in process chromatography
design and operation. The performance of the ANN did not satisfy the requirements for
complex equilibrium phase behavior of binding and displacement based on pH, conduc-
tivity, buffer strength, and multi-component interactions. The root cause may be poor
experimental design, too little data, or simply the inability to learn unique correlations
between the chromatogram data and coefficients. This could only be verified by drastically
increasing the data amount and trying multiple different experimental designs, which
would lead to an unreasonable number of simulations. Nevertheless, this work showed
not only successful applications and approaches of ANNs in the field of chromatography
but also some limitations of ANNs.

Key Takeaways:

• ANN can serve as a valuable alternative to regression for PAT data or design and
control space data interpolations, but alternative statistical methods have to be checked
as unrealistic and inconsistent phenomena could occur based on overfitting;

• The regression of a model parameter for manufacturing data digital twin adjustment
to actual reality by ANN is a valid tool. For model parameter determination in process
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development, alternatives like minimization of the sum of least square errors have
been more efficient until now, utilizing about 1–6 chromatograms;

• Machine learning cannot prove root causes mathematically. Therefore, in a regulatory
environment, it is of no final use;

• High data amounts are needed, which need to be generated via validated mechanistic
models, as experimental setups would be unrealistic efforts;

• Hybrid models with isothermal ANNs can circumvent high data amounts and/or
missing process knowledge but still require mechanistic models. No application
is known where any known isotherm up to modified SMA does not describe the
phenomenon well. Applications based on 1–6 chromatograms are documented, which
is the most efficient;

• Standard operation mode data may not supply the necessary information to train
ANNs if complex phenomena of buffer and component interference need to be de-
scribed. Specially designed experimental plans would be needed, which contradict
any manufacturing operation tasks;

• The use of machine learning for process development and control presents a contra-
diction, as it relies on training on ready-to-use validated mechanistic models that are
still often used with prejudice in industry;

• Even computationally demanding tasks in process control can be acceptably ful-
filled with standard control methods like linearization around the operation point or
methods based on deep process comprehension. This leads to economical business
case-derived decisions;

• The benefits and effort of machine learning have to be evaluated and compared with
alternative methods at each application and project step individually. They are not
general problem solvers, and expert knowledge is still needed to evaluate results.
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28. Golubović, J.; Protić, A.; Zečević, M.; Otašević, B.; Mikić, M. Artificial neural networks modeling in ultra performance liquid
chromatography method optimization of mycophenolate mofetil and its degradation products. J. Chemom. 2014, 28, 567–574.
[CrossRef]

29. Madden, J.E.; Avdalovic, N.; Haddad, P.R.; Havel, J. Prediction of retention times for anions in linear gradient elution ion
chromatography with hydroxide eluents using artificial neural networks. J. Chromatogr. A 2001, 910, 173–179. [CrossRef]

30. Nagrath, D.; Messac, A.; Bequette, B.W.; Cramer, S.M. A hybrid model framework for the optimization of preparative chromato-
graphic processes. Biotechnol. Prog. 2004, 20, 162–178. [CrossRef]

31. Pirrung, S.M.; van der Wielen, L.A.M.; van Beckhoven, R.F.W.C.; van de Sandt, E.J.A.X.; Eppink, M.H.M.; Ottens, M. Optimization
of biopharmaceutical downstream processes supported by mechanistic models and artificial neural networks. Biotechnol. Prog.
2017, 33, 696–707. [CrossRef]

32. Marengo, E.; Gianotti, V.; Angioi, S.; Gennaro, M. Optimization by experimental design and artificial neural networks of the
ion-interaction reversed-phase liquid chromatographic separation of twenty cosmetic preservatives. J. Chromatogr. A 2004, 1029,
57–65. [CrossRef]

http://doi.org/10.1007/10_2020_149
http://doi.org/10.3390/pr9111967
http://doi.org/10.1007/s43393-021-00024-0
http://doi.org/10.3390/pr6060066
http://doi.org/10.3390/pr7020094
http://doi.org/10.3390/pr11020553
https://database.ich.org/sites/default/files/Q8_Q9_Q10_Q%26As_R4_Points_to_Consider_0.pdf
https://database.ich.org/sites/default/files/Q8_Q9_Q10_Q%26As_R4_Points_to_Consider_0.pdf
http://doi.org/10.3390/pr8070866
http://doi.org/10.1016/0009-2509(93)80371-V
http://doi.org/10.1016/S0021-9673(01)01471-6
http://doi.org/10.1002/ceat.200800082
http://doi.org/10.1016/0009-2509(93)80189-W
http://doi.org/10.1002/cite.201450043
http://doi.org/10.3390/pr6080106
http://doi.org/10.3390/antib6040024
http://doi.org/10.3390/pr9122121
http://doi.org/10.1016/S1474-6670(17)31895-5
http://doi.org/10.1002/bit.25194
http://www.ncbi.nlm.nih.gov/pubmed/24522836
http://doi.org/10.1016/0893-6080(89)90020-8
http://doi.org/10.1016/S0021-9673(99)00915-2
http://www.ncbi.nlm.nih.gov/pubmed/10720222
http://doi.org/10.1016/j.chroma.2011.09.071
http://doi.org/10.1002/cem.2616
http://doi.org/10.1016/S0021-9673(00)01185-7
http://doi.org/10.1021/bp034026g
http://doi.org/10.1002/btpr.2435
http://doi.org/10.1016/j.chroma.2003.12.044


Processes 2023, 11, 1115 19 of 20
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