
Citation: Lima, F.A.R.D.; Faria,

R.d.R.; Curvelo, R.; Cadorini, M.C.F.;

Echeverry, C.A.G.; de Souza, M.B., Jr.;

Secchi, A.R. Influence of Estimators

and Numerical Approaches on the

Implementation of NMPCs. Processes

2023, 11, 1102. https://doi.org/

10.3390/pr11041102

Academic Editors: Idelfonso B. R.

Nogueira, Alexandre F. P. Ferreira

and Márcio A.F. Martins

Received: 17 March 2023

Revised: 29 March 2023

Accepted: 31 March 2023

Published: 4 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

processes

Article

Influence of Estimators and Numerical Approaches on the
Implementation of NMPCs
Fernando Arrais Romero Dias Lima 1,* , Ruan de Rezende Faria 1 , Rodrigo Curvelo 2 ,
Matheus Calheiros Fernandes Cadorini 2 , César Augusto García Echeverry 2 ,
Maurício Bezerra de Souza, Jr. 1,2 and Argimiro Resende Secchi 1,2

1 School of Chemistry, EPQB, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, Brazil
2 Chemical Engineering Program, PEQ/COPPE, Universidade Federal do Rio de Janeiro,

Rio de Janeiro 21941-972, Brazil
* Correspondence: farrais@eq.ufrj.br

Abstract: Advanced control strategies, together with state-estimation methods, are frequently
applied to nonlinear and complex systems. It is crucial to understand which of these are the most
efficient methods for the best use of these approaches in a chemical process. In the current work,
nonlinear model predictive control (NMPC) approaches were developed that considered three
numerical methods: single shooting (SS), multiple shooting (MS), and orthogonal collocation (OC).
Their performance was compared against the Van de Vusse reactor benchmark while considering
set-point changes, unreachable set-point, disturbances, and mismatches. The results showed that
the NMPC based on OC presented less computational cost than the other approaches. The extended
Kalman filter (EKF), constrained extended Kalman filter (CEKF), and the moving horizon estimator
(MHE) were also developed. The estimators’ performance was compared for the same benchmark by
considering the computational cost and the mean squared error (MSE) for the estimated variables,
thereby verifying the CEKF as the best option. Finally, the performance of the nine combinations of
estimators and control approaches was compared to consider the Van de Vusse reactor and the same
scenarios, thereby verifying the best performance of the CEKF with the OC. The present work can
help with choosing the numerical method and the estimator for controlling chemical processes.

Keywords: nonlinear model predictive control; estimators; numerical methods; CEKF; orthogonal collocation

1. Introduction

Modern technological advances have enabled the evolution of predictive strategies in
several sectors of the global economy. Within this context, model predictive control (MPC)
methodologies have emerged as a real possibility for various industry fields due to progress
from dynamic optimization and computational areas. MPC is a widespread technique
that consists of creating a mathematical model responsible for predicting process output
variables at future times through system inputs/outputs and future control signals [1–3].

Within chemical engineering, advanced control strategies are widely studied in differ-
ent fields of knowledge and have been increasing in popularity since the beginning of this
century [3,4]. In this context, it is possible to highlight a diversity of works in traditional
areas, such as continuous and batch chemical reactors [5–8], catalytic cracking units [9,10],
distillation columns [11,12], and polymerization reactors [13–15]. In addition, there are also
applications of the MPC for controlling crystallization processes [16–20] , and artificial lift
gas injection for oil production [21–23].

Therefore, it is important to highlight that MPC controllers can be divided into two
groups: linear (LMPC) and nonlinear (NMPC). LMPC refers to a set of schemes in which
linear models are used to predict the process dynamics and consider linear constraints on
the states and inputs. The nonlinear counterpart describes a set based on nonlinear models
and/or considers a non-quadratic cost function and general nonlinear constraints [24,25].
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Usually, chemical engineering systems rely on mechanistic or empirical models, which
present nonlinear equations and constraints in their formulations [3]. Thus, LMPC con-
trollers might have certain limitations in dealing with nonlinear systems, thereby making
NMPC controllers more suitable to deal with these characteristics.

Large-scale nonlinear systems pose challenges when it comes to obtaining reliable
dynamic models. Furthermore, the online estimation of unmeasured state variables is also
a complicating factor due to the need for a nonlinear estimator. In this sense, advanced
control strategies combined with state-estimation techniques are very important tools in
the control of nonlinear and complex systems [26–29].

To deal with the nonlinearities in each process, it is important to provide a robust
control approach to handle uncertainties, wherein the control trajectory can be optimized
to satisfy process constraints [4]. Process monitoring and control require that reliable
information be obtained about state variables in real-time to ensure the proper operation of
the industrial plant. The controller determines its actions based on these measurements,
and some important variables for the process may not be provided in real time [30].

EKF, CEKF, and MHE are three of the most important applied state estimators. The
first two are based on the traditional Kalman filter (KF) and have been adapted to nonlin-
ear systems using linearization in the estimation process [31–33]. Unlike these recursive
estimators, (EKF and CEKF), the MHE is a batch estimator based on a past moving horizon.
The MHE is well-suited for systems with many states and/or measurements, but it can be
computationally expensive compared to the first two counterparts [33,34]. Other state esti-
mators are also employed, such as CEKF&S (CEKF with a smoother) [35,36], the unscented
Kalman filter (UKF) [37], the cubature Kalman filter (CKF) [38], the particle filter (PF) [39],
the unscented particle filter (UPF) [40], the receding nonlinear Kalman filter (RNK) [41],
and variations of the EKF [42].

There are many applications of state estimators in the literature, such as the work of
Tonel et al. [30] that developed a comparative study based on Kalman filter estimators (EKF
and CEKF) and the MHE for a classical four-cylindrical-tanks system and nonlinear reaction
systems. The authors verified a greater computational effort for processing the moving
horizon estimator when compared to the EKF and CEKF due to the nonlinear conditions
and disturbances attributed to the system. Furthermore, Gesthuisen et al. [31] investigated
the application of a simultaneous and a sequential MHE for the polycondensation of PET
and compared their performance to a CEKF.

Bohler et al. [43] successfully applied an EKF for a polymer electrolyte membrane
fuel cell system. Spivey et al. [44] used the MHE and UKF for industrial process data
provided by the ExxonMobil Chemical Company. They compared the performance of
these estimators to the traditional EKF, thereby demonstrating better performance from
the MHE and UKF. Soares et al. [45] proposed an NMPC for controlling a gas-lift oil well
combined with a machine learning approach to estimate the internal state from sensor data.
The proposed strategy was applied against slugging, set-point changes, and unmeasurable
disturbances, and its performance was compared to an NMPC combined with an EKF.
Tuveri et al. [46] did simultaneous parameter and state estimations using a MHE in a
microbial experimental fed-batch process.

The choice of numerical method is also an important aspect of solving the dynamic
optimization problem implied by NMPC controllers. SS, MS, and OC on finite element
methods can be used for solving NMPC problems in chemical engineering with high
accuracy and computational efficiency. The SS is a traditional approach in which only the
control inputs are parameterized or discretized over the prediction horizon [47]. On the
other hand, the MS divides the prediction horizon into multiple intervals. The initial value
problem of each interval is solved independently, and matching conditions are added in
the optimization problem, thereby leading to a piecewise continuous representation of the
control inputs and system states [48]. The OC also discretizes the state variables based
on polynomial approximation, thereby converting the dynamic optimization problem
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into nonlinear programming. It provides better stability compared to other approaches,
particularly for open-loop unstable systems [49].

For instance, the SS method was implemented in an NMPC controller combined
with an EKF estimator to operate with flash separators and solve a dynamic optimization
problem [50]. Jordanou et al. [51] studied the implementation of echo state networks
(ESN) for artificial lifting in oil production using electrical submersible pumps (ESP). The
authors designed one strategy based on an SS-NMPC, which included the ESN model
inside its structure. Diehl et al. [26] proposed an NMPC implementation based on the
phenomenological modeling of a copolymerization process using the MS method. They
combined a predictive controller and an MHE to address the estimation of states and
parameters for the proposed dynamic system. Similarly, Roman et al. [52] used the MS
method to study the combination of an NMPC and MHE controller for catalytic cracking.
They only used available variables measured by the industrial plant, while other states
were estimated with uncertain model parameters. Furthermore, Kirches et al. [53] also
studied the application of MS methods and the NMPC for three different benchmarks
by considering the existence of long prediction horizons. Rodriguez [54] implemented
an NMPC controller for a pulp reactor using the OC for the discretization problem. The
predictive controller was directly compared to the proportional integral (PI) controller,
thereby obtaining a faster response and better performance from the quantified metrics.
Furthermore, Kim et al. [28] studied the application of an NMPC and MHE structure,
thereby promoting the discretization of the differential equations by the OC method to
optimize the operation of batch cultures of E. coli from collected experimental data.

Even with the relevance of numerical methods’ choice for the NMPC, the studies in
the literature focus on tuning, such as those works by Giraldo et al. [55], Fontes et al. [56],
and Tran et al. [57]. Moreover, some studies compare the estimators’ performance, such as
those works by Tonel et al. [30], Valipour et al. [34], Haseltine et al. [58], and Salau et al. [59].
However, the analysis of the combination between the NMPC numerical methods and the
estimators was not considered. In this sense, this work evaluated numerical aspects of
modeling a complex multivariate system by applying NMPC algorithms, such as the SS,
MS, and OC, combined with state estimation techniques, such as the EKF, CEKF, and MHE.
The goal of the current work is to analyze the performance and computational efficiency of
these combinations of estimators and NMPC algorithms while considering set-point changes,
process disturbances, and model mismatch. For this analysis, the MSE and the computational
cost were considered for the six scenarios studied and all approaches used. The case studied is
the Van de Vusse reactor, which is a complex system due to nonlinearities, challenging process
dynamics, and multiple steady states. This work contributes to the process of selecting the
most efficient numerical methods for associating NMPCs with state estimators for complex
chemical engineering systems.

2. Methodology
2.1. Problem Statement

Each configuration component shown in Figure 1 was evaluated in the present paper.
The dynamic optimization of the process (online) with an optimizer based on the NMPC is
proposed. Here, this receding horizon strategy, implemented in a closed-loop framework,
was evaluated for numerical methods based on the direct approach (direct single shooting,
direct multiple shooting, and direct collocation) and state estimators (the EKF, CEKF, and
MHE). In total, nine configurations were obtained by combining each technique. In the
next sections, a brief methodological review of the methods is carried out. The NMPC is
transformed into nonlinear programming (NLP) by parameterizing the states and controls
for the direct approach. Each numerical method defines the cost function, constraints,
and future errors differently. The process noise and model uncertainty are approached
differently for each state estimator.



Processes 2023, 11, 1102 4 of 22

Optimizer Process

Model

Cost
function

Constraints

Output
Future
Errorset-point

Future
Input

Estimator

disturbance
noise

State and control
Parameterization

uncertainty

Figure 1. Predictive control configuration for the direct approach and state estimators.

The classic time-invariant tracking control problem with a discrete-time system
(x(i + 1) = f (x(i), u(i))) was formulated in Equation (1) and taken as a reference to address
predictive control according to the objective pointed out in Section 1. The problem imple-
mented in a closed-loop framework employs the receding control strategy to determine
the vector of actions (u(0), · · · , u(p− 1)). The first action (u(0) ∈ U) is implemented in the
process, and the output (controlled variable) is feedback as the initial state after filtering
by the estimator (x(0) ∈ X). Furthermore, the cost function comprises the Lagrange term
weighted by the matrix Qcon and control actions weighted by the matrix Rcon [60].

min
u(0),··· ,u(p−1)

p

∑
i=1

[
(y(i)− ysp(i))TQcon(y(i)− ysp(i)) + ∆uT(i)Rcon∆u(i)

]
s.t. x(i + 1) = f (x(i), u(i)), x(0) = x0

y(i) = h(x(i), u(i))

u(i) = ∆u(i) + u(i− 1) ∈ U, i = 1, · · · , p

x(i) ∈ X, y(i) ∈ Y, i = 1, · · · , p

(1)

2.2. Direct Approach Strategy
2.2.1. Single Shooting

After presenting the classic MPC, the numerical method based on the direct approach
(single shooting [61]) was formulated for the problem defined by Equation (2) (an adapted
version of Equation (1)), which considers a control horizon (H) and a finite prediction
horizon (p), as well as process constraints on states and control.

min
{x(i)}k+p

i=k+1,{u(i)}k+H−1
i=k

k+p

∑
i=k+1

[
(y(i)− ysp(i))TQcon(y(i)− ysp(i)) + ∆uT(i)Rcon∆u(i)

]
s.t. x(i + 1) = f (x(i), u(i)), ∀i = k, · · · k + p− 1

y(i) = h(x(i), u(i)), ∀i = k + 1, · · · k + p

g(x(i), u(i), y(i)) ≤ 0, ∀i = k + 1, · · · k + p

xl ≤ x(i) ≤ xu, ∀i = k + 1, · · · k + p

yl ≤ y(i) ≤ yu, ∀i = k + 1, · · · k + p

ul ≤ u(i) ≤ uu, ∀i = k, · · · k + p

u(i) = u(i− 1), ∀i = k + H, · · · k + p

∆u(i) = u(i)− u(i− 1), ∀i = k + 1, · · · k + p

x(k) = x0,

(2)
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The SS method first discretizes the problem defined by Equation (2) by using a
piecewise constant control representation u(t ∈ [t(k), t(k + 1)]) = u(k) over a time grid
i = k, · · · k + p. Then, it optimizes the problem defined by Equation (3) by treating the
values of the control variables as a set of NLP variables (w = u(k), · · · u(k + p)) with
inequality constraints enforced on the shooting nodes (c) [60,62,63]. In addition, the model
(m(w, x0, t)) is solved by an integration routine for each control in w over the entire time
grid, where the trajectories x(k), · · · x(k + p) are dependent variables.

min
w

φ(J(m(w, x0, t), w))

s.t. c(m(w, x0, t(k)), w(k)) ≤ 0
(3)

SS is a method that results in low-dimension NLP. However, it strongly depends on
the initial values and initial guesses for the control parameters, which can be challenging
to obtain for open-loop unstable systems [60]. In addition, in the present paper, the open-
source CasADi [64] software for nonlinear optimization and algorithmic differentiation
was employed with the initial value problems (ODE) solved with the classic Runge–Kutta
method (RK4) instead of the solver interface CVODES/IDAS, which presented a prohibitive
computational time. In addition, the open-source primal-dual interior point method
(IPOPT) was implemented in CasADi and used as optimization algorithm to solve the
NLP problem.

2.2.2. Multiple Shooting

MS is an extension of SS that directly adds process state variables at the matching
conditions to the NLP (w = x(k), · · · x(k + p), u(k), · · · u(k + p)), thereby breaking down
the system integration into short time intervals. It is a lifted SS through the recursion in
Equation (4). The NLP decision variables are reformulated in Equation (5), where equality
(g) and inequality (c) constraints are enforced on the shooting nodes [65].

x(1)− f (x(0), u(0)) = 0

x(2)− f (x(1), u(1)) = 0

· · ·
x(k + p)− f (x(k + p− 1), u(k + p− 1)) = 0

(4)

min
w

φ(J(w))

s.t. g(w) =


x(0)− x0

x(1)− f (x(0), u(0))
· · ·

x(k + p)− f (x(k + p− 1), u(k + p− 1))

 = 0

c(w) =


c(x(0), u(0))

· · ·
c(x(k + p), u(k + p))

c(x(p))

 ≤ 0

(5)

This method significantly improves the distribution of nonlinearity and numerical
stability over SS methods, especially for ill-conditioned initial value problems, thereby
accelerating the convergence for line search and trust region methods [63]. Ultimately, the
open-source CasADi software was employed with the same specifications applied to the SS
to solve this problem.

2.2.3. Direct Collocation

The direct collocation method simultaneously performs the discretization and opti-
mization of the control problem seen in Equation (2). Unlike SS and MS, it approximates
state trajectories via polynomials [66]. Therefore, they do not directly employ an integration
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routine. For example, the Gauss–Radau collocation defined by Equation (6) adjusts the
polynomial coefficients (ψ(k)i) so that they match the state derivative at the collocation
points and the initial state of each interval. Hence, the NLP decision variables for each in-
terval of integration are reformulated in Equation (7), with equality (g) constraints enforced
on the collocation and shooting nodes (i.e., [t(k)0, · · · , t(k)d] ∈ [t(k), t(k + 1)]) in addition
to the inequalities constraints.

x(ψ(k), t) =
d

∑
i=0

ψ(k)i · P(k)i(t)

P(k)i(t) =
d

∏
j=0,j 6=i

t− t(k)j

t(k)i − t(k)j

P(k)i(t(k)j) =

{
1, if i = j
0, Otherwise

(6)

min
w

φ(J(w))

s.t. g(w) =



ψ(0)0 − x0
x(ψ(0, t1))− ψ(1)0

f (ψ(0)i, u(0))−∑d
j=0 ψ(0)j ·

·
P(0)j(t(0)i)

· · ·
x(ψ(k), t(k + 1))− ψ(k + 1)0)

f (ψ(k)i, u(k))−∑d
j=0 ψ(k)j ·

·
P(k)j(t(k)i)

· · ·


= 0

c(w) =


c(x(0), u(0), ψ(0))

· · ·
c(x(k + p), u(k + p), ψ(k + p))

c(x(p), ψ(k + p))

 ≤ 0

(7)

Despite its inherent higher dimension, this simultaneous optimization and discretiza-
tion approach is considered easier to solve than boundary value problems. NLP’s sparsity
leads to potentially faster computations compared to shooting techniques [60]. In addition,
the problem was solved via the open-source CasADi software with a solver interface based
on the simultaneous approach as in Equation (7).

2.3. State Estimators

State estimators act in Equation (2) as state observers to predict x0 from noisy mea-
surements and models with uncertainty. Its correct estimation influences the solution
of Equations (3), (5) and (7). In the present article, the difference equation model and
observation model described by Equation (2) were reformulated to Equations (8) and (9),
respectively, wherein the model parameters and perturbations could also be estimated.
However, they do not change inside the time interval during the evolution of the model
(i.e., θk+1 = θk) [67].

x̃(k + 1) =
[

x(k + 1)
θ(k + 1)

]
= f̃ (x(k), u(k), θ(k)) + w̃(k)

f̃ (x(k), u(k), θ(k)) =
[

f (x(k), u(k), θ(k)) + w(k)
θ(k) + wθ(k)

] (8)

y(k) =
[
h(x(k), u(k)) 0

][x(k)
θ(k)

]
+ v(k) (9)
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where θk is the vector of the model parameters, w and wθ are process noise and parameter
uncertainty, respectively, and v is the vector of the measurement noise.

2.3.1. Extended Kalman Filter

The Kalman filter assumes that the random vectors w(k) and v(k) are defined as white,
zero-mean, uncorrelated noises with known covariance matrices Q(k) and R(k), respec-
tively. Thus, regarding these vectors and the initial state x̃(0), it has the following properties:
E[w̃(k)] = 0 and E[w̃(k)w̃(k)T ] = Q; E[v(k)] = 0 and E[v(k)v(k)T ] = R, E[x̃(0)] = µ̃(0),
and P(0) = E[(x̃(0)− µ̃(0))(x̃(0)− µ̃(0)T ] [68], where E[a] is the expected value of the
random variable a [68]. Since the first formulation of the Kalman filter was based on linear
discrete-time systems, the extended version was adapted to non-linear dynamical systems.
According to Terejanau et al. [68] and Bohler et al. [43], the estimate for the predictor (the
model forecast step) that is linearized around the optimal solution (based on the Taylor
series) is given in Equation (10). In Equation (11) the estimate covariance depends on the
Jacobian matrix A, which is successively updated based on model predictions.

−
x̃(k + 1) = f̃ (

−
x(k), u(k), θ(k)) (10)

−
P(k + 1) =A(k)

−
P(k)A(k) + Q(k)

A(k) =
δ f̃ (
−
x(k), u(k), θ(k))

δ(
−
x̃(k))

∣∣∣∣∣−
x̃(k),u(k)

(11)

After estimating the covariance, the data assimilation step with the corrector calcu-
lates the posterior estimate of the states and parameters based on the plant’s available
measurements (y(k)). Unlike the prediction step, the posterior estimate is determined in

Equation (12) as the linear combination of
−
x̃(k) and y(k) with the Kalman gain (K(k)) as

the constant of proportionality.
∧
x̃(k) =

−
x̃(k) + K(k)(y(k)− h(

−
x(k), u(k)) (12)

The covariance is determined based on the error between the steps of correction and

prediction (
∧
x̃(k)−

−
x̃(k)), thereby resulting in Equation (13) [68].

P(k) = (I − K(k)H(k))
−
P(k)(I − K(k)H(k))T + K(k)RK(k)

H(k) =
δh(
−
x(k), u(k))

δ(
−
x(k))

∣∣∣∣∣−
x(k),u(k)

(13)

The optimal gain defined by Equation (14) is then determined by minimizing the trace
of P(k) w.r.t. K(k) and substituting in Equation (13) the results in Equation (15).

K(k) =
−
P(k)H(k)(H(k)

−
P(k)H(k)T + R)−1 (14)

P(k) = (I − K(k)H(k))
−
P(k) (15)

In terms of implementing this method, the open-source CasADi software was also
used. However, the solver interface IDAS was employed instead of the classic Runge–Kutta
(RK4), because it is necessary to approximate the Jacobian matrix for the difference equation
and observation model.

2.3.2. Moving Horizon Estimation

The definition of moving horizon is derived from the problem seen in Equation (2).
However, according to Binder et al. [60], instead of a receding horizon strategy imple-
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mented for a regulation problem, it is an estimation problem implemented in an open
loop with a finite-time horizon of size N (past measurements). This problem is defined by
Muske et al. [33] as a receding horizon recursive state estimation, currently known as the
MHE. In the present work, the optimization problem was reformulated in Equation (16),
and the same properties for w̃(k), v(k), and x(k) mentioned in the previous section
were considered.

min
{w̃(i),v(i)}k−1

i=k−N

x(k)− x̃(k))T P(x(k)− x̃(k)) +
k−1

∑
i=k−N

(w̃(i)Qw̃(i)T + v(i)Rv(i)T)

s.t. x̃(i + 1) = f̃ (x(i), u(i), θ(i)), ∀i = k− N, · · · k− 1

y(i) = h(x(i), u(i)) + v(i), ∀i = k− N, · · · k− 1

x̃l ≤ x̃(i) ≤ x̃u, ∀i = k− N, · · · k

(16)

This optimization problem is solved via the MS method, which transforms the problem
defined by Equation (16) into an NLP in which the values of the manipulated variable
are known for the finite-time horizon N, and the perturbations and parameters are also
determined (implicitly in the form of x̃). However, they do not change during model
evolution. Furthermore, the parameters Q and R are known a priori, and the covariance
(P) is successively updated based on a priori estimates obtained from an EKF filter with
the calculation of the covariance matrix updated from the Ricatti formula as defined by
Equation (17) and proposed in Salau et al. [59] and Valipour and Ricardez-Sandoval [34].
In this equation, the exponential matrix is represented by expm and computed with the
open-source SciPy software [69].

P(k) = Q + φ(k)
−
P(k)φ(k)− φ(k)

−
P(k)H(k)T

× [H(k)
−
P(k)H(k)T + R(k)]−1H(k)

−
P(k)φ(k)T

φ(k) = expm(A(k)∆k)

H(k) =
δh(
−
x(k), u(k))

δ(
−
x(k))

∣∣∣∣∣−
x(k),u(k)

(17)

Ultimately, the same implementation details for the MS were used to solve this problem.

2.3.3. Constrained Extended Kalman Filter

The CEKF is an MHE with N = 0. Then the problem defined by Equation (16) was
reformulated in Equation (18), which was updated based solely on the last measurement
for the EKF. As proposed in Gesthuisen et al. [31], this problem can be solved via quadratic
programming (QP) when the observation model is linear.

min
{w̃(k),v(k)}

(w̃(k)Qw̃(k)T + v(k)Rv(k)T)

s.t. x̃(k + 1) = f̃ (x(k), u(k), θ(k))

y(k) = h(x(k), u(k)) + v(k)

x̃l ≤ x̃(k) ≤ x̃u

(18)

This problem is formulated in Equation (19), which does not depend on a numerical
integration method to compose the QP, thereby resulting in a well-conditioned problem
with a reduced computational burden compared to the MHE. The state equation is solved
after the optimization problem to make the state prediction for the next time step.
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min
{w̃(k),v(k)}

(ψ(k)S(k)−1ψ(k) + dTψ(k))

s.t. [H I]ψ(k) = y(k)− h(x(k), u(k))

x̃l ≤ x̃(k) ≤ x̃u

ψ(k) =
[

w̃(k)
v(k)

]
, S(k) =

[−
P(k) 0

0 R

]
, d = 0

(19)

The covariance was estimated based on the formulation of Equation (17). In addition,
the open-source qpsolver software with the interface solver OSQP was used to solve the
QP [70], wherein the covariance and Jacobian matrix were determined with CasADi as was
done for the EKF.

2.4. Case Study: The Van de Vusse CSTR

The frameworks detailed in the previous subsections were evaluated using the Van de
Vusse reactor as the illustrative model example, as shown in Figure 2.

Figure 2. Van de Vusse reactor scheme.

It consists of a continuous stirred-tank reactor (CSTR) where the catalytic synthesis of
cyclopentanol (B) from the electrophilic addition of water to cyclopentadiene (A) takes place.
The reaction is said to be a cycloaddition (or Diels–Alder reaction), since it is catalyzed by
an acid solution with the generation of cyclopentenediol (C) and dicyclopentadiene (D) as
side products due to the high reactivity of the reagents and products [71]. The simplified
scheme with the respective kinetic constants is shown in (Equation (20)):

A
k1−→ B

k2−→ C

2A
k3−→ D

(20)

Some hypotheses are often considered concerning this process modeling:

• Perfect mixing;
• Constant volume;
• Constant heat capacity;
• Incompressible fluid;
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• Elementary kinetics for all reactions;
• Reaction rate constants described by the Arrhenius Law;
• No inlet flow of B, C, and D.

Thus, one can obtain the following ODEs from the material balances of A and B and
from the energy balance in the reactor and in the jacket (Equation (21)):

dCA
dt

=
F
V
(CA,in − CA)− k1(Tr)CA − k3(Tr)C2

A

dCB
dt

= − F
V

CB + k1(Tr)CA − k2(Tr)CB

dTk
dt

=

.
Q + Kw Ar(Tr − Tk)

mkCP,k

dTr

dt
=

F
V
(Tin − Tr) +

Kw Ar

ρCPV
(Tk − Tr)+

1
ρCP

[k1(Tr)CA(−∆H1) + k2(Tr)CB(−∆H2) + k3(Tr)C2
A(−∆H3)]

(21)

where CA and CB are the concentrations of components A and B in the reactor, respec-
tively; CA,in and Tin are the concentration of A and the temperature in the inlet stream,
respectively; F/V is the reactor spatial velocity; and Tr is the reactor temperature. ρ and
CP are the reaction mixture’s specific mass and heat capacity. Tk, Ar, Kw, mk, and CP,k are
the temperature, the heat exchange area, the heat transfer coefficient, the mass, and the
heat capacity of the cooling jacket, respectively. ∆Hi and ki are the molar enthalpy and the
rate constant of reaction i, of which the latter is dependent on the reactor temperature and
expressed by the Arrhenius Law (Equation (22)):

ki(Tr) = k0i exp
[ −EA,i

Tr + 273.15

]
(22)

where k0i and EA,i are the pre-exponential frequency factor and the activation energy for
reaction i, respectively.

This system combines nonlinear behavior in several operational ranges with a rela-
tively simple modeling, which is the reason that makes it an established benchmark for
multivariable control algorithms and nonlinear optimization in the literature. The complete
list of the physical–chemical parameters and their respective values is given by Table 1 [72]:

Table 1. Van de Vusse CSTR parameters.

Parameters Value

k01 (h−1) 1.287× 1012

k02 (h−1) 1.287× 1012

k03 (L/mol L) 9.043× 109

EA,1 (K) 9758.3
EA,2 (K) 9758.3
EA,3 (K) 8560

−∆H1 (kJ/mol A) −4.20
−∆H2 (kJ/mol B) 11
−∆H3 (kJ/mol C) 41.85

ρ (kg/L) 0.9342
CP (kJ/Kg K) 3.01

CP,k (kJ/Kg K) 2
Kw (kJ/h K m2) 4032.0

Ar (m2) 0.215
mk (kg) 5
V (L) 10.01
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Summarizing, the present work considers the measurement vector y = [CA, CB, Tr, Tk]
T,

the input vector u = [F/V, Qk/(Kw Ar)]T , CA,in as an unmeasured disturbance, Tin as a
measured disturbance, and CB and Tr as the controlled variables. The remainder of the
physical–chemical parameters, except for CP and k01, are considered known and certain.
CP and k01, considering uncertainty parameters, are approximated by CP = 3.01∆CP and
k01 = 1.287× 1012∆k01, with ∆CP ∈ [0.5, 1.5] and ∆k01 ∈ [0.5, 1.5], which are estimated
based on the methodology described in Section 2.3. Hence, the augmented state vector is
x̃(k) = [CA, CB, Tr, Tk, CA,in, ∆k01, ∆CP]

T . In addition, the upper and lower bounds of x̃(k)
considered to compose the NMPC, CEKF, and MHE are given by Equation (23).

0
0

50
50
0.1
0.5
0.5


≤ x̃(k) ≤



4
3

200
200
6.1
1.5
1.5


(23)

All simulations were done in a computer in LASAP/UFRJ with the following specifica-
tions: Intel Core i7-3770K, CPU 3.5 GHz, and 16 GB of RAM. A timestep of 2.5× 10−3 h was
adopted, and the simulations were done for two hours of the process. The initial applied
steady state is presented in Table 2.

Table 2. Initial conditions used in the simulations.

CA CB Tr Tk F/V Q/(Kw Ar) CA,in Tin
(mol/L) (mol/L) (◦C) (◦C) (h−1) (K) (mol/L) (◦C)

2.4 1.1 140 140 85 −0.04 5.1 130

All scenarios considered were analyzed for set-point change, unreachable set-point,
disturbances in CA,in and Tin, and for mismatches in the pre-exponential constant of k1 and
the specific heat of the mixture. Table 3 presents details of all six cases considered in the
study using the different methods.

Table 3. Cases considered to analyze the different approaches proposed.

Case 1 Set-point changes from 1.1 to 0.8 mol/L and 140 to 135 ◦C in one hour of process.

Case 2 Unreachable set-point, maintaining the set-point for Tr in 140 ◦C, and changing the
set-point for CB from 1.1 to 1.3 mol/L in one hour of process.

Case 3 Application of a disturbance in CA,in, maintaining the set-points of 1.1 mol/L and
140 ◦C. This value was changed from 5.1 to 6.0 mol/L in one hour of process.

Case 4
Application of disturbances in Tin, maintaining the set-points of 1.1 mol/L and 140 ◦C.
For this case, two pulses were considered, one equals to 150 ◦C in 0.5 h, and the other

equals 120 ◦C in 1.5 h. Each pulse lasted one sampling time.

Case 5 Application of a mismatch, imposing a difference of 5% in the value of the
pre-exponential constant of k1.

Case 6 Application of a mismatch, imposing a difference of 20% in the value of the specific
heat of the mixture.

3. Results

This section shows the results with all the discussion related to it. Initially, the nu-
merical methods used to develop the NMPC are presented, thereby comparing their
computational cost and efficiency. Then, a comparison between the three estimators is
made. Finally, the results for the nine combinations of estimators and numerical methods
are shown, thereby demonstrating which combination is the best.
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3.1. Numerical Methods Analysis

The absolute and relative tolerances were 10−8 for the SS, MS, and OC. For the OC,
three collocation points were used in each time interval. The prediction and control horizons
were tuned as 40 and 10 for all cases analyzed in this study based on Seborg et al. [73].
Furthermore, the weights of the controlled variable deviations were tuned as 5 for CB and
0.05 for Tr, while the suppression factors for manipulated variables were defined as 10−5

for F/V and 9× 10−3 for Q/(Kw Ar). The difference the manipulated variables in each
time step was constrained as represented in Equations (24) and (25), where u1 is F/V and
u2 is Q/(Kw Ar).

− 50h−1 ≤ ∆u1(t) ≤ 50h−1 (24)

− 0.15K ≤ ∆u2(t) ≤ 0.15K (25)

In the current analysis, the simulations were done using the CEKF estimator, and
all results are presented in the Supplementary Material. As examples, Figure 3 exposes
the results for all three NMPC approaches considering changes in the set-points of 1.1
to 0.8 mol/L and 140 to 135 ◦C. Moreover, Figure 4 illustrates the performance of these
methods considering two pulses in Tin equal to 150 ◦C in 0.5 h and 120 ◦C in 1.5 h. In
all cases, the set-points could be reached according to all the constraints imposed on all
variables. Furthermore, the different approaches analyzed presented similar results, which
is expected, because, even though different numerical methods were considered, the same
problem was solved.

Figure 3. Results for the three NMPC approaches for Case 1, considering set-point changes.

Table 4 presents the MSE calculated for all cases analyzed and considers the difference
between the controlled variables and the set-points. These results confirm that all three
approaches presented similar performances in all cases studied.

The numerical methods used to develop the NMPC presented similar control results,
but the major difference between these approaches is related to the computational cost, as is
shown in Table 5. The results presented in Table 5 show that the controller based on SS took
around 70 min to run each simulation. In comparison, this was done in about 4 min for
the controller based on the OC. For the controller based on the MS, each simulation ran in
around 20 min, which was an intermediate case compared to the previous ones. Therefore,
the OC showed a considerable advantage compared to the other methods considered in
this study.
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Figure 4. Results for the three NMPC approach for Case 4, considering changes in Tin.

Table 4. Mean squared error values for the three NMPC methods and all cases analyzed.

Case
SS MS CO

CB Tr CB Tr CB Tr

1 3.44× 10−4 6.57× 10−2 3.55× 10−4 6.57× 10−2 3.16× 10−4 6.87× 10−2

2 1.65× 10−2 1.03× 10−2 1.66× 10−2 9.42× 10−3 1.68× 10−2 3.01× 10−2

3 1.16× 10−4 8.58× 10−3 9.80× 10−5 7.59× 10−3 1.16× 10−4 9.29× 10−3

4 1.98× 10−3 1.79 1.85× 10−3 1.82 1.65× 10−3 1.71
5 2.37× 10−3 2.14× 10−2 2.43× 10−3 2.09× 10−2 2.43× 10−3 2.45× 10−2

6 9.99× 10−4 1.30× 10−1 1.01× 10−3 1.28× 10−1 1.23× 10−3 1.12× 10−1

Table 5. Time needed to realize each simulation for NMPCs based on the different numerical methods.

Case tSS (min) tMS (min) t∗OC (min)

1 69.18 20.13 4.02
2 68.97 19.18 3.54
3 68.89 19.37 3.90
4 68.98 19.82 3.97
5 75.13 23.63 3.61
6 73.05 19.55 4.02

∗ Best scenario.

3.2. Estimator Analysis

In the current work, the performance of the EKF, CEKF, and MHE was also studied to
estimate CA, CB, Tr, Tk, CA,in, the pre-exponential constant of k1, and the specific heat of the
mixture. The capacity of these estimators was analyzed for the same cases presented in
Table 3 and for the controller based on the OC. For the MHE, the horizon was tuned to three.
The initial covariance (P0), model uncertainties (Q), and the measurement uncertainties (R)
were defined according to Equations (26)–(28) for all cases.

P0 = [103, 103, 103, 103, 103, 103, 103] (26)

Q = [3× 10−6, 5× 10−6, 10−3, 10−3, 10−3, 10−2, 10−2] (27)

R = [3× 10−2, 5× 10−3, 3× 10−1, 8× 10−1] (28)

The CEKF and MHE consider constraints in their formulation. The same limits
previously defined for these estimators were imposed for the state and controlled variables.
Moreover, the limits of −1 and 1 were imposed for the parameters w̃(k + 1) and v(k).
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Figures 5 and 6 show results for the estimation of the pre-exponential constant of k1
(k01) and the specific heat of the mixture (Cp). The results from Figure 5 are from Case 5,
which considered a difference of 5% in the value of the pre-exponential constant of k1. The
results from Figure 6 are from the scenario that considered a mismatch in Cp. All three
methods could efficiently estimate the desired parameters.

Figure 5. k01 and CP estimations for Case 5, considering mismatch in k01.

Figure 6. k01 and CP estimations for Case 6, considering mismatch in CP.

Figure 7 presents the MSE values for estimations of all seven variables and the three
methods used. These results show that the three estimators presented similar performances
for all variables. However, the CEKF and MHE presented the advantage of considering
constraints in their formulation, while the EKF did not consider them. For the cases ana-
lyzed in this work, the variables did not violate the constraints, thereby making estimations
close to the simulated values of all the variables.



Processes 2023, 11, 1102 15 of 22

Figure 7. MSE values for estimations of the seven variables for the three approaches.

The time demanded to run each simulation was very close, as seen in Table 6. The
CEKF took less time to run most simulations, while the MHE took more time than all three.
The MHE has the most complex structure that considers a horizon to make the estimations,
which demands more computational cost. Therefore, the estimators showed very similar
performances for the predicted values and the computational cost, thereby observing the
necessity to evaluate the estimators’ formulation in addition to the computational cost and
the MSE. Considering theses points, the CEKF is the best option because it presents a more
straightforward formulation than the MHE while demanding less computational effort.
Moreover, the CEFK considers constraints in its formulation, while the EKF does not. Alter-
natively, the CEKF&S [35] could be used to obtain the advantages of the MHE regarding
the filtering and the advantages of the CEKF regarding the low computational cost.

Table 6. Time spent to run each simulation for the three estimators.

Case tEKF (min) tCEKF (min) tMHE (min)

1 4.26 4.02 4.52
2 3.66 3.54 3.94
3 3.96 3.90 4.27
4 3.93 3.97 4.12
5 3.83 3.61 3.94
6 4.20 4.02 4.31
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3.3. Combinations Analysis

The last analysis consisted of comparing each combination of the estimator and NMPC
approach. The nine cases considered are shown in Table 7.

Table 7. Combination of estimators and NMPC methods considered in the analysis.

Combination 1 SS and EKF

Combination 2 SS and CEKF

Combination 3 SS and MHE

Combination 4 MS and EKF

Combination 5 MS and CEKF

Combination 6 MS and MHE

Combination 7 OC and EKF

Combination 8 OC and CEKF

Combination 9 OC and MHE

When comparing the computational cost, it is evident that combinations considering
the NMPC based on the SS took much more time to run than the other numerical methods,
as seen in Table 8. Therefore, Combinations 1, 2, and 3 took around 70 min to run each
simulation, while the combinations considering the OC ran it in about 4 min. Combina-
tions 4, 5, and 6, which applied the NMPC based on the MS, took around 20 min to run
each simulation, which was an intermediate time between the other two. Because of the
disadvantage of Combinations 1, 2, and 3, the combinations considering the SS presented
the worst performances compared to the others.

Table 8. Computational time demanded in minutes to run each simulation for the nine combinations
and the six cases.

Case 1 2 3 4 5 6

tComb,1 71.01 67.88 67.72 70.61 74.95 71.93
tComb,2 69.18 68.97 68.89 68.98 75.13 73.05
tComb,3 69.57 67.34 70.16 70.61 74.25 73.39
tComb,4 19.94 18.89 21.05 20.41 22.57 19.38
tComb,5 20.13 19.18 19.37 19.82 23.63 19.55
tComb,6 20.30 20.44 20.91 20.90 23.79 19.79
t∗Comb,7 4.26 3.66 3.96 3.93 3.83 4.20
t∗Comb,8 4.02 3.54 3.90 3.97 3.61 4.02
t∗Comb,9 4.52 3.94 4.27 4.12 3.94 4.31

∗ Best scenarios.

Considering the MSE values for the estimators’ predictions and the performance of
the NMPC approaches to achieve the set-points, the results for all nine combinations are
very similar, as seen in Figures 8 and 9. In most cases analyzed, the MSE values were
almost the same, wherein we observed a few cases presenting small differences in the MSE
values. Therefore, all combinations presented efficient performances when considering
mismatches, set-point changes, disturbances, and unreachable set-point situations.
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Figure 8. Mean squared error values calculated for estimations of CA, CB and Tr, and the set-points
of CB and Tr for the studied cases and the nine combinations.

Figure 9. Mean squared error values calculated for estimations of Tk, CA,in, k01, and CP for the studied
cases and the nine combinations.

All combinations could efficiently achieve these goals by considering the estimated
values and reaching the set points. Accounting for the computational cost, the NMPC
based on the OC presented a significant advantage, as it ran the simulations in less time
than the other methods. Moreover, the CEKF had some advantages compared to the other
two estimators, thereby making it the best choice. Therefore, the best combination used
the CEKF estimator with the NMPC based on the OC. An example of the efficiency of this
approach can be observed in Figure 10, where it was applied to maintain the set-points of
140 ◦C and 1.1 mol/L for a change in Ca,in.



Processes 2023, 11, 1102 18 of 22

Figure 10. Results for Combination 8 for maintaining the set-points of 140 ◦C and 1.1 mol/L, as well
as a change in CA,in.

4. Conclusions

In the current work, NMPCs were developed using SS, MS, and OC numerical methods.
Their performance was compared using the Van de Vusse benchmark while considering
set-point changes, unreachable set-point, disturbances in CA,in and Tin, and mismatches in
k1 and CP. The performance of the three control approaches for reaching the set-points was
evaluated for the MSE, thereby verifying a similar behaviour for all scenarios. The compu-
tational cost was also evaluated for the controllers’ performance, wherein we observed that
the NMPC based on the OC took around 4 min to run the simulations, while the controllers
based on the SS and MS ran it in about 70 and 20 min, respectively.

The MHE, EKF, and CEKF estimators were also developed, and their performance
was compared for the same cases and analysis of computational cost and MSE. All three
approaches could efficiently estimate CA, CB, Tr, Tk, CA,in, the preexponential constant of
k1, and the specific heat of the mixture, thereby achieving acceptable and similar values of
MSE. Moreover, all three methods presented similar computational costsand took around
4 min to run each simulation. For the Van de Vuse reactor and the analyzed scenarios,
the estimators presented similar values of computational cost and MSE. Therefore, it was
necessary to evaluate the estimators while also considering their formulation. The EKF
presented the disadvantage of not considering constraints in its formulation, which differed
from the CEKF and MHE. Furthermore, the CEKF was a better option than the MHE due
to its simpler formulation.

Finally, nine different combinations of estimators and NMPC approaches were com-
pared for the developed techniques. Their performance was also tested for the Van de Vusse
reactor for the same previous scenarios and analysis. The combinations could efficiently
achieve the set-points and estimate the desired variables in all scenarios, thereby presenting
acceptable MSE values for the estimated and controlled variables. However, the combina-
tion of the CEKF and OC showed the best performance due to the lower computational
cost of the OC and the better CEKF formulation. These results indicate a strong potential
for the use of the OC combined with the CEKF in chemical processes. The current work
presents a detailed performance analysis of the numerical methods for NMPC and their
combinations with estimators. This study can help when it comes to choosing the approach
for implementing NMPCs.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/pr11041102/s1, Figure S1: Simulation for combination 1 and case
1, considering set-point changes; Figure S2: Simulation for combination 1 and case 2, considering
unreachable set-point; Figure S3: Simulation for combination 1 and case 3, considering a change
in CA,in; Figure S4: Simulation for combination 1 and case 4, considering changes in Tin; Figure S5:
Simulation for combination 1 and case 5, considering mismatch in k01; Figure S6: Simulation for
combination 1 and case 6, considering mismatch in CP; Figure S7: Simulation for combination 2 and
case 1, considering set-point changes; Figure S8: Simulation for combination 2 and case 2, considering
unreachable set-point; Figure S9: Simulation for combination 2 and case 3, considering a change
in CA,in; Figure S10: Simulation for combination 2 and case 4, considering changes in Tin; Figure
S11: Simulation for combination 2 and case 5, considering mismatch in k01; Figure S12: Simulation
for combination 2 and case 6, considering mismatch in CP; Figure S13: Simulation for combination
3 and case 1, considering set-point changes; Figure S14: Simulation for combination 3 and case 2,
considering unreachable set-point; Figure S15: Simulation for combination 3 and case 3, considering
a change in CA,in; Figure S16: Simulation for combination 3 and case 4, considering changes in
Tin; Figure S17: Simulation for combination 3 and case 5, considering mismatch in k01; Figure S18:
Simulation for combination 3 and case 6, considering mismatch in CP; Figure S19: Simulation for
combination 4 and case 1, considering set-point changes; Figure S20: Simulation for combination 4
and case 2, considering unreachable set-point; Figure S21: Simulation for combination 4 and case
3, considering a change in CA,in; Figure S22: Simulation for combination 4 and case 4, considering
changes in Tin; Figure S23: Simulation for combination 4 and case 5, considering mismatch in
k01; Figure S24: Simulation for combination 4 and case 6, considering mismatch in CP; Figure S25:
Simulation for combination 5 and case 1, considering set-point changes; Figure S26: Simulation for
combination 5 and case 2, considering unreachable set-point; Figure S27: Simulation for combination
5 and case 3, considering a change in CA,in; Figure S28: Simulation for combination 5 and case
4, considering changes in Tin; Figure S29: Simulation for combination 5 and case 5, considering
mismatch in k01; Figure S30: Simulation for combination 5 and case 6, considering mismatch in
CP. Figure S31: Simulation for combination 6 and case 1, considering set-point changes; Figure S32:
Simulation for combination 6 and case 2, considering unreachable set-point; Figure S33: Simulation
for combination 6 and case 3, considering a change in CA,in; Figure S34: Simulation for combination
6 and case 4, considering changes in Tin; Figure S35: Simulation for combination 6 and case 5,
considering mismatch in k01; Figure S36: Simulation for combination 6 and case 6, considering
mismatch in CP; Figure S37: Simulation for combination 7 and case 1, considering set-point changes;
Figure S38: Simulation for combination 7 and case 2, considering unreachable set-point; Figure S39:
Simulation for combination 7 and case 3, considering a change in CA,in; Figure S40: Simulation for
combination 7 and case 4, considering changes in Tin; Figure S41: Simulation for combination 7 and
case 5, considering mismatch in k01; Figure S42: Simulation for combination 7 and case 6, considering
mismatch in CP; Figure S43: Simulation for combination 8 and case 1, considering set-point changes;
Figure S44: Simulation for combination 8 and case 2, considering unreachable set-point; Figure S45:
Simulation for combination 8 and case 3, considering a change in CA,in; Figure S46: Simulation for
combination 8 and case 4, considering changes in Tin; Figure S47: Simulation for combination 8 and
case 5, considering mismatch in k01; Figure S48: Simulation for combination 8 and case 6, considering
mismatch in CP; Figure S49: Simulation for combination 9 and case 1, considering set-point changes;
Figure S50: Simulation for combination 9 and case 2, considering unreachable set-point; Figure S51:
Simulation for combination 9 and case 3, considering a change in CA,in; Figure S52: Simulation for
combination 9 and case 4, considering changes in Tin; Figure S53: Simulation for combination 9 and
case 5, considering mismatch in k01; Figure S54: Simulation for combination 9 and case 6, considering
mismatch in CP.
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