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Abstract: Environmental microbiology has been an essential part of environmental research because
it provides effective solutions to most pollutants. Hence, there is an interest in investigating microor-
ganism behavior, such as observation, identification, isolation of pollutant degraders, and interactions
between microbial species. To comprehensively understand cell heterogeneity, diverse approaches
at the single-cell level are demanded. Thus far, the traditional bulk biological tools such as petri
dishes are technically challenging for single cells, which could mask the heterogeneity. Single-cell
technologies can reveal complex and rare cell populations by detecting heterogeneity among individ-
ual cells, which offers advantages of higher resolution, higher throughput, more accurate analysis,
etc. Here, we overviewed several single-cell techniques on observation, isolation, and identification
from aspects of methods and applications. Microscopic observation, sequencing identification, flow
cytometric identification and isolation, Raman spectroscopy-based identification and isolation, and
their applications are mainly discussed. Further development on multi-technique integrations at the
single-cell level may highly advance the research progress of environmental microbiology, thereby
giving more indication in the environmental microbial ecology.
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1. Introduction

Microorganisms are ubiquitous in the environment; they interact with the soil-, water-,
and gas-phase environments, and they play essential roles in the environment. Environmen-
tal microbiology uses microbes to clean up contaminants, so the observation, identification,
and isolation of high-efficiency contaminant degraders are essential. Bulk analysis tech-
niques give average results for the population/community, but (i) fail to capture the
contribution of small subpopulations (“phenotypic or genotypic heterogeneity”) to the
functionality of the community, or (ii) make up a non-existing averaged population, result-
ing in limited/false exploitation of these differences to steer microbial response (Figure 1).
Therefore, more detailed analysis techniques at the single-cell level are highly demanded.

Research on single-cell technology is not new. Dating back to the 17th century, An-
tonie van Leeuwenhoek, known as “the Father of Microbiology”, was the first person
to observe and describe single microbes using his handcrafted microscopes [1]. In the
19th century, the first isolation of single bacteria was achieved by Julius Richard Petri and
Robert Koch; individual bacterial cells were isolated on the petri dish and cultivated into
single “clonal” bacterial colonies [2]. Microorganisms, which represent most of the earth’s
biodiversity, are primary drivers and play important roles in the environment, ecosystem
functioning, and nutrient cycling [3–5]. While the vast majority of microorganisms (>99%)
in the natural environment are currently unculturable in laboratory research [6]. These
“unculturable” microorganisms represent a large, untouched pool of species with novel
biological and chemical properties [7]. The characterization of microbial communities
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and their management are becoming increasingly appealing in both natural and indus-
trial processes. Identification of “unculturable” microorganisms from nature started to
emerge in the 1990s by sequencing [8,9], followed the development of high-throughput
next-generation sequencing or 16S rRNA sequencing, which remains dominant nowadays.
Yet, the state-of-the-art molecular techniques are still semi-quantitative at best and at bulk
levels [10]. Single-cell techniques can help to understand how individual phenotypic
and genotypic traits determine functionality and link heterogeneity between individuals
and performance. Effective single-cell techniques without the need for a time-consuming
cultural step have been an issue for several years, and several methods already exist that
address this problem.
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Figure 1. Comparison between bulk and single-cell techniques. Bulk analysis techniques provide
average microbial information, while single-cell techniques provide more accurate microbial pheno-
typic heterogeneity.

The single-cell technique for diversified and efficient observation, isolation, and identi-
fication analyses of single biological cells has been a research hotspot in the respected field.
This review highlighted the relevant single-cell techniques from the aspects of methods and
applications. The advantages and disadvantages are discussed. The state-of-art techniques
in single-cell analysis are reviewed, including microscopy, sequencing, flow cytometry, and
Raman spectroscopy, in terms of their advantages and multi-technique application, with
the intention of indicating the approaches to overcome the bottlenecks in environmental
single-cell analysis.

2. Single-Cell Techniques
2.1. Microscopic Observation

Fluorescence microscopy is one of the most common tools in molecular biology/
biochemistry laboratories. Reliable and strong fluorescent signals are necessary to monitor
individual cell physiology through staining or using antibodies against proteins of interest.
High-resolution single-cell microscopy, such as confocal microscopy, allows imaging of
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three-dimensional structure distributions of a thick specimen by optical sectioning (a theo-
retical lateral resolution of 0.1–0.2 µm and a vertical resolution of 0.2–0.4 µm, depending
on the numerical aperture of the objective and the wavelength of the emitted light [11,12]),
and electron microscopy (e.g., scanning electron microscopy—SEM, transmission electron
microscopy—TEM) observe the surface or interior of cells through sectioning and negative
staining. An Energy Dispersive X-ray Analysis (EDX) system is an attachment to SEM or
TEM that identifies the elemental composition of a sample. In situations where combined
microscopy and EDX data are insufficient to identify a specimen, complementary tech-
niques such as Raman microscopy are available. Furthermore, the combination of different
techniques allows for more detailed information about a sample; for example, confocal
Raman microscopy, which combines Raman spectroscopy with a confocal microscope,
reveals the spatial distribution of the compounds within a sample [13].

With microscopic observation alone, it can be extremely hard to achieve a reasonable
functional resolution for the diversity of microbes typically found in an environmental
sample [2]. To solve this problem, image processing and analysis of the microscopic images
are applied in order to observe sufficient sample numbers to allow meaningful statistical
analyses, as well as rapid characterization of cell populations. This has been used in
monitoring filamentous bacteria in active sludges of wastewater treatment plants [14,15].
While to give accurate quantification of flocs and filaments, a good performance of the
image segmentation algorithms is very important. Furthermore, microscopy of biological
samples in microfluidic devices may serve the pressing need for microscopy of cells and
other biological systems and materials in their native liquid state, e.g., with a resolution
of a few nanometers—the dimension of proteins—by combining electron microscopy and
microfluidic devices [16]. Additionally, the development of new fluorescent dyes may
further enhance the resolution of the microscopy image (e.g., the benzene ring in the
rhodamine core is replaced with a permanently charged 1,3-disubstituted imidazolium),
which boosts photoswitching behavior and overall performance of (direct) stochastic optical
reconstruction microscopy ((d)STORM) [17].

2.2. Sequencing Identification

The sequencing technologies continued to evolve with the advent of next generation
sequencing (NGS) in the early 2000s, providing more comprehensive data with efficient,
rapid, reduced-cost, and accurate DNA sequencing [18,19]. Over the past decade, there
has been a surge of interest in obtaining high-resolution views of single-cell heterogeneity
on a global scale. Genome sequencing of single microbial cells directly isolated from envi-
ronmental samples ranging from deep-sea hydrothermal vents to insect guts has become
almost routine, providing a powerful complement to shotgun metagenomics in microbial
community studies [20]. Further, third-generation sequencing allows for long-read sequenc-
ing in real-time with low alignment and mapping errors during library construction, which
is much faster than traditional first- or second-generation technologies. It can provide
results in a matter of minutes. Therefore, speed is one of the most important advantages of
third-generation sequencing, allowing, for example, efficient pathogen identification [21].
Furthermore, the relatively long reads make it possible to completely sequence a viral or
bacterial genome with high accuracy [22,23]. Third-generation sequencing is widely used
in microbiology to sequence genomes from individual cells isolated from environmental
samples, e.g., its application in a large-scale wastewater treatment plant to understand the
mechanism of pollutants removal in a comprehensive way [24].

2.3. Flow Cytometric Identification and Isolation

Although microscopy and sequencing made us aware of “who is there” in the microbial
world, it was not until the advent of flow cytometry (FCM) in the late 20th century that
complex and high-throughput studies were first performed on the microbial single-cell
level, such as the cellular DNA/protein content and viability of bacteria, algae, fungi, and
yeasts [25]. Nowadays, FCM has been developed and recognized as the gold standard for
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fast and reliable single microorganism analysis [26–30]. It is (i) a high-throughput technique
where cells are analyzed by passing through a beam of light in a fluid stream and measuring
their fluorescence or scatter properties; (ii) capable of multiple detections through the
multitude of available stains; and (iii) efficient in single-cell sorting for downstream analysis,
such as physical-chemical, biological, or molecular analysis [31,32].

Flow cytometry is now commonly used in aquatic microbiology, either at the lab
scale to gain deep insights into the heterogeneity of populations and the functioning
of microbial communities [33–36], in large-scale wastewater treatment plants for long-
term investigations of dynamic community assembly to discover perturbation-associated
symptoms for community control [37], or for automatic online monitoring, where the
community data obtained is used as an early-warning tool to reflect/control drinking
water process operation [38–41]. These applications rely heavily on maximizing the use
of FCM data stored in single-cell phenotypic characteristics. Several novel computational
FCM analysis tools that differ in their approach and purpose have been developed and
reviewed [42]. Image-processing-based approaches are represented by the Dalmatian
Plot [43] and Cytometric Histogram Image Comparison (CHIC) [44], which give a general
comparison at the sample level. Further, gating-based approaches (CyBar) allow extra
identification of individual subpopulation/subcommunity dynamics/responses of each
sample in addition to the general trend interpreted by image processing [45], which has
been proven to be of a similar resolution as a 16S rRNA gene analysis [32]. However,
the gating is performed manually, which requires expertise and may vary from person to
person. So automated approaches are on demand and established for phenotypic diversifi-
cation, such as (i) binning strategies for the flow cytometry-derived alpha diversity metrics
of “phenoflow” [46] and flow FP [47], and (ii) the Gaussian mixture model-based gating
tools—“PhenoGMM” [48] enables efficient predictions of biodiversity, and “flowEMMi” [49]
provides fast and accurate identification of cell clusters in FCM data. The integration of ar-
tificial intelligence and machine learning algorithms is the advancement in flow cytometry
application. Additionally, there have been recent developments in the use of microfluidic
devices for flow cytometry, which allows for the miniaturization of the technique and the
potential for high-throughput analysis of large numbers of cells [50].

The capabilities of flow cytometers have improved dramatically over the years by in-
tegrating more lasers and detectors, allowing the detection of more markers per individual
cell. Due to the compensation, conventional flow cytometry based on fluorescence has
limitations in detecting channels ranging up to 15–20 colors. With the development of mass
cytometry in 2009, the number of detection channels evaluated using metal-conjugated
antibodies expanded by more than 40 [51] due to the low background value of metals in
cells. Yet, mass cytometry is a cell-destructive technique (e.g., atomized and ionized) with
no possibility of recovery of cells for sorting. The up-to-date full-spectrum flow cytometry
breaks through the bottleneck of conventional flow cytometry with limited detecting chan-
nels and mass cytometry with destructive cell analysis, which measures the entire emission
spectrum of every fluorochrome [52,53] across all laser lines. Up to 40 fluorescently la-
beled antibodies are possible for individual cell analysis and sorting. Full-spectrum flow
cytometry allows for high-dimensional parameter space and high subcellular resolution.

2.4. Raman Spectroscopy-Based Identification and Isolation

Raman spectroscopy is another powerful and non-destructive spectroscopic tech-
nique for single-cell phenotypic/genotypic characterization. The incident light (normally
monochromatic light close to the infrared or ultraviolet range) illuminating the sample
results in the photons undergoing elastic scattering (energy/wavelength unchanged from
incident light) and inelastic scattering (energy/wavelength changed—Raman spectrum).
Each peak in the Raman spectrum corresponds to a specific molecular vibration mode, for
example, the individual bonds of C-C, C-H, C=C, and N-O, and groups of bonds such as the
breathing mode of the aromatic carbon ring, polymer chain vibrations, lattice modes, etc.
In general, it is capable of acquiring more than 1000 Raman bands from a single cell within
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30 s in the Raman shift range of 500–2000 cm−1, which provides comprehensive and intrin-
sic biochemical information and single-cell identification as a molecular fingerprint [54].
Raman spectroscopy is now a remarkable label-free technique for single particle characteri-
zation, and researchers have used this technique to identify and quantify microplastics [55].
Normally, spontaneous Raman spectroscopy has a weak scattering effect because only 1 in
106–108 photons will undergo Raman scattering, which results in high laser power and a
long acquisition time. While coherent Raman spectroscopy provides much stronger signals
compared to spontaneous Raman spectroscopy. Raman signal can be enhanced through
nonlinear optical effects, such as stimulated Raman spectroscopy (SRS) and coherent anti-
Stokes Raman spectroscopy (CARS), providing higher spatial resolution and allowing rapid
data collection. The sensitivity of Raman spectroscopy can also be enhanced through other
techniques, such as resonance Raman spectroscopy, surface-enhanced Raman spectroscopy
(SERS), or tip-enhanced Raman scattering (TERS) [54]. TERS combines scanning probe mi-
croscopy (SPM) with Raman spectroscopy to achieve high spatial resolution spectroscopy,
down to the nanometer level, which can investigate biological processes such as protein
folding and DNA replication.

Biological samples are complex and diverse, which results in varied Raman spectra
data. Biological molecules such as lipids, proteins, nucleic acids, and carbohydrates share
some bonds (e.g., C-H, C=O, etc.), which make the Raman spectra of different biological
molecules overlap, thereby presenting difficulties in data interpretation. Therefore, effective
raw data pretreatment (spectral axis alignment, spike removal, background correction,
smoothing, normalization, and outlier removal [56]) is essential for the precise qualitative
and quantitative analysis of biological samples. It is believed that an accurate peak defini-
tion can have a significant influence on the reliability of the results. A wide range of the
most frequently seen peaks in biological Raman studies are presented [57]. Further, the
multivariate analysis methods of Raman data can be broadly classified into two categories:
unsupervised (unlabeled) and supervised classifications (labeled for discrimination), where
principal component analysis (PCA) is a commonly used unsupervised procedure for
complex datasets to find significant spectral variance and linear discriminant classifiers
(LDCs), partial least squares regression (PLSR), and support vector regression (SVR) are
represented methods often used in supervised classification [58].

Raman spectroscopy has recently been reported to have higher resolution than FCM
at the single-cell level [59,60], which can reflect more bacterial genotypes than pheno-
types because more biochemical information can be recorded. Additionally, combinations
such as Raman isotope probing and Raman-FISH can be used to characterize metabolic
activity at the single-cell level [61]. Furthermore, to actively link the function with their
genotypes, Raman-activated cell sorting techniques, such as Raman-activated cell ejec-
tion (RACE, [62]), Raman-activated microfluidic sorting (RAMS, [63]), and optical tweez-
ers [64], are available to offer a culture-independent approach to isolate individual cells for
downstream sequencing.

2.5. Integrated Microfluidic Single-Cell Techniques

Microfluidics is a technique for manipulating and controlling fluids in the range of
micro- to pico-liters in networks of channels with dimensions from tens to hundreds of
microns [65]. Microfluidic chips can be flexibly designed to have desired size, shape,
and geometry to fulfill the demands of diverse single-cell manipulation and analysis
tasks. There are different microfluidic methods to capture or isolate single cells, such
as the hydrodynamic, electrical, optical, acoustic, and magnetic methods, among which
the electrical methods, especially dielectrophoresis (DEP), have high accuracy and great
flexibility owing to the various parameters covered (e.g., the size of the cells, the dielectric
properties of the cells and the surrounding solution, the gradient of the electric field, and
the frequency of the electric field), but they have shortcomings such as lower throughput
than the hydrodynamic methods. Optical tweezers combined with microfluidic chips
could manipulate particles within the size range of nanometers to tens of microns under
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continuous flow for cell sorting [66]. Further, there are various detection methods, such as
fluorescence microscopy, fluorometry, and mass spectroscopy, that can be combined with
microfluidic systems for single-cell analysis, from cell morphology to secreted proteins.

Automated and integrated microfluidic chips allow for real-time observations and
investigations of the environmental signals’ influence on cellular response dynamics by
delivering input signals to single and isolated suspensions or adherent cells in a precisely
controlled manner [67]. Furthermore, microfluidic devices can be used to isolate and
analyze individual cells from environmental samples, such as soil or water, allowing
for environmental metagenomics analysis at the single-cell level. This can provide a
statistically rigorous approach to extracting novel microbial genomes while preserving
single-cell resolution [68]. Further, microfluidic devices can mimic environmental stress
conditions, such as changes in temperature, pH, or nutrient availability, allowing for the
study of stress response phenotypes at the single-cell level [69].

3. Applications in Environmental Microbiology

Single-cell analysis may highly accelerate the research on environmental microbiol-
ogy for the observation, isolation, and identification (Figure 2) of the functionally toler-
ating/sensitive microbial species, such as the bio-degraders of emerging contaminants.
These approaches may shorten the time it takes to derive contaminant degraders and their
synergetic species, thereby supporting contamination remediation. In order to provide
an overview of the differences among single-cell technologies, a comparison table was
created to highlight the achievements and variations in the measurement and analysis of
different methods (Table 1). This allows for an easy and comprehensive evaluation of the
technologies available.
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Figure 2. Workflow for single-cell analysis in terms of observation, identification, and isolation of
cells at the single-cell level. Sample preparation mainly includes label-free, autofluorescent, and
fluorescently stained cells, isotope-labeled cells, and FISH-labeled cells. Observation of single cells
mainly uses light microscopy, fluorescent microscopy, confocal microscopy, and electron microscopy.
Identification of single cells can be achieved by sequencing, electrochemical impedance spectroscopy,
and Raman spectroscopy. Isolation of targeted single cells can be performed through optical tweezers,
microfluidic chips, and flow cytometry.
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Table 1. A comparison table in terms of achievements and variations in the measurement and analysis
of different methods.

Technologies Examples in Achievements Regression Analysis and Outlook

Microscope

Energy Dispersive X-ray Analysis (EDX)
system combines with SEM or TEM to
identify the elemental composition in a

sample [35].

Microscopic images are subject to a variety of factors, such as instrument
limitations, signal intensity or image contrast, sample preparation, and

experimental conditions. Regression analysis can be employed to examine the
correlation variables to eliminate or control the discrepancies, leading to more

precise and reliable measurements.
The future of microscopy will focus on the application of super-resolution
microscopy, multiphoton microscopy, and CRISPR-based microscopy to

visualize specific DNA or RNA sequences within cells.

Confocal microscopy combined with Raman
spectroscopy reveals the spatial distribution

of the compounds within a sample [13].

Flow cytometry

Investigate the dynamic community
assembly in wastewater treatment plants to
discover perturbation-associated symptoms

for community control [37].

Flow cytometry measurements are susceptible to several sources of variability,
including instrument noise, variations in sample preparation, and different

experimental conditions. Statistical regression analysis can be applied to flow
cytometry data to account for these sources of errors. Therefore, regression

analysis is required to correlate the fluorescence signal from the cell population
with various independent variables, such as cell size, granularity, instrument

gain, and protein expression levels.
The future of flow cytometry looks promising, with advancements moving

towards high-throughput analysis, imaging flow cytometry, and AI-powered
data analysis. With these developments, the potential for this technology to

revolutionize biological research is enormous.

Automatic online monitoring of the
community changes as an early-warning

tool to reflect/control drinking water
processing operation [38–40].

Automated approaches have been
established for flow cytometric phenotypic
diversification, including phenoflow [46],

flow FP [47], PhenoGMM [48], and
flowEMMi [49].

Raman
spectroscopy

By analyzing the Raman spectra of small
particles in water samples, researchers have

been able to identify and quantify
microplastics, which pose a threat to marine

life and ecosystems.

There are various sources of errors in Raman spectroscopy, including
instrumental noise, sample heterogeneity, fluorescence, and solvent effects. To
account for the error in Raman spectroscopy, regression analysis can be used to

quantify the amount of a particular chemical in a sample based on the signal
intensity of a Raman peak that is associated with the chemical, or to correct for
interferences or background signals that may be present in the Raman spectrum

to improve the accuracy of the quantitation method.
The outlook for the development of Raman spectroscopy is to develop portable
systems for in-field applications. And combining Raman with other techniques,
such as infrared spectroscopy, surface-enhanced Raman spectroscopy (SERS),

and fluorescence spectroscopy, can obtain more
comprehensive information about samples.

Confocal Raman microscopy allows for
three-dimensional imaging of samples with

high spatial resolution [13].

Tip-enhanced Raman spectroscopy combines
scanning probe microscopy (SPM) with

Raman spectroscopy to achieve high spatial
resolution spectroscopy down to the

nanometer level, which can investigate
biological processes such as protein folding

and DNA replication [54].

Microfluidic
single-cell
techniques

The microfluidic device allows for real-time
observations of apoptosis in intracellular

signaling pathways in single cells [67].
In microfluidic chips, the regression of error refers to the process of analyzing

and quantifying the accuracy and precision of the device’s performance. This is
typically achieved by comparing the results obtained from the chip to a known
value or established standard. To accomplish regression of error in microfluidic

chips, various statistical methods are used, such as linear regression and
least-squares analysis. These methods allow researchers to determine the

relationship between different variables and
identify any sources of error in the system.

The future of microfluidic chips is exciting and full of potential. Major
advancements are expected in the development of miniaturized, easy-to-use,

inexpensive, and highly integrated microfluidic systems.

Microfluidic devices can be used to isolate
and analyze individual cells from

environmental samples, such as soil or water,
allowing for environmental metagenomics

analysis at the single-cell level. This can
provide a more accurate understanding of

microbial diversity and function in complex
environments [68].

Microfluidic devices can mimic
environmental stress conditions, such as
changes in temperature, pH, or nutrient

availability, allowing for the study of stress
response phenotypes at the single-cell

level [69].

In the microbial environment, persistent organic pollutants are highly concerning due
to their recalcitrance, toxicity, mutagenicity, and carcinogenicity. Flow cytometry has been
used to detect the absorption of polycyclic aromatic hydrocarbons (PAHs) to cell surfaces
and the toxicity to cell growth, as well as to study the microbial responses to the PAH
degradation [70]. These relative studies mainly depend on the single-cell analysis (e.g., cell
abundance changes over time) rather than single-cell isolation and enrichment. Currently,
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the isolation and enrichment of target synergistic degraders mainly rely on cultivation
approaches at the lab scale, with the majority of microorganisms remaining uncultured and
therefore poorly characterized. Therefore, cultivation-independent technologies have been
greatly expanded to reveal novel functional microorganisms. However, a single technique
cannot provide a comprehensive understanding of the biology of these microorganisms
and their functions; thus, the integration of cultivation-independent multi-techniques may
broaden the view on understanding the microbial ecosystem. For example, microscopy
combined with microfluidic chips could enable direct, high-resolution observation of the
cell morphology of the natural bio-degrader biofilm surrounding the contaminants. Flow
cytometry analysis and cell sorting combined with sequencing enable monitoring of the
real-time-dependent microbial community succession under contaminant exposure with
comprehensive information on identifying and isolating the synergetic microbial species.
Raman spectroscopy combined with microfluidic chips gives deeper insight into individual
cell differences at the genotype level.

Furthermore, for contaminants (e.g., PAHs) with known efficient degraders, single-
cell techniques may help investigate the surviving mechanisms of degraders in natural
soil communities. Real-time tracking fluorescence microscopy combines fluorescence
microscopy with microfluidic chips to observe and quantify the phenotypic changes of
individual pollutant-degrading cells and the dynamic changes of typical proteins within
a degrader. This enables full understanding of the colonization and survival of invading
contaminant degraders and their interactions with native environmental communities.
The combination of flow cytometry and fluorescence staining (e.g., PI, SYBR Green, DAPI,
etc.) further enables the observation and isolation of cells with special functionalities for
deeper downstream analysis (e.g., sequencing to identify “who” is there or cultivating to
enrich the abundance of one or multiple target strains as effective microbial inoculum for
environmental microbiology applications).

Overall, microorganisms play a crucial role in the biogeochemical cycles of natural
ecosystems. However, traditional methods of studying microbial communities often result
in inaccurate results due to averaging across the whole population. Single-cell technologies
have emerged as critical tools that help researchers study individual microbial cells accu-
rately, providing a more comprehensive understanding of microbial diversity and their
impact on the environment. In addition, single-cell technologies are crucial in identifying
and studying unknown microorganisms for developing biotechnological applications such
as bioremediation or biofuel production. Furthermore, environmental factors like pollu-
tants, temperature change, and pH significantly impact microbial communities. Single-cell
technologies are essential in studying the impact of these stressors on individual cells,
providing valuable insights into the effects of environmental changes. Single-cell tech-
nologies provide vital information on the number and activities of microorganisms that
supports environmental monitoring programs in evaluating the health of ecosystems. In
summary, developing single-cell technologies is essential in the environmental field for
understanding microbial diversity, identifying new microorganisms, assessing ecosystem
health, and studying environmental stressors.
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