
Citation: Zhang, S.; Song, X.; Shen,

L.; Xu, L. Complicated Time-

Constrained Project Scheduling

Problems in Water Conservancy

Construction. Processes 2023, 11, 1110.

https://doi.org/10.3390/pr11041110

Academic Editors: Luis Puigjaner

and Vladimir Mahalec

Received: 6 March 2023

Revised: 26 March 2023

Accepted: 30 March 2023

Published: 5 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

processes

Article

Complicated Time-Constrained Project Scheduling Problems in
Water Conservancy Construction
Song Zhang 1,* , Xiaokang Song 1, Liang Shen 1 and Lichun Xu 2

1 School of Management, Xuzhou Medical University, Xuzhou 221004, China
2 School of Public Health, Xuzhou Medical University, Xuzhou 221004, China
* Correspondence: szhang@xzhmu.edu.cn

Abstract: Water conservancy project scheduling is an extension to the classic resource-constrained
project scheduling problem (RCPSP). It is limited by special time constraints called “forbidden time
windows” during which certain activities cannot be executed. To address this issue, a specific RCPSP
model is proposed, and an approach is designated for it which incorporates both a priority rule-
based heuristic algorithm to obtain an acceptable solution, and a hybrid genetic algorithm to further
improve the quality of the solution. In the genetic algorithm, we introduce a new crossover operator
for the forbidden time window and adopt double justification and elitism strategies. Finally, we
conduct simulated experiments on a project scheduling problem library to compare the proposed
algorithm with other priority-rule based heuristics, and the results demonstrate the superiority of
our algorithm.

Keywords: resource-constrained; project scheduling; genetic algorithm; water conservancy

1. Introduction

Water conservancy construction usually endures a long cycle of multi-tasks, absorbing
substantial investments of money and recourses; it is therefore difficult to rationally plan
and scientifically schedule. Traditional scheduling approaches which have widely served
water conservancy projects since the 1950’s have been phased out, such as Gantt chart,
critical path method (CPM), and program evaluation and review technique (PERT). An
effective alternative, independent from human experiences, is much needed.

Water conservancy project scheduling is a resource-constrained project scheduling
problem (RCPSP); an optimization task with time and resource limitations between each
activity. RCPSPs have been extensively studied for decades and many scholars have
presented insightful reviews on them from different perspectives [1–7]. Water conservancy
projects differ from classical RCPSPs in that they are subject to special time constraints.

There are approximately three categories of RCPSP research related to time con-
straints. In the early days, a typical time-constrained extension to RCPSP was RCPSP/Max,
referring to an RCPSP with minimum/maximum time lags; this was elaborated in Neu-
mann et al.’s [8] review. Ismael de Azevedo et al. [9] proposed a satisfiability and workload-
based exact method to deal with the resource-constrained project scheduling problem with
generalized precedence constraints (RCPSP/Max). Morin et al. [10] studied an original vari-
ant of the RCPSP, the PARCPSP. While the start and completion times of the activities can
be arbitrary moments in time the limitations on resource usage are considered on average
over aggregated periods of parameterized length. This kind of problem only considers the
relative time interval between activities, which is general. The second type is the periodic
time window problem. Chen et al. [11] introduced two time-related constraints: the time
window constraint, outlining each activity’s execution time interval; and the time-schedule
constraint, defining the pre-specified beginning time for certain activities, such as train
schedules. Zhan et al. [12] and Franck et al. [13] adopted calendars to differentiate time

Processes 2023, 11, 1110. https://doi.org/10.3390/pr11041110 https://www.mdpi.com/journal/processes

https://doi.org/10.3390/pr11041110
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/processes
https://www.mdpi.com
https://orcid.org/0000-0003-4966-6930
https://orcid.org/0000-0003-4290-5097
https://orcid.org/0000-0001-7694-0451
https://doi.org/10.3390/pr11041110
https://www.mdpi.com/journal/processes
https://www.mdpi.com/article/10.3390/pr11041110?type=check_update&version=1

Processes 2023, 11, 1110 2 of 11

intervals, such as workdays and non-workdays. Then they sorted activities into inter-
ruptible and uninterruptible categories and arranged them according to calendar limits.
Similarly, Yang et al. [14] proposed another constraint, called a time-switch constraint,
which designates a certain time interval within a cycle specifically for starting an activity.
The third category considers the special time constraints of the activities in the scheduling
problem, making the problem more practically significant and gradually becoming a re-
search hotspot. In recent years, more and more work has been focused on the time window
problem of the RCPSP, which exists in many fields in real life, such as course scheduling,
vehicle routing planning, and human resource scheduling. Bomsdorf et al. [15] proposed
a model to solve a movie shooting scheduling problem. Lorenzoni et al. [16] found that
ships attending a port within a limited time constituted a multi-mode resource-constrained
scheduling problem; they solved this using mathematical algorithms. Vanhoucke et al. [17]
proposed the concept of “quality-dependent time slots” and assigned them to activities
to achieve a minimal loss of quality. They also successfully scheduled a biological R&D
project using these time slots. There are two kinds of time window constraints in railway
transportation, one is soft time window and the other is hard time window. The soft time
window requires goods to arrive within the time window to the greatest possible extent,
with penalties if they are violated. The hard time window requires that the goods must
arrive within the time window, otherwise the goods will be rejected. Mi et al. [18] consid-
ered the mixed time windows of the multimodal transportation optimal routing model
and used the CSO algorithm to solve the problem. Drexl et al. [19] designed a problem
instance generator that integrates novel constraints named “forbidden periods” to allocate
an earliest/latest pair of ending times to each activity. It can be used for many labor-related
scheduling problems, such as course scheduling where two lessons of the same course
cannot be assigned in two periods at the end of one day and at the beginning of the next.

In summary, scholars have already done a lot of research on the time constraints of
RCPSPs. However, most of the previous time-related studies have focused on the time
constraints between individual activities within projects and have seldom noticed that real-
life projects are vulnerable to outside time limitations. While the start time of the project is
random, and some activities in the project can’t be carried out in certain time periods, which
may affect the overall progress of the project. For example, there are environmental work
windows in dredging fleet scheduling [20], weather windows in offshore operation [21],
and special time windows in water conservancy construction, additionally, the project
is affected by seasonal conditions and environmental regulations [22]. For example, the
construction of river dikes and channels, which usually lasts for more than one year, is
subject to seasonal flooding. Some activities can be carried out during floods while others
cannot; this makes scheduling these activities even more complicated. Scholars refer to
these special time intervals as “forbidden time windows” and have applied them to many
construction project scheduling problems. Blazewicz et al. [23] have shown that the RCPSP
is an NP-hard problem and that forbidden time windows can impose extra difficulties and
complications in finding its solution.

To address the challenges of forbidden time window problems, we can convert them
into a type of RCPSP, taking the shortest project duration as the goal and combining
heuristic algorithms and meta-heuristic algorithms to solve large-scale project scheduling
problems. Our major contributions are as follows:

(1) A mathematical model of water conservancy construction scheduling aiming at the
constraint of forbidden time windows was established, and a simulation project
containing 30, 60, 90, and 120 tasks was generated. We separately combined the
parallel scheduling scheme and the serial scheduling scheme with the seven different
priority rules and applied them to all the instances of the four types; we discussed
which kind of rules perform better.

(2) A hybrid genetic algorithm was designed, which took the resource utilization rate in
the forbidden time windows as the basis for cross operation. Finally, the rule-based
heuristic algorithm was compared with a genetic algorithm.

Processes 2023, 11, 1110 3 of 11

The remaining structure of this paper is as follows: in Section 2, we introduce the
related problems; in Section 3, we propose the solution; in Section 4, the simulation
experiment is presented; and finally, in Section 5, we present the conclusions and our
planned future work.

2. Problem Description

A typical RCPSP can be described as follows. A project is composed of a set J+

that contains J activities, where the two dummy activities, j = 1 and j = J, represent the
project beginning and the project termination, respectively. The dummy activities take
zero time and recourse. Activity j may last dj time duration: starting from sj and ending at
cj. Obviously, sj + dj ≤ cj. Each activity cannot be interrupted during its exertion and all
activities are ordered by precedence constraints: Pred(j) denotes the set of the activities that
immediately precede j, which means activity j cannot start until all the activities in Pred(j)
end; similarly, Succ(j) is the set of the activities that immediately succeed activity j, which
means only at the time of or after activity j end, can activities in Succ(j) begin. The project
can allocate K recourses. Rk represent the total amount of recourse k in a cycle and rk the
amount of recourse k that activity j requires throughout its execution. At any time, rk must
be lesser than Rk. All of the parameters listed above are non-negative integrals. Thus, a
RCPSP is a combinatorial optimization problem that aims to find the minimum makespan
with constraints of precedence and resources.

Water conservancy projects are constrained by “forbidden time windows”. During a
forbidden time window, certain special activities cannot be executed. They must be either
postponed or conducted in advance. Figure 1 depicts an example: a project consists of
21 activities, including two dummy ones. It only needs one recourse R, and its total units is
four. Special activities, denoted by boxes in Figure 1, are {2, 7, 11, 15, 18, 19} and a forbidden
time window stretches between [5, 16]. Figure 2 illustrates one schedule to this project.
Activity 2 cannot begin at time point 15, because it is “forbidden” during the time interval
[5, 16], which reduces the efficiency of the whole project. Figure 3 provides a better solution;
activity 2 is brought forward, avoiding the “forbidden time window”, which reduces the
working period of the project.

Processes 2023, 11, x FOR PEER REVIEW 3 of 12

(2) A hybrid genetic algorithm was designed, which took the resource utilization rate in
the forbidden time windows as the basis for cross operation. Finally, the rule-based
heuristic algorithm was compared with a genetic algorithm.
The remaining structure of this paper is as follows: in Section 2, we introduce the

related problems; in Section 3, we propose the solution; in Section 4, the simulation exper-
iment is presented; and finally, in Section 5, we present the conclusions and our planned
future work.

2. Problem Description
A typical RCPSP can be described as follows. A project is composed of a set J+ that

contains J activities, where the two dummy activities, j = 1 and j = J, represent the project
beginning and the project termination, respectively. The dummy activities take zero time
and recourse. Activity j may last dj time duration: starting from sj and ending at cj. Obvi-
ously, sj + dj ≤ cj. Each activity cannot be interrupted during its exertion and all activities
are ordered by precedence constraints: Pred(j) denotes the set of the activities that imme-
diately precede j, which means activity j cannot start until all the activities in Pred(j) end;
similarly, Succ(j) is the set of the activities that immediately succeed activity j, which
means only at the time of or after activity j end, can activities in Succ(j) begin. The project
can allocate K recourses. 𝑅 represent the total amount of recourse k in a cycle and 𝑟 the
amount of recourse k that activity j requires throughout its execution. At any time, 𝑟
must be lesser than 𝑅 . All of the parameters listed above are non-negative integrals.
Thus, a RCPSP is a combinatorial optimization problem that aims to find the minimum
makespan with constraints of precedence and resources.

Water conservancy projects are constrained by “forbidden time windows”. During a
forbidden time window, certain special activities cannot be executed. They must be either
postponed or conducted in advance. Figure 1 depicts an example: a project consists of 21
activities, including two dummy ones. It only needs one recourse R, and its total units is
four. Special activities, denoted by boxes in Figure 1, are {2, 7, 11, 15, 18, 19} and a forbid-
den time window stretches between [5, 16]. Figure 2 illustrates one schedule to this project.
Activity 2 cannot begin at time point 15, because it is “forbidden” during the time interval
[5, 16], which reduces the efficiency of the whole project. Figure 3 provides a better solu-
tion; activity 2 is brought forward, avoiding the “forbidden time window”, which reduces
the working period of the project.

Figure 1. Sample project.

Figure 1. Sample project.

Processes 2023, 11, x FOR PEER REVIEW 4 of 12

Figure 2. Schedule 1.

Figure 3. Schedule 2.

In practice, a project may involve multiple forbidden time windows, due to the
weather or to technical problems. For better generalization, we regard [STi1, STi2] as a for-
bidden time window, and U+ as the set of special activities. Thus, a RCPSP model with
forbidden time windows can be described as follows. Min 𝑠 (1)

s.t. 𝑠 𝑠 𝑑 , 𝑗 ∈ 𝐽 , 𝑖 ∈ 𝑃𝑟𝑒𝑑(𝑗); (2)

𝑟 ≤ 𝑅 , 𝑘 ∈ 𝐾, 𝑡 0∈ () ; (3)

𝑠 𝑆𝑇 𝑜𝑟 𝑠 𝑑 𝑆𝑇 , 𝑗 ∈ 𝑈 , 𝑈 ∈ 𝐽 ; (4)

where Equation (1) signifies that the optimization goal of the model is the minimum
makespan; Equation (2) gives the precedence constraints between activities; Equation (3)
gives the recourse constraints; while Equation (4) indicates that special activities must be
either completed before the special time intervals or started after them. When 𝑈 = ∅ this
model changes back to a classic RCPSP. If all the activities correspond to the same forbid-
den time window, this model transforms into a calendar-constrained problem. Table 1
lists all the parameters used in the model.

Table 1. Parameters used in the proposed model.

Parameter Meaning
j activity number, j = 1, 2, …, J where J is the total number of activities
dj duration of activity j
sj starting time of activity j
cj ending time of activity j
Pred(j) the set of activities immediately preceding activity j
Succ(j) the set of activities immediately succeeding activity j
U+ the set of special activities 𝐽 the set of all the activities
t time number, t = 1, 2, …, T; where T is the deadline of the whole project.
At the set of activities that are being executed at time t, 𝐴 = 𝑗 𝑗 ∈ 𝐽 ∩ 𝑠 ≤ 𝑡 ≤
[STi1, STi2] the forbidden window that constrains activity i
k recourse number, k = 1, 2,…, K; where K is the total number of types of recou 𝑅 the amount of recourse k

Figure 2. Schedule 1.

Processes 2023, 11, 1110 4 of 11

Processes 2023, 11, x FOR PEER REVIEW 4 of 12

Figure 2. Schedule 1.

Figure 3. Schedule 2.

In practice, a project may involve multiple forbidden time windows, due to the
weather or to technical problems. For better generalization, we regard [STi1, STi2] as a for-
bidden time window, and U+ as the set of special activities. Thus, a RCPSP model with
forbidden time windows can be described as follows. Min 𝑠 (1)

s.t. 𝑠 𝑠 𝑑 , 𝑗 ∈ 𝐽 , 𝑖 ∈ 𝑃𝑟𝑒𝑑(𝑗); (2)

𝑟 ≤ 𝑅 , 𝑘 ∈ 𝐾, 𝑡 0∈ () ; (3)

𝑠 𝑆𝑇 𝑜𝑟 𝑠 𝑑 𝑆𝑇 , 𝑗 ∈ 𝑈 , 𝑈 ∈ 𝐽 ; (4)

where Equation (1) signifies that the optimization goal of the model is the minimum
makespan; Equation (2) gives the precedence constraints between activities; Equation (3)
gives the recourse constraints; while Equation (4) indicates that special activities must be
either completed before the special time intervals or started after them. When 𝑈 = ∅ this
model changes back to a classic RCPSP. If all the activities correspond to the same forbid-
den time window, this model transforms into a calendar-constrained problem. Table 1
lists all the parameters used in the model.

Table 1. Parameters used in the proposed model.

Parameter Meaning
j activity number, j = 1, 2, …, J where J is the total number of activities
dj duration of activity j
sj starting time of activity j
cj ending time of activity j
Pred(j) the set of activities immediately preceding activity j
Succ(j) the set of activities immediately succeeding activity j
U+ the set of special activities 𝐽 the set of all the activities
t time number, t = 1, 2, …, T; where T is the deadline of the whole project.
At the set of activities that are being executed at time t, 𝐴 = 𝑗 𝑗 ∈ 𝐽 ∩ 𝑠 ≤ 𝑡 ≤
[STi1, STi2] the forbidden window that constrains activity i
k recourse number, k = 1, 2,…, K; where K is the total number of types of recou 𝑅 the amount of recourse k

Figure 3. Schedule 2.

In practice, a project may involve multiple forbidden time windows, due to the weather
or to technical problems. For better generalization, we regard [STi1, STi2] as a forbidden
time window, and U+ as the set of special activities. Thus, a RCPSP model with forbidden
time windows can be described as follows.

Min sJ (1)

s.t.
sj − si ≥ di, j ∈ J+, i ∈ Pred(j); (2)

∑
j∈A(t)

rjk ≤ Rk, k ∈ K, t ≥ 0; (3)

sj > STj2 or sj + dj < STj1, j ∈ U+, U+ ∈ J+; (4)

where Equation (1) signifies that the optimization goal of the model is the minimum
makespan; Equation (2) gives the precedence constraints between activities; Equation (3)
gives the recourse constraints; while Equation (4) indicates that special activities must be
either completed before the special time intervals or started after them. When U+ = ∅ this
model changes back to a classic RCPSP. If all the activities correspond to the same forbidden
time window, this model transforms into a calendar-constrained problem. Table 1 lists all
the parameters used in the model.

Table 1. Parameters used in the proposed model.

Parameter Meaning

j activity number, j = 1, 2, . . . , J where J is the total number of activities
dj duration of activity j
sj starting time of activity j
cj ending time of activity j
Pred(j) the set of activities immediately preceding activity j
Succ(j) the set of activities immediately succeeding activity j
U+ the set of special activities
J+ the set of all the activities
t time number, t = 1, 2, . . . , T; where T is the deadline of the whole project.

At
the set of activities that are being executed at time t,
At =

{
j
∣∣∣j ∈ J+ ∩ sj ≤ t ≤ sj + dj

}
[STi1, STi2] the forbidden window that constrains activity i
k recourse number, k = 1, 2, . . . , K; where K is the total number of types of recourses.
Rk the amount of recourse k

rk the amount of recourse k that activity j requires

3. Solution

The special-time-constrained RCPSP enforces critical barriers when scheduling special
activities. We propose a tailored priority-based heuristic algorithm and a hybrid genetic
algorithm to tackle it.

Processes 2023, 11, 1110 5 of 11

3.1. Priority Rule-Based Heuristic Algorithm

Heuristics have been widely accepted in RCPSPs, especially in those of large scales,
thanks to their fast speed. A higher-level of heuristics is the metaheuristic algorithm. Its
high-efficiency and simple logic has boosted its applications around business plans and
software pipelining. A typical metaheuristic algorithm consists of two critical procedures:
schedule generation scheme (SGS), and priority rule [24]. Two types of SGS are feasible
in practice: the serial SGS based on activity-incrimination, and the parallel SGS based on
time-incrimination. Priority rules are used to deploy one or both SGS(s) and to finally find
the best solution to the scheduling problem.

Priority-based heuristics are satisfactory at tackling classic RCPSPs but would be inept
at the special one discussed in this paper. Therefore, we can tailor the priority rules to
forbidden time windows using the following procedure. If a special activity is one of the
options and can be finished before its forbidden time begins, it will be selected. If two or
more special activities are among the options and they can all be completed before the
forbidden time windows, which means that they are all tied, the activity with the smallest
label will be chosen. This is the tie-breaking rule.

Table 2 lists both schedule generation schemes and their corresponding priority rules
adopted in this paper.

Table 2. Schedule generation schemes and corresponding priority rules.

Serial Scheduling Generation Scheme Parallel Scheduling Generation Scheme

most immediate successors, MTS most immediate successors, MTS
total resource demand, TRD total resource demand, TRD

shortest processing time, SPT shortest processing time, SPT
latest staring time, LST latest staring time, LST

minimum slack time, MST minimum slack time, MST
critical activity, CA critical activity, CA

latest finishing time, LFT worst case slack, WCS

3.2. Hybrid Genetic Algorithm

Hartmann [25] proposed an effective genetic algorithm for RCPSP. We have borrowed
the principles of this algorithm, and further designed specific crossover operators for
forbidden time windows, as well as adopting double justification and elite selection strategy.
Our hybrid genetic algorithm could provide final solutions of an improved quality.

The Algorithm 1 proceeds as follows.

Algorithm 1: Hybrid genetic algorithm

Step 1; initialization: define popsize, Gen, and Pm
Step 2; initiate population pop
Step 3; double-justify chromosomes in pop
Step 4; calculate fitness of each individual
Step 5; select parent
Step 6; use the crossover operator for forbidden time windows
Step 7; exert exchange mutilation
Step 8; generate new population
If the maximum number of iterations are reached end the algorithm
otherwise

go to Step 3.

First, the algorithm sets that the initial population contains popsize individuals: where
popsize is an even integer, Gen is the number of iterations, and Pm is the mutation proba-
bility. Second, it deploys a simple and effective local search strategy, double justification,
to adjust the chromosomes, as illustrated in the following content, and then calculates
fitness for each individual. Third, it uses the crossover operator designed specifically for
forbidden time windows (as explained in Section 3) to generate two new offspring, and

Processes 2023, 11, 1110 6 of 11

mutates them. Thus, the population is enlarged to a size of 2·popsize. Finally, the algorithm
sorts the chromosomes and selects the best ones, such that a new population is generated
with a size of popsize. This procedure is repeated until Gen is reached or the prescribed
CPU time is up.

(1) Initial population and fitness function

The proposed algorithm deploys a precedence feasible activity list to represent activity
priorities. This activity list can be used to generate a possible solution using serial SGS.
Differing from Hartmann’s method, SGS here must take forbidden time windows into
account. Some of the solutions in the initial population are randomly assigned, and
others are selected from the results of a classic priority-based heuristic algorithm, as
mentioned earlier.

Fitness function chooses the highest fitness; thus, the minimum optimized goal has to
be transformed to fitness function as

f (i) = Fmax − Si

where Fmax represents the maximum duration of individual i in the latest five generations
and Si the solution resulting from the decoding individual i, that is, the optimized goal.

(2) Double justification

Many scholars have appropriated local search operators in genetic approaches and
obtained better schedules. We borrowed a double justification operator to improve the
quality of the final results. Thanks to its simplicity, fast speed, and effectiveness, it is
convenient to be applied to RCPSP [26,27].

Definition 1. An active (or left active) schedule is a solution where no activity can be executed
in advance without delaying any other activities or violating any rules. Similarly, a right active
schedule is one where no activity can be postponed without delaying any other activities, violating
any rules, or extending the total makespan.

Definition 2. A justification procedure refers to that given a schedule S, after the right (left)
justification of an activity j 6= J(1) , S becomes a new schedule of S′ where si

′ = si, i 6= j; s′j ≥ sj
(s′j ≤ sj), and s′j is as large/small as possible. The procedure is to start activity j as late (early) as
possible while the other activities’ starting times remain unchanged.

The double justification of a schedule follows a specific agenda. First, all the activities
are sorted in a descending order of their ending times. Second, each activity is justified to the
right and the latest completing time of each activity is obtained. The latest completing time
of an activity refers to the point that is right before the earliest starting time of its immediate
successors and the latest of the time intervals that feed all the recourse constraints. Third,
each activity is justified to the left, and all the activities are sorted in an ascending order
of their starting times. Fourth, each activity is arranged on its earliest starting time point,
such that precedence and recourse constraints are both satisfied. When the procedure is
completed, a solution that is no worse than the original one is obtained.

(3) Crossover operators for forbidden time windows

For the proposed time-bound RCPSP model, schedules that accommodate vacant for-
bidden time windows, meaning no activity is undertaken during those time intervals, must
be less efficient than those where all the forbidden time windows are filled with activities.
Therefore, to obtain a minimized makespan, we design a crossover operator for forbidden
time windows, inspired by the peak crossover operator in Valls et al.’s [18] algorithm. Given
a schedule S, [U1, U2] represents a forbidden time window, and SA(u) the set of activities
being executed during [U1, U2], such that SA(u) = {i ∈ J+; [U1, U2[∩[si, ci[6= ∅}. Thus,

Processes 2023, 11, 1110 7 of 11

the resource utilization ratio (RUR) of schedule S during the special time interval [U1, U2]
can be described as:

RUR(u) =
1
K
∗ ∑

j∈SA(u)

K

∑
k=1

rj,k

Rk
, 0 ≤ RUR(u) ≤ 1

If RUR(u) is higher than a threshold δ, say 0.7, we can claim that schedule S holds a
high RUR during a certain time interval. Let λ be the list of activities that could be executed
during a certain special time interval, such that λ = (jp, jp+1, . . . , jq), and λ could be vacant.

Then, the crossover operator for the forbidden time windows can be used in the
following matter. Suppose there are two individuals F, M. If RURs of F and M are both
lower than δ, one-point crossover is employed to obtain their off-springs; if either RUR of F
or M is higher than δ, two-point crossover is deployed and the two switch points are the
starting time and the ending time of each individual, as explained in Figure 4.

Processes 2023, 11, x FOR PEER REVIEW 7 of 12

(3) Crossover operators for forbidden time windows
For the proposed time-bound RCPSP model, schedules that accommodate vacant for-

bidden time windows, meaning no activity is undertaken during those time intervals,
must be less efficient than those where all the forbidden time windows are filled with
activities. Therefore, to obtain a minimized makespan, we design a crossover operator for
forbidden time windows, inspired by the peak crossover operator in Valls et al.’s [18] al-
gorithm. Given a schedule S, [U1, U2] represents a forbidden time window, and SA(u) the
set of activities being executed during [U1, U2], such that SA(𝑢) = {i ∈ 𝐽 ; [𝑈 , 𝑈 [∩ [𝑠 , 𝑐 [≠∅}. Thus, the resource utilization ratio (RUR) of schedule S during the special time interval
[U1, U2] can be described as:

RUR(𝑢) = 1𝐾 ∗ 𝑟 ,𝑅 , 0 ≤ 𝑅𝑈𝑅(𝑢) ≤ 1∈ ()

If RUR(u) is higher than a threshold δ, say 0.7, we can claim that schedule S holds a
high RUR during a certain time interval. Let λ be the list of activities that could be exe-
cuted during a certain special time interval, such that λ = (jp, jp+1, …, jq), and λ could be
vacant.

Then, the crossover operator for the forbidden time windows can be used in the fol-
lowing matter. Suppose there are two individuals F, M. If RURs of F and M are both lower
than δ, one-point crossover is employed to obtain their off-springs; if either RUR of F or
M is higher than δ, two-point crossover is deployed and the two switch points are the
starting time and the ending time of each individual, as explained in Figure 4.

Figure 4. Forbidden time windows crossover operator.

It seems that the crossover operator for forbidden time windows is highly related to
activities’ RURs during special time intervals. If the RUR of the parent is high, the two-
point operator can ensure that this high RUR is passed on to its offspring; if RURs of the
parents are below the threshold, the one-point operator can facilitate diversity among the
offspring.
(4) Mutation and selection

We applied exchange mutation to the precedence feasible activity list, that is, we ran-
domly selected two genes and switched them according to a mutation probability; if the
mutation violated precedence constraints, the two genes were restored back. We also in-
corporated elite strategy in the selection to guarantee that the best chromosomes would
be directly replicated in the next generation. Here the probability of selecting elites is de-
fined as

Figure 4. Forbidden time windows crossover operator.

It seems that the crossover operator for forbidden time windows is highly related
to activities’ RURs during special time intervals. If the RUR of the parent is high, the
two-point operator can ensure that this high RUR is passed on to its offspring; if RURs of
the parents are below the threshold, the one-point operator can facilitate diversity among
the offspring.

(4) Mutation and selection

We applied exchange mutation to the precedence feasible activity list, that is, we
randomly selected two genes and switched them according to a mutation probability; if
the mutation violated precedence constraints, the two genes were restored back. We also
incorporated elite strategy in the selection to guarantee that the best chromosomes would
be directly replicated in the next generation. Here the probability of selecting elites is
defined as

pi = f (i)/
popsize

∑
j=1

f (j)

4. Simulation

We conducted simulated analysis on our proposed algorithm. The simulation was
performed on a computer with Intel dule-core CPU at 3.4 GHz. The algorithm was coded
in Java.

4.1. Problem Instance Generation

Classic RCPSPs usually use PSPLIB [28], a project scheduling problem library, to test
their performance. The problem that this paper targets, however, can hardly make use of
the library, due to its extra time constraints. Therefore, we extended the library by adding

Processes 2023, 11, 1110 8 of 11

special time constraints to those problems. We defined that special time intervals could
last between 15~20% of the shortest makespans of the projects recorded in PSPLIB. The
starting points of those intervals were randomly assigned along the timelines of the projects,
excluding project starting and ending points. We also randomly designated 8~25% of all
the activities, excluding dummy ones, as special activities without repetition. Finally, we
selected four types of projects which were named J30, J60, J90 and J120, containing four
different numbers of activities: 30, 60, 90 and 120; the corresponding numbers of their
instances were 480, 480, 480 and 600.

The parameters used in the hybrid algorithm were set as follows: Pm was 0.05; popsize
equals the number of activities of the project; the algorithm would be terminated if Gen
reached 200 or the result had not changed in the last 50 generations.

4.2. Results and Comparisons

First, we applied three different methods to one of the instances of J120: a method
integrating the parallel scheduling scheme and WCS priority rule, a method integrating
serial scheduling scheme and LST priority rule, and the proposed hybrid genetic algorithm.
This chosen case included a “forbidden window” lasting a long period and starting at an
early stage of the project, and special activities accounting for 12% of the total. The resultant
makespans of the three were 209, 288 and 186. The two heuristic algorithms could only
determine simple schedules and the quality of the resulted values fluctuated randomly; the
proposed algorithm, however, could explore the space of solutions and keep evolving, thus
approaching the optimized goals.

Next, we separately combined the parallel scheduling scheme and the serial schedul-
ing scheme with the seven different priority rules (the combinations are mentioned in
Section 3.1) and applied them to all the instances of the four types: J30, 60, J90, and J120.
Table 3 lists results of the seven PSS-based methods and Table 4 those of the SSS-based
methods. The two tables record the number of times that the best solution of each method
appears and its average CPU time. Tables 5 and 6 show the average makespans of the
PSS-based methods and the SSS-based methods, respectively. Table 7 lists the results of the
proposed algorithm.

Table 3. Results of the parallel schedule scheme-based methods.

Priority Rules

WCS CA SPT LST MSL TRD MTS

J30 The times the best
solution appear 353 174 194 351 287 181 253

Average CPU time 9.11 10.01 9.82 9.59 9.51 9.27 9.49

J60 The times the best
solution appear 339 162 161 346 278 167 206

Average CPU time/(ms) 15.73 15.96 16.36 16.75 17.4 17.19 16.95

J90 The times the best
solution appear 334 133 149 353 269 145 185

Average CPU time/(ms) 20.37 20.36 20.43 21.19 20.75 20.74 20.72

J120 The times the best
solution appear 280 53 45 341 107 30 84

Average CPU time/(ms) 31.9 31.48 31.82 31.77 31.97 32.13 32.67

Processes 2023, 11, 1110 9 of 11

Table 4. Results of the serial schedule scheme-based methods.

Priority Rules

MTS CA SPT LST MSL TRD LFT

J30 The times the best
solution appear 87 91 3 247 2 8 189

Average CPU time/(ms) 7.11 6.82 6.81 6.74 7.03 7.46 7.59

J60 The times the best
solution appear 24 59 0 314 0 0 185

Average CPU time/(ms) 15.4 15.38 16.51 16.83 16.9 17.2 17.02

J90 The times the best
solution appear 20 47 0 348 1 0 168

Average CPU time/(ms) 21.91 22.56 22.82 23.14 23.33 23.28 23.36

J120 The times the best
solution appear 8 36 0 394 0 0 177

Average CPU time/(ms) 29.12 30.43 30.72 30.55 31.23 31.16 31.12

Table 5. Mean makespans of the parallel schedule scheme-based methods.

Jobs WCS CA SPT LST MSL TRD MTS The Average of
the Best Solution

J30 67 69 70 67 68 71 68 65
J60 91 96 96 91 94 98 94 90
J90 108 115 116 108 111 118 112 107

J120 145 155 159 144 153 167 153 142

Table 6. Mean makespans of the serial schedule scheme-based methods.

Jobs MTS CA SPT LST MSL TRD LFT The Average of
the Best Solution

J30 79 76 91 72 90 89 72 69
J60 115 110 142 100 140 139 102 98
J90 141 133 181 120 175 177 122 118

J120 214 202 280 183 276 275 186 180

Table 7. The genetic algorithm mean makespan.

Jobs Makespan Time (s)

J30 65 5.12
J60 89 16.19
J90 98 25.63

J120 126 50.6

The bolded numbers in Tables 3 and 4 represent the best two results of each type.
Among PSS-based methods, the results of WCS and LST are the best, and the results of
LST and LFT stand out among SSS-based methods. Comparing Tables 5 and 6, we can
find that PSS-based methods perform better than SSS-based, and results of WCS and LST
again outstrip others. Figure 5 displays the comparison between mean makespans of
PSS-based methods, SSS-based methods and the proposed hybrid genetic algorithm. The
figure indicates that the proposed algorithm is not much superior when the projects contain
a small number of activities, but as the number of activities rises, the proposed algorithm is
better than the others, although its time cost also grows.

Processes 2023, 11, 1110 10 of 11

Processes 2023, 11, x FOR PEER REVIEW 10 of 12

The bolded numbers in Tables 3 and 4 represent the best two results of each type.
Among PSS-based methods, the results of WCS and LST are the best, and the results of
LST and LFT stand out among SSS-based methods. Comparing Tables 5 and 6, we can find
that PSS-based methods perform better than SSS-based, and results of WCS and LST again
outstrip others. Figure 5 displays the comparison between mean makespans of PSS-based
methods, SSS-based methods and the proposed hybrid genetic algorithm. The figure in-
dicates that the proposed algorithm is not much superior when the projects contain a small
number of activities, but as the number of activities rises, the proposed algorithm is better
than the others, although its time cost also grows.

Figure 5. Comparison between the heuristics and the proposed hybrid genetic algorithm.

5. Conclusions
In this paper, we have targeted the water conservancy project scheduling problem.

As it is an extension to the classic RCPSP, we have proposed an approach that incorporates
a priority rule-based heuristic algorithm and a hybrid genetic algorithm. From the simu-
lation results, we can draw the following conclusions:
(1) Priority-based heuristic algorithms using the parallel scheduling scheme perform

better than those using the serial scheduling scheme;
(2) Time-constrained priority rules, such as LFT, LST, and WCS can help to obtain better

results than other priority rules;
(3) The proposed algorithm exhibits better performance on large-scale problems, alt-

hough it costs more time than priority rule-based heuristics.
In this paper, we have presented a forbidden time window water construction project

scheduling research that integrates model and solution. This contributes towards building
appropriate decision support capabilities in widely diverging project scheduling environ-
ments. Given the prevalence of specific time constraints in real life, reducing the impact
of time constraints on projects, as discussed in this article, can greatly reduce project du-
ration and cost. However, there are still some issues for further study. For example, more
efficient algorithms need to be found, and solutions need to be extended to more practical
scenarios.

Author Contributions: Writing—original draft preparation, S.Z.; writing—review and editing, X.S.;
visualization, Validation, L.S.; supervision, L.X.; project administration, L.X.; funding acquisition,
S.Z. and X.S. All authors have read and agreed to the published version of the manuscript.

Figure 5. Comparison between the heuristics and the proposed hybrid genetic algorithm.

5. Conclusions

In this paper, we have targeted the water conservancy project scheduling problem. As
it is an extension to the classic RCPSP, we have proposed an approach that incorporates a
priority rule-based heuristic algorithm and a hybrid genetic algorithm. From the simulation
results, we can draw the following conclusions:

(1) Priority-based heuristic algorithms using the parallel scheduling scheme perform
better than those using the serial scheduling scheme;

(2) Time-constrained priority rules, such as LFT, LST, and WCS can help to obtain better
results than other priority rules;

(3) The proposed algorithm exhibits better performance on large-scale problems, although
it costs more time than priority rule-based heuristics.

In this paper, we have presented a forbidden time window water construction project
scheduling research that integrates model and solution. This contributes towards building
appropriate decision support capabilities in widely diverging project scheduling environ-
ments. Given the prevalence of specific time constraints in real life, reducing the impact of
time constraints on projects, as discussed in this article, can greatly reduce project duration
and cost. However, there are still some issues for further study. For example, more efficient
algorithms need to be found, and solutions need to be extended to more practical scenarios.

Author Contributions: Writing—original draft preparation, S.Z.; writing—review and editing, X.S.;
visualization, Validation, L.S.; supervision, L.X.; project administration, L.X.; funding acquisition, S.Z.
and X.S. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Science Foundation of China [72204210], Xuzhou
medical university excellent talents scientific research start-up fund [53591420]; Research Projects of
Philosophy and Social Sciences in Colleges and Universities of Jiangsu Province [2020SJA1079].

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Odedairo, B.O.; Oladokun, V. Relevance and Applicability of Multi-objective Resource Constrained Project Scheduling Problem:

Review Article, Engineering. Technol. Appl. Sci. Res. 2011, 1, 144–150. [CrossRef]
2. Brucker, P.; Drexl, A.; Möhring, R.; Neumann, K.; Pesch, E. Resource-constrained project scheduling: Notation, classification,

models, and methods. Eur. J. Oper. Res. 1999, 112, 3–41. [CrossRef]
3. Hartmann, S.; Briskorn, D. A survey of variants and extensions of the resource-constrained project scheduling problem. Eur. J.

Oper. Res. 2010, 207, 1–14. [CrossRef]

http://doi.org/10.48084/etasr.53
http://doi.org/10.1016/S0377-2217(98)00204-5
http://doi.org/10.1016/j.ejor.2009.11.005

Processes 2023, 11, 1110 11 of 11

4. Kolisch, R.; Padman, R. An integrated survey of deterministic project scheduling. Omega 2001, 29, 249–272. [CrossRef]
5. Tamás, K. Project scheduling: A review of recent books. Oper. Res. Lett. 2005, 33, 105–110.
6. Hartmann, S.; Briskorn, D. An updated survey of variants and extensions of the resource-constrained project scheduling problem.

Eur. J. Oper. Res. 2022, 297, 1–14. [CrossRef]
7. Pellerin, R.; Perrier, N.; Berthaut, F. A survey of hybrid metaheuristics for the resource-constrained project scheduling problem.

Eur. J. Oper. Res. 2020, 280, 395–416. [CrossRef]
8. Neumann, K.; Schwindt, C.; Zimmermann, J. Resource-Constrained Project Scheduling with Time Windows. In Perspectives in

Modern Project Scheduling; Józefowska, J., Weglarz, J., Eds.; International Series in Operations Research & Management Science 92;
Springer: New York, NY, USA, 2006; pp. 375–407.

9. Ismael de Azevedo, G.H.; Pessoa, A.A.; Subramanian, A. A satisfiability and workload-based exact method for the resource
constrained project scheduling problem with generalized precedence constraints. Eur. J. Oper. Res. 2021, 289, 809–824. [CrossRef]

10. Morin, P.-A.; Artigues, C.; Haït, A.; Kis, T.; Spieksma, F.C. A project scheduling problem with periodically aggregated resource-
constraints. Comput. Oper. Res. 2022, 141, 105688. [CrossRef]

11. Chen, Y.-L.; Rinks, D.; Tang, K. Critical path in an activity network with time constraints. Eur. J. Oper. Res. 1997, 100, 122–133.
[CrossRef]

12. Zhan, J. Calendarization of time planning in MPM networks. ZOR Methods Model. Oper. Res. 1992, 36, 423–438. [CrossRef]
13. Franck, B.; Neumann, K.; Schwindt, C. Project scheduling with calendars. OR-Spektrum 2001, 23, 325–334. [CrossRef]
14. Yang, H.-H.; Chen, Y.-L. Finding the critical path in an activity network with time-switch constraints. Eur. J. Oper. Res. 2000, 120,

603–613. [CrossRef]
15. Bomsdorf, F.; Derigs, U. A model, heuristic procedure and decision support system for solving the movie shoot scheduling

problem. OR Spectr. 2008, 30, 751–772. [CrossRef]
16. Lorenzoni, L.L.; Ahonen, H.; de Alvarenga, A.G. A multi-mode resource-constrained scheduling problem in the context of port

operations. Comput. Ind. Eng. 2006, 50, 55–65. [CrossRef]
17. Vanhoucke, M. Scheduling an R&D project with quality-dependent time slots. In Computational Science and Its Applications-ICCSA

2006; Springer: Berlin/Heidelberg, Germany, 2006; pp. 621–630.
18. Mi, X.; Mei, M.; Zheng, X. Study on Optimal Routes of Multimodal Transport under Time Window Constraints. In Proceedings of

the IEEE 23rd International Conference on Computer Supported Cooperative Work in Design (CSCWD), Porto, Portugal, 6–8
May 2019.

19. Drexl, A.; Nissen, R.; Patterson, J.H.; Salewski, F. ProGen/πx—An instance generator for resource-constrained project scheduling
problems with partially renewable resources and further extensions. Eur. J. Oper. Res. 2000, 125, 59–72. [CrossRef]

20. Nachtmann, H.; Mitchell, K.N.; Rainwater, C.E.; Gedik, R.; Pohl, E.A. Optimal Dredge Fleet Scheduling Within Environmental
Work Windows. Transp. Res. Rec. 2014, 2426, 11–19. [CrossRef]

21. Luebsen, J.; Wolken-Moehlmann, G. Comparison of Weather Window Statistics and Time Series Based Methods Considering
Risk Measures. In Proceedings of the 17th EERA Deep Sea Offshore Wind R and D Conference (EERA DeepWind), Trondheim,
Norway, 15–17 January 2020; IOP Publishing: Bristol, UK, 2020.

22. Naumets, S.; Lu, M.; Ali, M. Project Schedule Development under Environment-Induced Time-Window Constraints: Case of
Constructing River-Crossing Bridge in Remote Northern Region. J. Constr. Eng. Manag. 2022, 148, 04022129.

23. Blazewicz, J.; Lenstra, J.; Kan, A. Scheduling subject to resource constraints: Classification and complexity. Discret. Appl. Math.
1983, 5, 11–24. [CrossRef]

24. Kolisch, R. Serial and parallel resource-constrained project scheduling methods revisited: Theory and computation. Eur. J. Oper.
Res. 1996, 90, 320–333. [CrossRef]

25. Hartmann, S. A competitive genetic algorithm for resource-constrained project scheduling. Nav. Res. Logist. 1998, 45, 733–750.
[CrossRef]

26. Valls, V.; Ballestín, F.; Quintanilla, S. A hybrid genetic algorithm for the resource-constrained project scheduling problem. Eur. J.
Oper. Res. 2008, 185, 495–508. [CrossRef]

27. Valls, V.; Ballestin, F.; Quintanilla, S. Justification and RCPSP: A technique that pays. Eur. J. Oper. Res. 2005, 165, 375–386.
[CrossRef]

28. Kolisch, R.; Sprecher, A. PSPLIB—A project scheduling problem library: OR Software—ORSEP Operations Research Software
Exchange Program. Eur. J. Oper. Res. 1997, 96, 205–216. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1016/S0305-0483(00)00046-3
http://doi.org/10.1016/j.ejor.2021.05.004
http://doi.org/10.1016/j.ejor.2019.01.063
http://doi.org/10.1016/j.ejor.2019.07.056
http://doi.org/10.1016/j.cor.2021.105688
http://doi.org/10.1016/S0377-2217(96)00140-3
http://doi.org/10.1007/BF01415759
http://doi.org/10.1007/PL00013355
http://doi.org/10.1016/S0377-2217(98)00390-7
http://doi.org/10.1007/s00291-007-0103-6
http://doi.org/10.1016/j.cie.2005.11.001
http://doi.org/10.1016/S0377-2217(99)00205-2
http://doi.org/10.3141/2426-02
http://doi.org/10.1016/0166-218X(83)90012-4
http://doi.org/10.1016/0377-2217(95)00357-6
http://doi.org/10.1002/(SICI)1520-6750(199810)45:7<733::AID-NAV5>3.0.CO;2-C
http://doi.org/10.1016/j.ejor.2006.12.033
http://doi.org/10.1016/j.ejor.2004.04.008
http://doi.org/10.1016/S0377-2217(96)00170-1

	Introduction
	Problem Description
	Solution
	Priority Rule-Based Heuristic Algorithm
	Hybrid Genetic Algorithm

	Simulation
	Problem Instance Generation
	Results and Comparisons

	Conclusions
	References

