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Abstract: Microbial nitrification and denitrification are efficient technologies for the treatment of
nitrogen-containing wastewater. However, these biotic technologies are inapplicable for the treatment
of toxic substances such as heavy metals, polyaromatic hydrocarbons, adsorbable organic halogens,
and polychlorinated biphenyls, which have an inhibitory effect on microbial metabolism. It is
therefore necessary to develop abiotic nitrogen removal technology with comparable cost efficiency.
Nitrogen contaminants are promising indirect fuel sources. The integration of electrocatalysis energy
conversion with nitrogen contaminants could drive an entire electrochemical system to obtain
nitrogen removal in a self-powered fashion. Research advances in the development of fuel cells
have corroborated their promising application for nitrogen removal. This work aims to review the
most recent advances in the utilization of ammonia and nitrate as fuels for self-powered nitrogen
removal and demonstrate how close this technology is to integration with future applications. The
mechanism of ammonia–oxygen fuel cells is first summarized, followed by an overview of recent
research on self-powered systems based on various noble-metal-free catalysts. We then introduce
different harvesting and conversion methods using nitrate with a desired power output and nitrogen
removal efficiency. The final section demonstrates the shortcomings of research and future innovative
perspectives for self-powered wastewater treatment.

Keywords: self-power; nitrogen removal; abiotic electrocatalysts; fuel cells

1. Introduction

Ammonia, urea, amino acids, nitrate, and nitrite are common nitrogen-containing
contaminants generated from industry, fertilizers, biofuel byproducts, hygiene waste, urine,
etc. [1–4]. Over the past century, human intervention has doubled the amount of fixed
nitrogen in the environment [5]. The discharge of excessive nitrogen contaminants into
the natural environment can damage the ecological balance, resulting in acidification and
eutrophication [6–8]. Removal of nitrogen-containing contaminants is an environmental
issue of increasing concern. The aim of nitrogen removal is to convert the nitrogen present
in compounds into harmless nitrogen gas. This target can be achieved cost-effectively via
microbial methods, such as nitrification and denitrification [9]. However, the working
conditions of microbes are greatly limited by several factors, such as the carbon/nitrogen
ratio, pH value, temperature, contaminant concentration, and toxicity. In order to reduce
nutrient emissions, a variety of methods has been utilized for nitrogen removal, including
ion exchange, catalysis, reverse osmosis, and ozonation [10–12]. Compared to microbial
methods, toxic byproducts can be generated with these technologies, and they consume a
considerable amount of energy and materials. Therefore, it is vital to develop new nitrogen
removal methods for this non-biodegradable effluent.

Processes 2023, 11, 1096. https://doi.org/10.3390/pr11041096 https://www.mdpi.com/journal/processes

https://doi.org/10.3390/pr11041096
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/processes
https://www.mdpi.com
https://doi.org/10.3390/pr11041096
https://www.mdpi.com/journal/processes
https://www.mdpi.com/article/10.3390/pr11041096?type=check_update&version=1


Processes 2023, 11, 1096 2 of 11

Nitrification and denitrification are electron transfer processes, in which ammonia
nitrogen is used as an electron donor and nitrate nitrogen is used as an electron accep-
tor. Based on this concept, it is possible to develop an abiotic electrochemical system to
simulate biological function. The electron transfer process can conduct directly on the
electrode surface instead of the biological cells. Due to the avoidance of biological system
use, it is applicable for non-biodegradable effluents. Electrochemical nitrogen removal
technology has been applied in the treatment of landfill leachate, which commonly creates
an inhibitory effect on biological processes due to certain toxic substances, such as heavy
metals, polyaromatic hydrocarbons, adsorbable organic halogens, and polychlorinated
biphenyls [13]. Ammonia-N is oxidized to nitrogen gas at a specific voltage. Nitrogen
removal efficiency can be improved by optimizing the concentration of Cl−1 and Fe2+ [14].

Electrotreatment is a promising alternative method as it works with a wide operation
window in terms of pH, concentration, and scale. The main shortcoming of this method is its
high cost due to its heavy electricity consumption and electrode replacement technique. On
the other hand, these nitrogen-containing contaminants are also energy-storing materials.
The energy density of ammonia reaches 12.9 MJ L−1, which is 4.3 MJ L−1 higher than that
of liquid hydrogen [15]. Urea has advantages such as an ideal energy density (16.9 MJ L−1)
and high solubility (1079 g L−1, 20 ◦C) and safety, and has thus attracted extensive attention
as a hydrogen storage material [16]. If the chemical energy in wastewater could be utilized,
a great amount of electricity would be saved. Nowadays, scientists are making huge efforts
to develop waste utilization technology allowing for the recovery of energy and resources.
Self-powered nitrogen removal technologies with electricity recovery potential, such as
ammonia fuel cells and nitrate fuel cells, have been recently reported. Several advanced
electrocatalysts have been developed for electrooxidation reaction and electroreduction
reaction, including Pt-based catalysts and noble-metal-free catalysts.

Energy shortage and environmental pollution present critical challenges in the 21st
century. The development of advanced clean energy technology and the realization of the
sustainable development of the ecological environment are thus hot research topics. Ni-
trogenous substances, such as urea, are both environmental pollutants and ideal substances
for energy production. Landfill leachate and factory wastewater are rich in nitrates, ammo-
nia nitrogen, urea, and other nitrogenous pollutants. If the chemical energy in wastewater
could be utilized, a significant amount of power could be produced. By constructing fuel
cells, the chemical energy stored in nitrogenous substances such as urea can be directly
converted into electricity; the treatment of pollutants for this purpose has attracted the
attention of many scientists.

Up to now, there has not been a systematic review on the research reports on self-
generating nitrogen removal via abiotic electrochemical catalysis. In this review, we sum-
marize state-of-the-art methods of nitrogen-containing pollutant utilization, and focus
on the current research and applications of energy recovery technologies as well as the
utilization of ammonia in wastewater and nitrate wastewater to provide a reference for
subsequent related work.

2. Ammonia Wastewater Utilization for Energy Recovery
2.1. Electricity Generation via Low-Temperature Ammonia Fuel Cells

In low-temperature ammonia fuel cells, ammonia is converted into nitrogen gas via the
ammonia oxidation reaction (AOR), and oxygen/air is reduced via the oxygen reduction
reaction (ORR), as shown in Figure 1. Theoretically, the AOR potential is −0.77 V vs. SHE
in alkaline conditions, and the ORR potential is 0.4 V vs. SHE, as shown in Reaction (1) and
(2) [17,18]. There is a potential gap of 1.17 V between the ORR and AOR, indicating that it
can be self-powered thermodynamically by coupling the AOR and ORR in an ammonia fuel
cell. It is an energetically favorable process of removing nitrogen and producing electricity
simultaneously via an ammonia fuel cell. However, there is a larger overpotential of
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the AOR, and the reaction rate is sluggish at room temperature. Hence, the fuel cell
performance is unsatisfactory due to the lack of anode catalysts.

AOR: 2NH3 + 6OH− → N2 + 6H2O + 6e− E0 = −0.77 V vs. SHE (1)

ORR: 3/2O2 + 3H2O + 6e− → 6OH− E0 = +0.40 V vs. SHE (2)

Overall: 2NH3 + 3/2O2 → N2 + 3H2O E0 = +1.17 V (3)
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Pt-based electrocatalysts such as PtIr, PtNi, PtIrNi, PtIrZn, and PtSnO2 show a higher
activity and lower onset potential for the AOR than other materials [19–22]. Yi Li et al.
prepared a PtIrZn/SiO2-CNT-COOH AOR catalyst, achieving a compelling peak power
density of 314 mW cm−2 at 95 ◦C using 7.0 M NH3 + 1.25 M KOH aqueous solution as
the anode fuel (flow rate: 5.0 mL min−1) [21]. The outstanding cell performance was
mainly due to the newly developed supporting material of SiO2-CNT-COOH. The charge
transport and mass transport were greatly improved by the supporting material, SiO2-
CNT-COOH. Pt-based catalysts can successfully achieve a large current density for the
AOR with pure ammonia. However, the use of noble metals will increase the investment
costs of waste treatment compared to biological technology. Additionally, wastewater
usually has a complex composition, so Pt-based catalysts tend to be poisoned more easily
in wastewater than in pure ammonia aqueous solution. So far, Ti-based metal oxides,
boron-doped diamonds, and graphite have been applied in the electrochemical treatment
of wastewater [23]. Desirable removal efficiency and electrochemical durability can be
achieved using these electrode materials. However, a large voltage must be applied in
order to reach the required current density as their electrocatalysis activity is much lower
than that of Pt-based catalysts. Thus, robust and low-cost anode catalysts are needed to
realize self-powered nitrogen removal with real wastewater.

2.2. Noble-Metal-Free Catalysts for the AOR

Recently, several newly designed noble-metal-free catalysts have been reported for an
efficient AOR. Nickel–copper bimetal and double hydroxides have been reported to have
exciting AOR activity with a synergistic effect [24,25]. Electrochemical characterization
shows that the AOR current density with a NiCu catalyst is approximately seven times
larger than that achieved with Ni catalysts. In alkaline conditions, Ni1−xCuxOOH is formed
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via an electrochemical reaction from Ni1−xCux(OH)2 and functions as the active species for
the AOR. Additionally, the NiCu catalyst shows better durability than Pt/C. NiCu cata-
lysts are a promising material for application in ammonia fuel cells. Mengfei Zhang et al.
prepared alkaline membrane fuel cells using carbon-supported NiCu as the anode catalyst
and α-MnO2/C as the cathode catalyst to remove ammonia from landfill leachate at room
temperature [26]. The open-circuit voltage of the ammonia fuel cell reached 0.35 V with
0.1 M ammonia. After six hours of ammonia fuel cell operation, the concentration of
ammonia in the landfill leachate dropped from 2711 ppm to 95 ppm, achieving removal
rate of more than 96%. Huimin Zhang et al. developed a membrane-free microfluidic fuel
cell with NiCu-based anode catalysts. In fuel cell tests, 50 wt% Ni50Cu50 supported on
carbon nanotubes as an anode showed a 43% higher peak power density and 65% higher
maximum current density than the Ni electrode [27]. When 2 M NaOH in 3 M NH4Cl
was used as an anolyte, an OCV of 0.72 V and peak power density of 17.1 mW cm−2 were
obtained in a microfluidic fuel cell with a core–shell NiCu@NiCuOOH 3D anode [28].

Ternary catalysts have been prepared to further improve catalysis activity. A NiCuFe
catalyst showed excellent AOR activity and stability as compared to a NiCu electrode
in alkaline solution [29,30]. Interestingly, the NiCuFe catalyst functioned well for both
AOR and ORR. An OCV and power density of 0.62 V and 8.9 mW cm−2 ◦C, respectively,
were obtained at 80 [29]. Huimin Zhang et al. demonstrated that sulfur doping and
electrochemical tuning can effectively regulate the surface electrochemical reconfiguration
of NiCu alloy nanoparticles, providing good external conditions for the adsorption of
intermediates such as NH3 [31]. DFT calculation shows that Ni/Cu reduces the energy
barrier of multi-step dehydrogenation and improves the catalytic activity of ammonia.

Perovskite oxides, generally ABO3, are emerging as a new class of AOR electrocatalysts
due to their flexible composition and adjustable electronic structure. LaNi1-xCuxO3-δ
(LNCO) perovskite was synthesized via sol–gel melting and then reduced, as shown in
Figure 2 [32]. When annealed in Ar gas, the LNCO catalyst possessed much higher AOR
activity and stability in comparison with a commercial Pt/C catalyst. When the LNCO
sample was fired in air, it was inactive toward the AOR. By doping Fe into LNCO and
introducing A-site deficiencies, further enhanced oxidation performance and stability were
achieved with a La0.9Ni0.6Cu0.4-xFexO3-δ (LNCF) catalyst [33]. The optimized activity
of LNCF may be due to (i) the presence of iron, reducing the Gibbs free energy, and
(ii) the presence of more oxygen vacancies, which may lead to greater surface exposure of
active NiII and indirect enhancement of the AOR. A monolayer Ruddlesden–Popper oxide,
La0.5Sr1.5Ni0.9Cu0.1O4-δ, was prepared via a modified Pechini method and subsequently
annealed in Ar [34]. It could act as a robust AOR anode and achieved a current density of
13.4 mA cm−1 at a potential of 0.53 V versus Ag/AgCl in 0.5 M KOH with 0.055 M NH4Cl.

Cathode catalysts for ammonia fuel cells have also been developed. Perovskite oxides,
such as LaCr0.25Fe0.25Co0.5O3-δ, SrFe0.8Cu0.1Nb0.1O3-δ, and SrCo0.8Cu0.1Nb0.1O3-δ [35–37],
were proven to be promising cathode ORR catalysts. When LaCr0.25Fe0.25Co0.5O3-δ fired
at 700 ◦C was employed as a cathode in a low-temperature ammonia–air fuel cell, an OCV
of 0.72 V and a maximum current density of ~320 mA cm−2 were achieved, which were
comparable to those achieved with Pt/C as the cathode [36]. Zijun Hu et al. prepared spinel
Mn−Co−C via a hydrothermal method as cathode catalysts for low-temperature ammonia
fuel cells. They displayed a good ORR performance with strong ammonia tolerance [38].

Several NiCu-based non-noble materials have been proved to be viable alternative
AOR catalysts. Their use can remarkably reduce the cost of wastewater treatment. Exper-
iments have indicated that ammonia can be removed from wastewater, such as landfill
leachate, via the AOR [32–34]. By coupling the AOR with the ORR, self-powered nitrogen
removal via an abiotic ammonia fuel cell can be realized [26].
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3. Nitrate Wastewater Utilization for Energy Recovery
3.1. Ethanol–Nitrate Fuel Cell

The utilization of nitrate as an electron acceptor instead of O2 shows potential for
self-powered NO−3 removal via fuel cells. The standard redox potential of NO−3 /N2 is
1.17 V vs. SHE in acidic conditions, which is close to 1.23 V of O2/H2O redox potential.
Microbial fuel cells (MFCs) have been successfully developed as a self-powered technology
for nitrate wastewater treatment [39–41]. However, high concentrations of nitrate and salt
ions effectively reduce bacterial activity, which is the main shortcoming of the application
of MFCs [42–44].

Recent progress has been made in the development of self-powered technology based
on abiotic electrocatalysis of the nitrate reduction reaction (NRR). Kyeng-Bae Ma et al.
attempted to replace O2 gas with nitrate at the cathode of an ethanol fuel cell (ethanol–
nitrate fuel cell) [45]. Compared to the ethanol–O2 fuel cell, the ethanol–nitrate fuel cell
exhibited improved the performance of OCV and the maximal power density owing to the
low activation energy required for the NRR. Wei Xu et al. investigated the nitrogen removal
process in ethanol–nitrate [46]. In order to improve the NRR rate and electrochemical
selectivity of nitrate to N2 gas, carbon-supported PdCu was synthesized as a cathode
catalyst. Electrochemical tests indicated that the reduction process of nitrate first involves
the reduction of NO−3 to NO−2 and then NO−2 to N2, in which the first step of NO−2 formation
is the rate-determining process. A maximum power density of 2.90 W m−2 with an OCV
of 1.6 V was obtained at 20 ◦C when using a catholyte containing 300 ppm N–NO−3 . After
24 h of cell operation, a nitrate removal efficiency of around 56% with a N2 selectivity of
approximately 93% was achieved. The ethanol–nitrate fuel cell achieved successful nitrate
removal with self-generated electricity.

3.2. Ammonia–Nitrate Fuel Cell

Novel fuel cells coupling the NRR with the AOR can engage in the nitrogen removal
process at both anodes and cathodes simultaneously. Huimin Zhang et al. developed
an ammonia–nitrate fuel cell, as shown in Figure 3, in which ammonia was catalytically
oxidized at the anode and nitrate was reduced at the cathode to produce electricity [47].
A nitrate removal efficiency of 46.9% was achieved after a 18 h reaction, with 4.29 mM
KNO3 in 0.1 M H2SO4 as the catholyte and 7.14 mM ammonia in 0.2 M KOH as the anolyte.



Processes 2023, 11, 1096 6 of 11

Meanwhile, the maximum power density reached 170 mW m−2 when a Pd/C cathode
was used as the catalyst. When NH4Cl–nitrate fuel cells and ammonia–nitrite fuel cells
were applied, the removal efficiencies of N–NH4Cl and N–NO−2 were 26.2% and 91.4%,
respectively. The products of ammonia nitrification in leachate could be used as fuel cell
anolyte. When using real leachate with the same initial NH3–N concentration, the nitrogen
removal efficiency was 22.9%. A urea–nitrate fuel cell was invented by Senthilkumar
Nangan et al. for the treatment of N-rich effluent to couple urea oxidation and nitrate
reduction [48]. In order to achieve a higher cell performance, a hybrid system comprising
alkaline urea and acid nitrate was applied and separated by a bipolar membrane. The
bipolar membrane could function well as a separator to keep the pH gradient stable during
the fuel cell discharge [49]. Nitrogen-doped carbon sheets supporting Ni@NiO-Cu@CuO
composites were prepared and used as bifunctional catalysts for urea electrooxidation
and nitrate reduction. The fabricated urea–nitrate fuel cell exhibited an enhanced fuel cell
power density of 22.55 ± 2.3 mW cm−2 with urine and nitrate degraded at the anode and
cathode, respectively.
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The main products of an NRR are ammonia and N2, and the selectivity of ammonia
and N2 varies with the NRR catalyst and electrolyte conditions [50–52]. In order to achieve
total nitrogen removal, ammonia products should be eliminated. Changhui Zhou et al.
developed a novel denitrification fuel cell combining electrochemical catalysis of the NRR
and photochemical catalysis of the AOR [53]. Instead of the direct reduction of nitrate to
nitrogen gas, nitrate is first reduced to ammonium on a Cu foam cathode modified by a
three-dimensional copper nanowire (CNW). Then, ammonium is oxidized to N2 by the
highly oxidizing free chlorine radicals (Cl•) generated via photocatalysis in the TiO2−WO3
anode side. The electrode reactions are as follows.

Cathode reaction: NO−3 + 10H+ + 8e− → NH+
4 + 3H2O (4)

Anode reaction: 2NH+
4 − 6e− Cl− , hν−−−−→ N2 + 8H+ (5)

Overall reaction: 3NO−3 + 5NH+
4 → 4N2 + 9H2O + 2H+ (6)
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As shown in Figure 4, the highest power density reached 0.973 mW cm−2 at pH = 5
with 0.03 M Cl− and a 1:7 ratio of NH+

4 to NO3
−. Cl• plays a dominant role in the oxidation

of NH+
4 , and quickly oxidized NH+

4 to mainly N2 and slight NO3
−. Overoxidized NO3

−

was continually eliminated at the CNW@CF cathode, and the denitrification efficiency
reached more than 99% via an exhaustive cycle.
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4. Perspectives

Although relevant research has demonstrated the feasibility of self-powered nitro-
gen removal via abiotic electrochemical catalysis, there are still some shortcomings. First,
the newly developed noble-metal-free catalysts are nickel-based catalysts, which achieve
comparable activity to noble-metal catalysts only in alkaline conditions. However, nitrogen-
containing wastewaters are mainly neutral or alkaline. Second, the AOR and NRR are
multiple electron transfer reactions; thus, it is important to enhance the detection of prod-
ucts at each stage. Third, the degradation of the gas diffusion layer of fuel cells is a key
factor in cell performance and stability. Recent work by Wang et al. reported that polyte-
trafluoroethylene (PTFE) content affects the antiaging performance via lattice Boltzmann
simulation [54].

In addition to ammonia and urea, amino acids are a common nitrogenous substance. The
fast growth of global energy needs and rise of environmental issues caused by the utilizations
of conventional fossil fuel have prompted the search for extensive, cost-effective, and envi-
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ronmentally friendly renewable energy sources. Biomass is a promising resource due to its
abundance and carbon neutrality. Biofuel production is predicted to reach several hundred or
even over 1000 EJ yr−1 by 2050 [55]. This large-scale conversion process of biomass to biofuels
will lead to a new environmental concern regarding protein bioresidue treatment.

Nowadays, biorefinery mainly focuses on utilizing compounds based on C, H, and
O in the biomass to produce biofuel, such as lipid and carbohydrates. However, this ap-
proach overlooks the utilization of N-based compounds (protein) in the biomass since toxic
constituents are produced when they are burned. Nitrogen comprises around 2~10 wt%
of the biomass [56]. Additionally, protein comprises 3~13% of the non-food biomass [57].
For instance, approximately 9.1 million tons of protein byproducts were generated from
corn ethanol production in 2010. However, these bioresidues can currently be used solely
as animal feed, and consequently become greenhouse gases (N2O) eventually.

An innovative approach to producing biofuels from a protein-based biomass was
proposed by Huo et al. [58]. They applied metabolic engineering in Escherichia coli to
convert amino acids to carbon skeletons via deamination, and further transformed these
organisms into biofuels or chemicals. However, several challenges exist in this approach.
For example, deamination is highly reversible in thermodynamics, and this will largely
restrict the reaction efficiency. Additionally, proteins contain 20 different amino acids
with varying carbon skeletons. As a result, several products will be derived from the
deamination process in a highly selective biosystem, complicating the further conversion of
deamination products to biofuels. Furthermore, the products’ toxicity to microbes remains
a pertinent issue.

Future innovative work, therefore, should aim to directly convert the chemical energy
in amino acids to electricity via chemical fuel cells without the complex deamination process.
Amino acids fuel cells can also provide a new approach to waste treatment with energy
retrieval via directly using protein residues or a protein-based biomass from microalgae.
Further, here, we propose an energy retrieval route via using microalgae culture as amino
acids sources. Microalgae, the third-generation biomass, can potentially be cultivated
via using N-rich municipal wastewater, such as human urine, for nitrogen removal and
biomass production. Additionally, protein-rich microalgae are reported to have a faster
biomass production rate than lipid-rich microalgae, because protein production does not
require a nutrient starvation period, as is the case for lipid-rich microalgae. This indicates
that it would be easier to achieve a large amount of biomass for energy production from
microalgae when the target products are proteins rather than lipids. Accordingly, protein-
rich microalgae represent a promising feedstock for proteins and amino acids.

Chemical fuel cell systems have advantages in terms of operating conditions. First,
the pH of nonmicrobial systems can be adjusted to well above neutral. Thus, the amino
acid concentration in anode feeding can become very high as the solubility of amino acids
in alkaline conditions is much larger than in neutral conditions. Anode feeding with a high
content of amino acids is necessary to increase the energy density of fuel cells. Second,
alkaline fuel cells have the advantage of superior reaction kinetics in alkaline media with
an enhancement of power output.

It is worth noting that amino acids will release ammonia, especially at high tempera-
tures and alkaline pH. Even trace levels of ammonia (>0.1 ppm) will poison the conventional
proton exchange membrane (PEM), which is widely used as a polymer electrolyte for fuel
cells, leading to poor conductivity. Consequently, the power density of fuel cells will be
largely limited due to the poor conductivity of the PEM. To avoid this, fuel cells with an
anion exchange membrane (AEM) may be a rational system and can be applied to inspect
energy retrieval ability.

Electrocatalysts based on transition-metal Ni showed a high catalytic activity of elec-
trooxidation reactions toward organics containing a NH2 group. They have a wide range
of applications in ammonia and urea electrooxidation as anode catalysts. Due to their
high performance and low cost, nickel-based bimetals supported by carbon black may
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be promising substitutions for noble metals as anode catalysts for amino acid fuel cells
(AAFCs) to directly convert the chemical energy in amino acids and proteins into electricity.

There are 20 amino acids, each with a different side chain group type, including glycine
(aliphatic), proline (cyclic), serine (containing hydroxyl), methionine (containing sulfur),
tyrosine and phenylalanine (aromatic), etc. In order to successfully produce electricity
from protein-derived amino acids in AAFCs, anode selectivity is key due to the diversity
of amino acids. If the anode catalyst of AAFCs has catalytic activity toward only one
type of amino acid, the output processes will be challenging and costly, as the diverse
range of amino acids must be purified. By contrast, if the catalyst presents high catalytic
activity toward the electrooxidation of all 20 amino acid reactions, the energy production
will be significantly reduced. Thus, it would be important to confirm whether catalysts
demonstrate catalytic activity toward all these amino acids, and if they can serve as anode
catalysts in the electrooxidation of amino acid (EAA) reactions.

5. Conclusions

In this work, we reviewed the recent research progress in self-powered nitrogen
removal via abiotic electrochemical catalysis. Novel system designs of fuel cells coupled
with functional nanomaterials enable nitrogen removal at both the anode and cathode.
The innovative integration of energy collectors and pollutant degradation allow for a
self-powered nitrogen removal system. The advances in self-powered nitrogen removal
systems provide a new approach to the treatment of non-biodegradable wastewater.

Despite recent material developments in this area, many challenges need to be ad-
dressed before their practical application. First, these products’ selectivity, catalysis activity,
and operation stability in real wastewater, especially wastewater with complex contami-
nants, need to be enhanced. Second, innovations in structural design, materials science,
and systems integration are critical to making key components suitable for scaled-up man-
ufacturing. Third, the combination of different environmental technologies and efficient
power management strategies would enhance the applicability of self-powered nitrogen
removal systems under complex conditions.
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