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Abstract: Radon is one of the 19 carcinogenic substances identified by the World Health Organization,
posing a significant threat to human health and the environment. Properly removing radon under
ambient conditions remains challenging. Compared with traditional radon−adsorbent materials
such as activated carbon and zeolite, metal–organic framework (MOF) materials provide a high
specific surface area, rich structure, and designability. However, MOF material powders demonstrate
complications regarding practical use, such as easy accumulation, deactivation, and difficult recovery.
Ni−MOF−74 was in situ grown on a porous polyacrylic acid (PA) spherical substrate via stepwise
negative pressure impregnation. Ni−MOF−74 was structured as one−dimensional rod−shaped
crystals (200–300 nm) in large−pore PA microspheres, whose porous structure increased the diffusion
of radon gas. The radon adsorption coefficient of a Ni−MOF−74@PA−polyethyleneimine composite
material was 0.49 L/g (293 K, relative humidity of 20%, air carrier). In comparison with pristine
Ni−MOF−74 powder, our composite material exhibited enhanced adsorption and longer penetration
time. The radon adsorption coefficient of the composite material was found to be from one to two
orders of magnitude higher than that of zeolite and silica gel. The proposed material can be used
for radon adsorption while overcoming the formation problem of MOF powders. Our preparation
approach can provide a reference for the composite process of MOFs and polymers.

Keywords: radon; metal–organic framework; Ni−MOF−74; polyacrylate; composite material;
adsorption coefficient

1. Introduction

Radon (Rn) is an odourless and colourless radioactive noble gas primarily derived
from soil, building materials, coal mining, and the nuclear industry. It has become a
significant pollutant in underground, indoor, and mining environments [1]. When radon
and its decay products attach to aerosols, dust, and smoke particles, they can enter the
bronchial and lung tissues when breathed by humans, and the radioactive rays produced
by their decay can irradiate human cells and organs, substantially increasing the risk of
lung cancer and blood diseases [2–4]. Additionally, radon radioactivity interferes with
rare−event search experiments, such as those involving neutrinos and dark matter. Hence,
it is crucial to strictly control the concentration levels of radon in the environment [5–7].

The current measures for preventing and reducing the presence of radon mainly
include adsorption, ventilation, sealing, and the design and renovation of buildings [8].
Adsorption is the most widely used technology for radon removal, and radon adsorption
materials are decisive for effective removal. Moreover, the performance of such materials
plays a critical role in improving the treatment efficiency, economic benefits, equipment
reliability, and reducing environmental pollution. The common materials for radon adsorp-
tion include silica gel, molecular sieves, activated carbon, and metal–organic framework
(MOF) materials. Early studies have shown that silica gel has a low radon adsorption
coefficient under different carrier gas conditions, ranging from 0.0216 L/g to 0.0393 L/g [9].
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Bikit et al. [10] measured the adsorption coefficient of natural zeolite samples between
0.038 L/g and 0.11 L/g. However, owing to the irregular pore size distribution and com-
position of natural zeolites and the difficulty of modifying the pore structure of synthetic
zeolites, their radon adsorption properties are weak. Activated carbon is an adsorption
material that has been used for many years, as it is reliable for radon adsorption in resi-
dential and commercial settings. Under average temperature and pressure conditions and
with air as the carrier gas, the radon adsorption coefficients of activated carbon and its
modified materials are generally between 3 L/g and 6 L/g [11–13]. However, the specific
surface area and micropore quantity of activated carbon are limited, hindering the design
and chemical modification of its structure. The demand for radon removal in engineering
applications requires using a large amount of activated carbon [14].

MOFs have a rich microporous structure and high designability, providing an ideal
storage space for various gases [15]. Thus, they have been widely used for the adsorption
and the separation of inert gases [16–18]. Most studies on radon have used grand canonical
Monte Carlo simulations and included the screening of MOFs and their absorption and
separation of radon in mixtures such as Rn/Xe [19,20], Rn/N2 [16,21], and Rn/O2 [21,22].
The research group of Wang at Soochow University [22,23] was the first to experimentally
study the radon adsorption performance of MOFs. They used grand canonical Monte Carlo
simulations to screen the zeolitic imidazolate framework (ZIF) series of MOFs and obtained
ZIF−7. Based on thermodynamics–kinetics−balanced principles, they adjusted the struc-
ture of ZIF−7 by replacing benzimidazole with imidazole, resulting in the preparation of
ZIF−7−lm. At 293 K and a relative humidity of 25%, they measured the radon adsorption
coefficient of ZIF−7−lm, increasing from 0 L/g to 8.6 L/g, surpassing that of activated
carbon and demonstrating the potential of MOFs for radon adsorption.

M2(DOBDC), or MOF−74 or CPO−27, is a coordination compound formed by combin-
ing metal ions such as Ni2+, Co2+, and Mg2+ with 2,5−dihydroxybenzoic acid (H2DOBDC).
This material possesses high−density open metal sites and exhibits excellent stability.
Therefore, it has been extensively studied for gas adsorption and separation [24–26].
Perry et al. [16] used grand canonical Monte Carlo simulations and found that Ni−MOF−74
exhibits good selectivity towards radon in Rn/N2 gas mixtures. As the molecular diameters
of Xe (4.1 Å) and Rn (4.17 Å) are similar and they share similar physicochemical properties,
MOFs for Xe adsorption may be effective for Rn adsorption. Theoretical calculations and
experimental studies have shown that Ni−MOF−74 exhibits a better adsorption and selec-
tivity towards Xe than other competitive gases [27,28]. At 1 bar and 298 K, Ni−MOF−74
has a Xe saturation adsorption capacity of 3.83 mol/kg, which is higher than that of ac-
tivated carbon and HKUST−1 [29]. Thus, Ni−MOF−74 is a promising MOF for treating
radioactive gas streams.

As a new type of adsorbent material, MOFs have broad application prospects. How-
ever, using powdered materials leads to compaction and deactivation, hindering efficient
recovery. Thus, addressing MOF moulding is crucial for industrial applications. The most
promising strategy toward the applicability of MOFs is forming composite materials with a
substrate. Currently, the morphology of MOF composite materials mainly includes parti-
cles, films, or fibres. In addition, the primary composite processes include physical mixing,
deposition precipitation, and in−situ growth [29–31]. Typically, the substrate materials
are selected for MOFs from polymers, carbon materials, and silica. Remarkably, polymers
have a wide variety of monomers and are highly designable, easy to process, and can be
readily hybridised with MOFs through modification. Porous polyesters exhibit excellent
mechanical properties, large pore structures promoting diffusion and mass transfer, and
a spherical appearance, conducing to filling and fixing beds. Thus, they have great po-
tential for practical engineering applications [32–34]. Therefore, MOFs@porous polymer
composite materials have recently become a research hotspot.

We synthesised a polyacrylate (PA) spherical matrix material with a multilevel pore
structure via emulsion polymerisation and improved the compatibility between PA and a
MOF through amine functionalisation. Ni−MOF−74 was grown in situ on the large pore
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surface of the matrix material via a stepwise impregnation to prepare the mechanically
stable Ni−MOF−74@PA−polyethyleneimine (PEI) composite material. The morphology
and structure of the material were characterised and analysed. Furthermore, a self−built
experimental device was used to test the radon adsorption coefficient of Ni−MOF−74 and
Ni−MOF−74@PA−PEI to investigate the adsorption performance of MOF and the new
material system for radon.

2. Experimental Details
2.1. Materials

Polyvinyl alcohol 1788 (an alcoholysis degree of 87–89% mol/mol), ammonium persul-
fate (99%), tert−butyl methacrylate (99%), glycidyl methacrylate (97%), trimethylolpropane
triacrylate (95%), toluene (AR), benzoyl peroxide (99.0%), N, N−dimethylaniline (99.0%), N,
N, N’, N’−tetramethylethylenediamine (99%), PEI (M.W. 1800), H2DOBDC (98%), tetrahy-
drofuran (99%), and ethanol were purchased from Shanghai Macklin Biochemical Co., Ltd.,
Shanghai, China. Polyethylene glycol–polypropylene glycol–polyethylene glycol (PEG–
PPG–PEG, M.W. 5800) was purchased from Sigma Aldrich (Shanghai) Trading Co., Ltd.,
Shanghai, China. Nickel acetate tetrahydrate (Ni(CH3COO)2·4H2O, 99%) was purchased
from Tianjin Heowns Biochemical Technology Co., Ltd., Tianjin, China. N2 (≥99.999%) was
purchased from Beijing Haipu Gas Co., Ltd., Beijing, China. All the chemicals were used
without further purification.

2.2. Synthesis Method
2.2.1. Synthesis of PA and PA−PEI

The preparation of PA and PA−PEI is illustrated in Figure 1. For PA, the preparation
method reported in [7,8] was used with slight modifications. The monomers tert−butyl
methacrylate (1.4 g) and glycidyl methacrylate (4.6 g) and crosslinker trimethylolpropane
triacrylate (4 g) were bathed in toluene (7.8 g), and the oil−soluble emulsifier PEG–PPG–
PEG (1.4 g) and oxidant benzoyl peroxide (0.2 g) were added. The mixture was soni-
cated for 15 min to achieve a homogeneous oil phase. Under high−speed stirring at
3000 rpm, 30 mL of water was added dropwise to the oil phase within 5 min to form an
emulsion. Then, the speed was changed to 6000 rpm for 6 min, and reducing agent N,
N−dimethylaniline (10 drops) was added in the last 1 min. At 343 K and under an N2
atmosphere, the prepared emulsion was poured into water (300 mL) containing dispersant
polyvinyl alcohol (2 g) and ammonium persulfate (0.48 g). Then, the reducing agent N, N,
N’, N’−tetramethylethylenediamine (20 drops) was added. Under interfacial tension, the
emulsion formed spherical particles in the third phase. The small spheres of 0.6–0.85 mm
were sieved, washed with water, and soaked in methanol to remove the residual emulsifier
in the material pores. Finally, the material was dried at 343 K to obtain the spherical porous
polyacrylic acid ester−based material, PA.

For PA−PEI, PA (1.5 g) was placed in a round−bottom flask (250 mL) and the flask was
sealed with a double−holed stopcock pressure−equalising dropping funnel and adapter.
Then, PEI (50 g) and methanol (10 g) were thoroughly mixed by ultrasonication, and the
mixture was added to the flask under vacuum. The mixture was heated at 403 K for 2 h
under an N2 atmosphere, and the resulting material was washed with methanol until
neutralisation. Finally, the modified substrate material was vacuum dried at 353 K to obtain
the PA−PEI.
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Figure 1. Schematic of the preparation of PA and PA−PEI.

2.2.2. Synthesis of Ni−MOF−74 and Ni−MOF−74@PA

The synthesis of Ni−MOF−74 was carried out using a hydrothermal method [25].
Nickel acetate tetrahydrate (3.73 g) was dissolved in ultrapure water (100 mL), and
H2DOBDC (1.49 g) was dissolved in tetrahydrofuran (100 mL). The two solutions were
mixed and poured into a polytetrafluoroethylene−lined vessel, which was then sealed in a
high−pressure reactor. After reacting in an oven at 383 K for 72 h, the upper liquid was
removed. The product was washed several times with ethanol and deionised water. Finally,
it was dried at 373 K in a vacuum oven for 12 h, resulting in a yellowish crystalline powder.

The preparation of Ni−MOF−74@PA−PEI is illustrated in Figure 2. PA−PEI (1.5 g)
was placed in a 250 mL round−bottom flask, the flask was sealed with a double−jointed
constant pressure dropping funnel and adapter, and vacuumed for 30 min. Then,
Ni(CH3COO)2·4H2O (7.46 g) was dissolved in ultrapure water (50 mL) as a precursor
solution for negative pressure impregnation for 3 h. After the impregnation, the sample was
dried in a vacuum−drying oven at 353 K. The PA−PEI−Ni2+ was vacuumed using the same
method. The precursor solution was replaced with H2DOBDC (1.98 g) dissolved in tetrahy-
drofuran (50 mL), and the mixture was transferred to a polytetrafluoroethylene−lined
vessel sealed in a high−pressure reactor. After reacting at 383 K for 72 h in an oven, re-
moved the liner, poured off the supernatant, repeatedly washed the product with water and
ethanol, and then dried in a vacuum oven at 373 K for 12 h to obtain Ni−MOF−74@PA−PEI.
The loading amount of Ni−MOF−74 in the composite material was 53.41 wt%. The calcu-
lation method is shown in the Supplementary Materials.

2.3. Characterisation

The crystal structure of the materials was characterised using an X−ray diffractometer
(Ultima IV, Rigaku, Tokyo, Japan) with a Cu target and scanning range of 5–50◦ at a 2◦/min.
The functional groups of the material were characterised by measuring the absorbance
within the range of 4000–400 cm−1 using a Fourier−transform infrared spectrometer
(Nicolet iS20, Thermo Fisher Scientific, Waltham, MA, USA). The surface and cross−section
of the materials were observed using a scanning electron microscopy (SEM) system (Gemini
300, ZEISS, Oberkochen, Germany). The valence states of the elements in the materials were
measured using an X−ray photoelectron spectrometry (XPS) system (K−Alpha, Thermo
Fisher Scientific, Waltham, MA, USA). The specific surface area, pore structure, and N2
adsorption isotherms of the materials were analysed using an automated surface area and
porosity analyser (Brunauer–Emmett–Teller—BET analysis, 3Flex, Micromeritics, Norcross,
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GA, USA). The thermal stability of the materials was tested using a simultaneous thermal
analyser (STA7300, Hitachi, Tokyo, Japan) under an N2 atmosphere with a heating range of
303–1073 K at a rate of 5 K/min.
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Figure 2. Schematic of the preparation of Ni−MOF−74@PA−PEI.

2.4. Radon Breakthrough Experiment
2.4.1. Experimental Setup

The laboratory measurement methods for the radon adsorption coefficient gener-
ally include three types: the static equilibrium method [13], the continuous air injection
method [11,22], and the pulsed air injection method [35]. In this study, a radon gas pen-
etration experimental apparatus was designed based on the principle of continuous air
injection. The schematic of the apparatus is shown in Figure 3, where the black arrows
indicate the direction of the gas flow. The radium ore from the State Key Laboratory of NBC
Protection for Civilian was used as the radon source. A quartz tube with an inner diameter
of 8 mm and length of 160 mm was used as the sample tube. The Rn concentration was
detected using a portable radon detector (NRM−P01, Sairatec, Beijing, China), and the
temperature and humidity during the experiment were recorded. The Rn concentration was
measured and recorded every 5 min, and the instrument sensitivity was ≥0.8 cph/Bq/m3

with a detection limit of 2 Bq/m3. A polytetrafluoroethylene syringe filter was added to the
instrument inlet to filter out the radon progeny, and a built−in pump of the radon detector
promoted gas flow through the sample.
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2.4.2. Test Preparation

Before testing the sample, the gas line was ventilated for 4–5 h to achieve an equilib-
rium of Rn concentration. The test result of Rn concentration over time without samples is
shown in Figure 4, which indicates a relatively stable Rn concentration around 1920 Bq/m3.
The gas concentration should be stable before testing the radon adsorption performance of
the material. Then, the sample pipe containing the activated samples (in a vacuum oven at
423 K for 6 h) with quartz cotton on both ends was connected to the apparatus pipeline
to begin adsorption. The dynamic adsorption experiment was completed when the Rn
concentration returned to the initial concentration and remained at this level for at least
30 min.

Processes 2023, 11, x FOR PEER REVIEW 6 of 15 
 

 

China), and the temperature and humidity during the experiment were recorded. The Rn 
concentration was measured and recorded every 5 min, and the instrument sensitivity 
was ≥0.8 cph/Bq/m3 with a detection limit of 2 Bq/m3. A polytetrafluoroethylene syringe 
filter was added to the instrument inlet to filter out the radon progeny, and a built−in 
pump of the radon detector promoted gas flow through the sample. 

 
Figure 3. Schematic of the radon breakthrough experiment. 

2.4.2. Test Preparation 
Before testing the sample, the gas line was ventilated for 4–5 h to achieve an 

equilibrium of Rn concentration. The test result of Rn concentration over time without 
samples is shown in Figure 4, which indicates a relatively stable Rn concentration around 
1920 Bq/m3. The gas concentration should be stable before testing the radon adsorption 
performance of the material. Then, the sample pipe containing the activated samples (in a 
vacuum oven at 423 K for 6 h) with quar  co on on both ends was connected to the 
apparatus pipeline to begin adsorption. The dynamic adsorption experiment was 
completed when the Rn concentration returned to the initial concentration and remained 
at this level for at least 30 min. 

0 60 120 180 240 300 360 420 480 540 600
0

400

800

1200

1600

2000

2400

R
n 

C
on

ce
n

tr
at

io
n
（

B
q

/m
3 ）

Time（min）

C0=1920 Bq/m3

 
Figure 4. Rn concentration without samples over time. 

Figure 4. Rn concentration without samples over time.

2.4.3. Calculation of the Dynamic Adsorption Coefficients

The dynamic adsorption coefficient Ka (L/g) is commonly used to characterise the Rn
capture capability of the adsorbents. The dynamic adsorption coefficient was calculated by
the following equations [11,22]:

Q =
1
m

∫ t

0
(C0 − Ct)Fdt (1)
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Ka =
Q
C0

(2)

where Q (Bq/g) is the radon activity adsorbed per unit mass of material, m (g) is the
sample mass used in the penetration experiment, C0 (Bq/m3) is the stable Rn concentration
before testing the sample, Ct (Bq/m3) is the Rn concentration measured by a detector
at time t, F (L/min) is the gas flow rate during the experiment, and t (min) denotes the
experiment time.

3. Results and Discussion
3.1. Composition Analysis and Morphology Characterization

The X−ray diffraction patterns of the prepared materials are shown in Figure 5a.
Because a polyacrylic acid ester polymer is a non−crystalline solid with no fixed crys-
tal structure, PA showed a broad peak before and after modification. The peak posi-
tion of Ni−MOF−74@PA−PEI was consistent with the characteristic peak position of
Ni−MOF−74, indicating both that PA did not affect the crystal structure of Ni−MOF−74
and the successful loading of Ni−MOF−74 on PA. The sharp peaks indicated good crys-
tallinity of Ni−MOF−74 in the composite material. The characteristic peak width of
Ni−MOF−74@PA−PEI was more notable than that of Ni−MOF−74 powder because the
Ni−MOF−74 crystal in the composite material was smaller than that of the powder [36].
The Fourier−transform infrared spectra of the samples are shown in Figure 5b. The three
characteristic peaks of PA at 2976 cm−1, 1735 cm−1, and 1472 cm−1 were attributed to the
asymmetric stretching vibration of C–H, stretching vibration of C=O, and bending vibration
of C–H, respectively [37]. After modification, the peaks of PA at 1151 cm−1, 910 cm−1,
and 848 cm−1 in the range of the epoxy group stretching vibration were substantially
weakened, indicating that the structure of the epoxy group was destroyed [38]. A new peak
appeared near 1574 cm−1, corresponding to the range of the N–H bending vibration peak
(1610–1500 cm−1) and indicating that the PA matrix was successfully grafted with amine
modification. In the infrared spectrum of Ni−MOF−74 and Ni−MOF−74@PA−PEI, the
peak at 3369 cm−1 corresponded to the O–H stretching vibration caused by the water vapor
in the pore channel [25,39], and the characteristic peak at 1561 cm−1 could be attributed
to the C–O stretching vibration of the carboxyl ester group in H2DOBDC. The absorption
peaks at 1414 cm−1 and 889 cm−1 represented the C–C bond in the aromatic ring and bend-
ing vibration of the benzene ring, respectively [39,40]. Compared with Ni−MOF−74, the
characteristic peak at 889 cm−1 in the spectrum of Ni−MOF−74@PA−PEI was weakened.
The epoxy group stretching vibration was observed initially at 848 cm−1 in the spectra of
PA, and the vibration of PA−PEI shifted to 814 cm−1, indicating the coordination between
the MOF and matrix material as well as the successful MOF grafting onto the PA−PEI [38].

The Ni−MOF−74@PA−PEI composite material exhibited a uniform spherical shape
(Figure 6a). The polymer matrix surface contained pores ranging from 0.1 µm to 4 µm in
diameter (Figure 6b). The interior mainly comprised large pores with diameters ranging
from 2 µm to 10 µm and had interconnected through−hole structures formed by the contact
between the dispersed phase droplets (Figure 6c). These structural characteristics enabled
the easy penetration of the metal salt and ligand solutions and provided a sufficient space
for the subsequent in−situ MOF growth. Modifying the polymer matrix with PEI did
not alter its pore structure (Figure S1). The element mappings obtained from the energy
dispersive X−ray spectroscopy revealed that the nickel ions were uniformly dispersed
within the polymer matrix after impregnation (Figure S2). The individual crystals of
Ni−MOF−74 had an irregularly aggregated size of 5–10 µm (Figure 6h,i), attributed to
the crystal growth being faster than the nucleation [41]. The surface morphology of the
Ni−MOF−74@PA−PEI composite material revealed the presence of rod−shaped crystals
several hundred nanometres in length, and the surface pores were reduced to less than 1 µm.
The interior comprised elongated one−dimensional rod−shaped crystals with lengths of
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approximately 200–300 nm, arranged tightly and uniformly (Figure 6e–g). This finding is
consistent with the one−dimensional hexagonal channel characteristics of MOF−74 [42].

Processes 2023, 11, x FOR PEER REVIEW 8 of 15 
 

 

 

Figure 5. (a) X−ray diffraction pa�erns of PA, PA−PEI, Ni−MOF−74 (simulated and synthesized), 

and Ni−MOF−74@PA−PEI. (b) Fourier−transform infrared spectra of PA, PA−PEI, Ni−MOF−74, and 

Ni−MOF−74@PA−PEI. 

The Ni−MOF−74@PA−PEI composite material exhibited a uniform spherical shape 

(Figure 6a). The polymer matrix surface contained pores ranging from 0.1 µm to 4 µm in 

diameter (Figure 6b). The interior mainly comprised large pores with diameters ranging 

from 2 µm to 10 µm and had interconnected through−hole structures formed by the con-

tact between the dispersed phase droplets (Figure 6c). These structural characteristics en-

abled the easy penetration of the metal salt and ligand solutions and provided a sufficient 

space for the subsequent in−situ MOF growth. Modifying the polymer matrix with PEI 

did not alter its pore structure (Figure S1). The element mappings obtained from the en-

ergy dispersive X−ray spectroscopy revealed that the nickel ions were uniformly dis-

persed within the polymer matrix after impregnation (Figure S2). The individual crystals 

of Ni−MOF−74 had an irregularly aggregated size of 5–10 µm (Figure 6h,i), a�ributed to 

the crystal growth being faster than the nucleation [41]. The surface morphology of the 

Ni−MOF−74@PA−PEI composite material revealed the presence of rod−shaped crystals 

several hundred nanometres in length, and the surface pores were reduced to less than 1 

µm. The interior comprised elongated one−dimensional rod−shaped crystals with lengths 

of approximately 200–300 nm, arranged tightly and uniformly (Figure 6e–g). This finding 

is consistent with the one−dimensional hexagonal channel characteristics of MOF−74 [42]. 

The nano−sized Ni−MOF−74 was in−situ ordered grown within the PA matrix. More-

over, grafting amine modification enhanced the matrix surface energy and reduced the 

nucleation energy barrier, substantially decreasing the crystal nucleus size [43,44]. The 

transformation of the crystal shape from an irregular block shape to a long−rod shape was 

likely due to the introduction of the amino groups [31]. The composite still had pores on 

the surface and retained a through−hole structure inside, thereby facilitating the gas dif-

fusion and mass transfer. 

XPS was performed to confirm the composition of Ni−MOF−74 and PA, obtaining the 

results shown in Figure 7. Owing to the low concentration of Ni in the composite material 

and its magnetic nature, the XPS raw data of the composite material were weak and ex-

hibited poor signal−to−noise ratios. However, the data fi�ing revealed that the Ni 2p spec-

trum of the materials could be deconvoluted into four characteristic peaks. Specifically, 

for Ni−MOF−74, the peaks at 856 eV and 860.83 eV were assigned to the Ni 2p3/2 main peak 

and its satellite peak, while those at 873.87 eV and 878.4 eV corresponded to the Ni 2p1/2 

main peak and its satellite peak (Figure 7a) [45–47]. After composite formation with PA, 

the main peaks of Ni 2p3/2 and Ni 2p1/2 were located at 856.63 eV and 874.72 eV, respec-

tively (Figure 7b). Compared with Ni−MOF−74, the two main peaks exhibited positive 

Figure 5. (a) X−ray diffraction patterns of PA, PA−PEI, Ni−MOF−74 (simulated and synthesized),
and Ni−MOF−74@PA−PEI. (b) Fourier−transform infrared spectra of PA, PA−PEI, Ni−MOF−74,
and Ni−MOF−74@PA−PEI.

Processes 2023, 11, x FOR PEER REVIEW 9 of 15 
 

 

shifts of up to 0.63 eV and 0.85 eV, respectively, suggesting a decrease in the electron den-

sity around Ni and the occurrence of a coordination interaction between Ni and the mod-

ified matrix material. These results were consistent with the infrared spectroscopy data. 

 

Figure 6. SEM images of (a) Ni−MOF−74@PA−PEI and (b) the PA surface. The internal pore structure 

of the (c) PA and (d) Ni−MOF−74@PA−PEI surface. The internal pore structure of (e–g) 

Ni−MOF−74@PA−PEI and (h,i) pristine Ni−MOF−74 at different magnifications. 

 

Figure 7. XPS spectra of Ni 2p for (a) Ni−MOF−74 and (b) Ni−MOF−74@PA−PEI. 

3.2. Pore Structure Characteristics 

The structural characteristic parameters and N2 adsorption/desorption isotherms of 

PA, PA−PEI, Ni−MOF−74, and Ni−MOF−74@PA−PEI at 77 K are shown in Table 1 and Fig-

ure 8. The adsorption curve for the PA substrate material reflected a typical Type II 

Figure 6. SEM images of (a) Ni−MOF−74@PA−PEI and (b) the PA surface. The internal pore
structure of the (c) PA and (d) Ni−MOF−74@PA−PEI surface. The internal pore structure of
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The nano−sized Ni−MOF−74 was in−situ ordered grown within the PA matrix.
Moreover, grafting amine modification enhanced the matrix surface energy and reduced
the nucleation energy barrier, substantially decreasing the crystal nucleus size [43,44]. The
transformation of the crystal shape from an irregular block shape to a long−rod shape
was likely due to the introduction of the amino groups [31]. The composite still had pores
on the surface and retained a through−hole structure inside, thereby facilitating the gas
diffusion and mass transfer.
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XPS was performed to confirm the composition of Ni−MOF−74 and PA, obtaining
the results shown in Figure 7. Owing to the low concentration of Ni in the composite
material and its magnetic nature, the XPS raw data of the composite material were weak
and exhibited poor signal−to−noise ratios. However, the data fitting revealed that the
Ni 2p spectrum of the materials could be deconvoluted into four characteristic peaks.
Specifically, for Ni−MOF−74, the peaks at 856 eV and 860.83 eV were assigned to the Ni
2p3/2 main peak and its satellite peak, while those at 873.87 eV and 878.4 eV corresponded
to the Ni 2p1/2 main peak and its satellite peak (Figure 7a) [45–47]. After composite
formation with PA, the main peaks of Ni 2p3/2 and Ni 2p1/2 were located at 856.63 eV and
874.72 eV, respectively (Figure 7b). Compared with Ni−MOF−74, the two main peaks
exhibited positive shifts of up to 0.63 eV and 0.85 eV, respectively, suggesting a decrease in
the electron density around Ni and the occurrence of a coordination interaction between
Ni and the modified matrix material. These results were consistent with the infrared
spectroscopy data.
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3.2. Pore Structure Characteristics

The structural characteristic parameters and N2 adsorption/desorption isotherms
of PA, PA−PEI, Ni−MOF−74, and Ni−MOF−74@PA−PEI at 77 K are shown in Table 1
and Figure 8. The adsorption curve for the PA substrate material reflected a typical Type
II isotherm, and its BET specific surface area was 30.3 m2/g. According to its pore size
distribution (Figure 8b), the material mainly consisted of macropores and mesopores but
no micropores. After modification, the adsorption curve and pore structure of PA did not
change notably, being consistent with the SEM characterisation results. The adsorption
isotherm of the synthesised Ni−MOF−74 reflected a typical Type I isotherm, with a
BET specific surface area of 785.1 m2/g and total pore volume and average pore size of
0.26 cm3/g and 1.77 nm, respectively, agreeing with previous reports [25]. The adsorption
isotherm of the Ni−MOF−74@PA−PEI composite material exhibited combined Type I and
IV isotherms. In the low−pressure region, the adsorbate underwent capillary condensation,
and the adsorption quickly increased, exhibiting a typical Type I adsorption isotherm.
At p/p0 ≈ 0.44, desorption hysteresis occurred, exhibiting a typical Type IV isotherm
of mesoporous solids. The BET−specific surface area of the composite material was
210.7 m2/g, while the microporous volume was 0.06 cm3/g, and the total pore volume was
0.24 cm3/g, indicating that the micropores accounted for 25% of the total pore volume. The
loading of Ni−MOF−74 drastically reduced the size of the macropores in PA, while the
composite material retained the microporous structure of Ni−MOF−74. This hierarchical
pore structure was beneficial for the mass transfer and retention of the adsorbate.
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Table 1. Structural properties of the prepared materials.

Sample Bulk Density
(g/cm3)

BET Surface Area
(m2/g)

Micropore Volume
(cm3/g)

Pore Volume
(cm3/g)

Average Pore Width
(nm)

PA 0.18 30.3 – 0.09 12.82

PA−PEI 0.21 33.7 – 0.10 12.73

Ni−MOF−74 1.19 785.1 0.25 0.26 1.77

Ni−MOF−74@PA−PEI 0.32 210.7 0.06 0.24 6.29
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3.3. Thermal Stability

The thermal stability test results of PA, Ni−MOF−74, and Ni−MOF−74@PA−PEI are
shown in Figure 9. The highest stability was achieved by PA followed by Ni−MOF−74@PA
−PEI and finally Ni−MOF−74. PA displayed two stages of weight loss, with a mass
decrease of approximately 6% at 430–540 K, possibly owing to the decomposition of the
unreacted monomers followed by a decrease in the mass above 650 K caused by the degra-
dation of the polymer substrate [32]. For the Ni−MOF−74@PA−PEI composite material,
the mass loss in the 300–423 K range could be attributed to the residual solvent molecules
and pre−adsorbed gas. The Ni−MOF−74@PA−PEI composite exhibits a stability below
423 K, and is suitable for ambient temperature applications.
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3.4. Radon Adsorption Capacity

The radon breakthrough curves for Ni−MOF−74 and Ni−MOF−74@PA−PEI are
shown in Figure 10. The dynamic radon adsorption experiments were conducted under
realistic ambient conditions of 293 K, relative humidity of 20%, and 1 bar. The pristine
Ni−MOF−74 powder immediately penetrated and showed no Rn adsorption. This might
be attributed to the damage of its pore structure because of tableting (Figure S3), re-
sulting in a decrease in the adsorption capacity. For Ni−MOF−74@PA−PEI, to ensure
sufficient gas–material interaction and avoid an excessive pressure drop, the tube was
filled with approximately 80 mm of the composite material. The Rn concentration showed
an immediate decrease after the material was introduced, reaching a minimum concen-
tration of 1196 Bq/m3 after approximately 15 min and then gradually returning to its
initial value. Based on fitting and calculations, the kinetic adsorption coefficient of the
Ni−MOF−74@PA−PEI composite material was approximately 0.49 L/g. The radon ad-
sorption coefficient of Ni−MOF−74@PA−PEI was from one to two orders of magnitude
higher than that of zeolite and silica gel. Because Rn is an inert gas and its molecular dy-
namic diameter is 4.17 Å [48], radon is primarily combined with adsorbents through weak
van der Waals forces with a lack of chemical reactivity. For Ni−MOF−74, its micropores
were mainly distributed between 4.6 nm and 7.4 nm. Multiple research results have indi-
cated a significant correlation between the Rn adsorption coefficient of a material and the
number of 0.5–0.7 nm micropores [49–51]. We confirmed that Rn is preferentially adsorbed
in pores within this range. Meanwhile, compared with the XRD of Ni−MOF−74@PA−PEI,
the Ni−MOF−74@PA−PEI after radon breakthrough still maintained the corresponding
characteristic peaks, but the peak intensity was slightly weakened (Figure S4). This could
be attributed to the reduction of crystal phase content or the radioactivity of Rn during the
testing process.
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There is limited research on MOFs for radon adsorption, and this study was the first
to investigate the effectiveness of Ni−MOF−74 for radon adsorption. Radon is a trace gas
in the atmosphere with very low partial pressure (<1.8 × 10−14 bar, <106 Bq/m3) [22], and
its adsorption coefficient by a material is highly dependent on humidity, temperature, and
the carrier gas [9]. Furthermore, during radon removal, there is competition for adsorption
between radon and other gases. Therefore, the deep removal of radon at ambient conditions
remains challenging.

4. Conclusions

We prepared a modified spherical microporous polyester as the matrix material and
achieved high−density, uniform in−situ growth of nanorod−shaped Ni−MOF−74 on its
surface and inside through stepwise negative pressure impregnation. The amine−modified
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matrix substantially reduced the surface nucleation energy barrier, and metal salt solution
pre−impregnation provided a foundation for the subsequent ordered and dense growth of
Ni−MOF−74. The characterisations showed that the Ni−MOF−74@PA−PEI composite
material had a multilevel pore structure that was conducive to the mass transfer and
adsorption. Based on these findings, we explored the Rn adsorption performance of both
the pristine and composite material. Compared with the pristine Ni−MOF−74 powder,
the prepared Ni−MOF−74@PA−PEI exhibited a better radon adsorption performance
with an adsorption coefficient of 0.49 L/g (293 K, relative humidity of 20%, 1 bar). The
microporous structure of Ni−MOF−74 demonstrated a certain ability to remove radon
from the environment.

Our study confirmed the feasibility of in−situ growth of Ni−MOF−74 on polymer
matrices such as polyacrylate and established a new composite material system that can
be used for radon adsorption. Our development dramatically reduces the gas resistance
during adsorption and opens new avenues for research on the practical use of MOFs for
controlling radon concentrations.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/pr11041069/s1, Figure S1. Internal pore structure of PA−PEI,
Figure S2. SEM/energy dispersive X−ray spectroscopy mappings of interior of Ni−MOF−74@PA
−PEI, Figure S3. N2 adsorption/desorption isotherms of Ni−MOF−74 (after tableting), Figure S4.
X−ray diffraction patterns of several materials.
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