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Abstract: This study focused on the isolation and structural characterization of pectin from three
distinct species of Vietnamese seagrass including Enhalus acoroides, Thalassia hemprichii, and Halophila
ovalis. The pectin yield obtained from Enhalus acoroides was the highest, corresponding to 24.15%,
followed by those from Thalassia hemprichii (20.04%) and Halophila ovalis (19.14%). The physicochem-
ical properties of pectin including total carbohydrate content, anhydrouronic acid (AUA) content,
equivalent weight (EW), methoxyl content (MeO), and degree of esterification (DE) were determined
using various analysis techniques. The pectin obtained from all three species were found to be
low-methyl-esterified pectin, with the MeO content and DE for E. acoroides, T. hemprichii, and H. ovalis
being 6.15% and 27.18%, 3.26% and 43.31%, and 4.65% and 33.25%, respectively. The average molecu-
lar weight (MW) of pectin was analyzed by size-exclusion chromatography. Pectin from T. hemprichii
had the highest MW of 173.01 kDa, followed by pectin from E. acoroides, with a MW of 127.32 kDa,
and that from H. ovalis, with a MW of 56.06 kDa. Furthermore, the pectins from all three seagrass
species exhibited high antioxidant activity and might be promising as antioxidants.

Keywords: Vietnamese seagrass; Enhalus acoroides; Thalassia hemprichii; Halophila ovalis; pectin; isola-
tion; characterization; antioxidant activity

1. Introduction

Seagrasses are aquatic plants that thrive in marine and brackish water. Similar to
terrestrial plants, seagrasses have leaves, stems, roots, flowers, fruits, and seeds and can
synthesize carbohydrate through photosynthesis [1]. On the other hand, seagrasses can
adapt to wave and flow activity. The seagrass ecosystem is one of the typical tropical marine
ecosystems and serves as organic matter, food source, habitat and spawning grounds for
aquatic species. Seagrasses also play an important role in maintaining and regulating the
economy of coastal water [2]. They have been used as folk remedies to treat a variety of
diseases such as fever, skin conditions, muscle aches, burns, stomach issues and as pain
relievers for kids [3]. Seagrasses have a therapeutic impact because they contain a variety
of biologically active compounds including polyphenols, flavonoids, terpenoids, pectins,
and others [4].

Pectins are a group of glycanogalacturonans composed mainly ofα-D-galactopyranosiluronic
acid (α-D-GalpA) residues linked together in a 1,4-configuration. They are classified into
three categories depending on the polysaccharide they contain: (1) a linear homopolymer
known as homogalacturonan (HG), (2) a branched polymer called rhamnogalacturonan
I (RGI), and (3) substituted galacturonans, with rhamnogalacturonan II (RGII) being the
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most widely distributed. HG accounts for 57–69% of pectin and is composed of 1,4-linked
α-D-GalpA chains, where 8 to 74% of the carboxyl groups can be methyl-etherified [5].

The physicochemical characteristics of pectin are correlated with its degree of methyla-
tion (DM) [6]. Two common types of pectin can be distinguished based on their DM values.
Pectin with a DM value above 50% is known as high-methoxylation pectin, while pectin
with a DM below 50% is referred to as low-methoxylation pectin. The DM value has a
notable influence on the gelation properties of pectin. When heated in a sugar solution at a
concentration higher than 55% and a pH lower than 3.5, high-methoxylation pectin quickly
gelates [7]. In the presence of calcium ions, low-methoxylation pectin can be formed with
a tiny amount of sugar [8]. Pectins with diversity in structure and complexity are widely
used in the food, drug, and cosmetic sectors due to their gelation properties, and employed
in jellies, confections, medical treatments as a gelling agent and stabilizer. Based on their
beneficial biological properties such as antioxidant, antibacterial, antiviral, anticancer, anti-
inflammatory, and metal-binding activities, pectins can be used as medicine and functional
foods [9].

Commercial pectins are mostly produced from citrus wastes (pulp and peel), apple
pomace, and sugar-beet pulp [7,10]. Natural pectin is also extracted from various sources
such as terrestrial plants and seagrasses [11]. Similar to other plant polysaccharides, the
chemical structure and composition of seagrass pectin varies depending on seagrass species,
extraction conditions, and other environmental factors. Pectin recovered from seagrasses
possesses a low DM value, with methylation in less than 10% of the carboxyl groups in
galacturonan, compared to pectin that extracted from terrestrial plants [12].

One distinctive aspect of the seagrass cell wall is the presence of low-methyl-esterified
pectins rich in apiose [5]. Pectin found in seagrasses contains apiogalacturonan fragments,
in which D-apiose residues are linked via 1,2- and/or 1,3- bonds to D-galacturonic acid
residues; it has been isolated from Zostera marina [13], Zostera caespitosa [14], and Phyllospadix
iwatensis [15]. This unique polysaccharide is referred to as zosterin in Z. marina and consists
of a GalAp backbone with 1,2-linked apiose oligosaccharides or single apiose residues
attached as substituents [14,16]. The biological activities of seagrass pectin revealed sev-
eral pharmacological effects including antivirus, antibacterial, antitumor, antioxidant, and
hypocholesterolemic properties [5,17,18]. The antioxidant property of pectin has recently
garnered a lot of attention. It is well accepted that the structural characteristics, including
monosaccharide composition, molecular weight distribution, and chemical structure, are
connected to the antioxidant activity [19–21]. However, pectin structure–activity correla-
tions are still unknown.

Fourteen distinct species of seagrasses are currently known to exist in Vietnam, with
numerous and wide dispersion throughout the sea, but the most common species around
the coast of Nha Trang bay were found to be Enhalus acoroides, Thalassia hemprichii, and
Halophila ovalis [22]. Research on Vietnamese seagrasses has mostly focused on their ecology,
distribution, and taxonomy [22–25], while their valuable biologically active components
such as pectin, have not yet been systematically studied. In this study, valuable pectic
polysaccharides from these three seagrass species were extracted, and their physiochemical
characters and antioxidant activity were investigated.

2. Materials and Methods
2.1. Materials

Fresh Vietnamese seagrasses were collected in the Thuy Trieu lagoon, Khanh Hoa
province, in March 2020. The fresh seagrasses were cleaned by sea water and ground into
2–3 mm pieces, and then the samples were immersed in ethanol 96% for 10 days to remove
pigments and lipids. To extract pectin, the defatted seagrass samples were air-dried at
room temperature and stored in plastic bags.
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2.2. Pectin Isolation

Pectin was extracted by a previously described method [15]. Briefly, 200 g of dry sea-
grass sample was pretreated with a hydrochloric acid solution (1.0 M) at pH 2–3 (w/v = 1:20,
weight of seagrass to acid solution ratio) for 3 h at 60 ◦C. After the hydrolysis, the seagrass
biomass was rinsed with distilled water to remove the acidic solution. Pectin was extracted
twice with a 0.5% ammonium oxalate solution (pH 6.0) at 85 ◦C for 3 h. The extracts were
collected by centrifugation, then concentrated under vacuum, dialyzed against distilled
water using a 10 kDa cut-off membrane for 48 h, and precipitated with four volumes of
98% ethanol. The precipitates were air-dried after rinsing with 70% ethanol and acetone.
The yield of pectin was estimated by the ratio of the weight of the powdered pectin to the
weight of the dried seagrass biomass (%, w/w).

2.3. Physicochemical Characterizations
2.3.1. Total Carbohydrate

The total carbohydrate content was determined using the phenol–sulfuric acid method [26].
Briefly, 1 mL of the polysaccharide solution was mixed with 1 mL of phenol solution (5%).
After mixing, 5 mL of concentrated H2SO4 was rapidly added to the mixture, which was
shaken. The mixture was set aside for 10 min at room temperature and then boiled in a
water bath for 20 min. The absorption intensity was then measured at 490 nm using a
UV-1800 spectrophotometer (Shimadzu, Kyoto, Japan).

2.3.2. Equivalent Weight

The determination of the equivalent weight of pectin was carried out according to a
previous method [27]. Briefly, pectin (0.5 g), ethanol (5 mL), sodium chloride (1.0 g), and
distilled water (100 mL) were added to a 250 mL conical flask. Then, six drops of phenol
red were added, and the solution was titrated against NaOH (0.1 N). The titration point
was indicated by a purple color. This neutralized solution was stored for the determination
of the methoxyl content.

The equivalent weight (EW) was calculated by Formula (1).

EW =
Weight of pectin sample (g)

mL of alkali × Molarity of alkali
× 100 (1)

2.3.3. Methoxyl Content (MeO)

The MeO content of pectin was determined according to a previous method [27].
Sodium hydroxide (25 mL, 0.25 N) was added to the above-described neutral solution
prepared for the determination of the equivalent weight. After carefully stirring, the
mixture was kept at room temperature for 30 min. Then 25 mL of hydrochloric acid (0.25 N)
was added, and the resulting solution was titrated against NaOH (0.1 N). The volume of
alkali (mL) required for the neutralization reaction was measured, and the MeO content
was calculated by the following Formula (2).

MeO% =
volume of alkali (mL) × 0.1 × 31 × 100

Weight of pectin sample (g)
(2)

2.3.4. Anhydrouronic Acid Content (AUA)

The AUA content of pectin was determined using the equivalent weight and the
methoxyl content values that were obtained by the procedures described above [28]. The
AUA value was calculated by Equation (3) [29].

AUA(%) =
176 × 0.1z × 100

W × 1000
+

176 × 0.1y × 100
W × 1000

(3)

where y and z are the titled volume of NaOH from the AUA and equivalent weight
determinations, respectively, and W is the weight of the pectin sample.
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2.3.5. Degree of Esterification (DE)

The DE values were evaluated by the titrimetric method of the Food Chemical
Codex [15] and calculated using Equation (4).

DE(%) =
176 × MeO (%)

31 × AUA (%)
× 100 (4)

2.3.6. Molecular Mass Distribution

The HPLC system used was equipped with the following instruments: a CBM-20A
prominence communications bus module, a DGU-20A5R degasser, an LC-20AD system
controller, a degasser, a CTO-20A column oven, and an RID-20A refractive index detector
(Shimadzu, Kyoto, Japan). Data acquisition and analysis were performed with the LC
Solution Version 1.25 with GPC option.

The analysis of pectins was performed by high-performance size-exclusion chromatog-
raphy (SEC) on the GPC column PSS SUPREMA combination ultrahigh (3 columns, dimen-
sions 8 mm × 300 mm, particle size 10 µm, PSS, Mainz, Germany). Different dextran stan-
dards (Sigma, Cibolo, TX, USA) were used for the calibration: Dex1 (MW = 1.27 KDa), Dex5
(MW = 5.22 kDa), Dex12 (MW = 11.6 kDa), Dex25 (MW = 23.8 kDa), Dex50 (MW = 48.6 kDa),
Dex150 (MW = 147.6 kDa), Dex270 (MW = 273 kDa), Dex670 (MW = 667.8 kDa). All reagents
and mobile phases were prepared with ultrapure water. Each standard in triplicate at a
concentration of 1.0 mg/mL was separately injected into the chromatographic column.
Lithium nitrate (0.1 M) at a flow rate of 1.0 mL/min was used as the mobile phase. The
column oven was set at 40 ◦C.

2.3.7. FTIR Spectroscopy

The infrared spectral analysis of pectin was performed on a Fourier transform infrared
(FT-IR) spectrophotometer (Bruker Tensor 27, Bruker Corporation, Billerica, MA, USA) in
the wavenumber range of 4.000–400 cm−1 with a resolution of 2 cm−1. Powder samples of
pectin were mixed with KBr powder and pressed into pellets for FT-IR spectra measurement
in the frequency range of 400 to 4.000 cm−1.

2.4. Antioxidant Assay
2.4.1. Total Antioxidant Activity

The total antioxidant activity was determined as previously reported [30]. A sample
(1 mL) was added to 3 mL of a mixture containing 0.6 M H2SO4, 28 mM sodium phosphate,
and 4 mM ammonium molybdate. The solution was vortexed and kept for 90 min at
95 ◦C, and then the absorbance was measured at the wavelength of 695 nm. Ascorbic
acid (AA) was used as a standard. All the results are expressed as mg of AA per gram of
pectin sample.

2.4.2. DPPH Free-Radical Scavenging Activity

The free-radical scavenging activity was measured as described previously [31]. To
this aim, 1,1-diphenyl-2-picrylhydrazyl (DPPH) was dissolved in ethanol to 0.2 mM, and
a pectin sample was dissolved in distilled water to obtain a solution (1000 µg/mL) for
testing the antioxidant activity. A sample (5 µL) was mixed with the DPPH solution in a
ratio of 1:1. The mixture was kept at room temperature for 30 min in the dark. A UV–Vis
spectrophotometer (UV-1800, Shimadzu, Japan) was used to measure the absorbance at
517 nm. The scavenging activity was calculated using Equation (5):

DPPH scavenging activity (%) =
A0 − A1

A0
× 100 (5)

where A0 and A1 are the absorbance of the control and of the sample, respectively.



Processes 2023, 11, 1054 5 of 12

2.4.3. Ferric-Reducing Antioxidant Power (FRAP) Assay

The FRAP assay was carried out according to a method described previously [31]. In
this assay, 1 volume of a TPTZ (tripyridyl triazine) solution (10 mM) in HCl (40 mM) and
1 volume of FeCl3 (20 mM) were mixed with 10 volumes of sodium acetate buffer (300 mM,
pH 3.6) to create the FRAP agent before performing testing process. A sample solution
(1 mL) was added to 3 mL of the FRAP reagent, and then the mixture was incubated at
37 ◦C for 30 min. The absorbance at 593 nm was recorded using deionized water as the
blank sample. A fresh working solution of FeSO4 was used for the calibration. From the
linear calibration curve, the antioxidant activity, based on the ability to reduce ferric ions,
of the sample was calculated and expressed as milligram of Fe2+ equivalents per gram of
sample [32].

3. Results and Discussion
3.1. Pectin Isolation

Pectin from the three distinct species of Vietnamese seagrass E. accoroides, H. ovalis, and
T. hemprichii, was extracted using a two-steps process. The dried samples were pretreated
by hydrolysis with hydrochloric acid as the hydrolyzing agent, which was followed by
pectin extraction using ammonium oxalate. In the first step, hydrochloric acid was used
to degrade the bonds between pectin and hemicellulose and release the pectin chains
from the seagrass samples. In the next step, pectin could be completely collected from the
ammonium oxalate solution.

The yields of pectin and the total carbohydrate contents of various seagrass species
are reported in Figure 1. The results showed that E. accoroides seagrass provided the highest
pectin yield of 24.15%, followed by T. hemprichii (20.04%), and H. ovalis (19.14%), while
H. ovalis had the highest carbohydrate content of 29.43%, followed by E. accoroides (27.28%),
and T. hemprichii (24.68%). When compared to the other seagrass species which were
also collected in temperate water areas, the pectin concentration and total carbohydrate
content in the Vietnamese seagrass species appeared significantly different. In fact, the
pectin and total carbohydrate contents found in the seagrass species Zostera marina were
11% and 39.1%, respectively [13,33] and those in Phyllospadix iwatansis were 6.91% and
39.45%, respectively [15,34]. The variation in the content of pectic polysaccharides and
total carbohydrate content depends on the source of the seagrass biomass, the harvest time,
the habitat of the seagrass species, and the extraction method [15,16,27,35]. For example,
Neelakandan et al. extracted pectin from Indian H. ovalis seagrass (6.5%) using a mixture of
sodium acetate, papain, ethylenediamine tetraacetic acid, and cystein, heating the samples
at 60 ◦C for 24 h [36]. In the present work, the acidic hydrolysis method [15] was used
with slight modifications such as changes in the extraction time and temperature and using
ammonium oxalate after the hydrolysis. In general, the pectic polysaccharides in each
species of seagrasses vary in total carbohydrate content, which leads to a great diversity of
biological activities [13,15,34,37].
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3.2. Physicochemical Characterizations

Anhydrouronic acid (AUA) is a principal parameter used to determine the purity
of pectin [35]. The AUA content is also crucial to determine the DE values, as well as
to evaluate physical properties of pectin. The percentage of uronic acid in Vietnamese
seagrass pectin is presented in Figure 2A. The results showed that the highest uronic acid
content was determined for pectin isolated from H. ovalis (79.4%), followed by those from
E. acoroides pectin (68.1%) and from T. hemprichii (65.5%). The uronic acid content of H. ovalis
pectin was higher than those from Z. marina (71.5%), P. iwatenis (74.9%), and T. ciliatum
(55%) [26,37], while the uronic acid content of pectin from T. hemprichii and E. acoroides was
lower than the values obtained for Z. marina and P. iwatenis pectins. Another study found
that P. iwatensi pectin contained 57.2% of uronic acid [15]. The difference in uronic acid
content between the two studies could be explained by the fact that different extraction
method as well as raw material sources were used. The uronic acid content of pectins
obtained from the Zosteraceae species Z. marina, Z. pacifica and P. iwatenis [33] was 38%,
36%, and 40%, respectively, and was significantly lower than those of pectin extracted
from Vietnamese seagrass and other sources [15]. Therefore, as for pectin obtained from
vegetables and fruits, the uronic acid content of seagrass pectin depends on the source of
pectin and the method used to extract it [27,28].
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Figure 2. Anhydrouronic acid content (A), methoxyl content (B), equivalent weight (C), degree of
esterification of pectin from three Vietnamese seagrass species (D).

The MeO value is an important factor in controlling pectin setting time and gelation
ability. The MeO analysis is shown in Figure 2B. The results showed that the MeO content
of T. hemprichii pectin (6.15%) was higher than that of E. acoroides (4.65%) and H. ovalis
(3.26%). These values were higher than the MO content of pectin from other seagrass
species. Ovodova et al. found that pectin from Z. marina, Z. pacifica and Phyllospadix had
a MeO value of 0.97%, 0.80%, and 0.78%, respectively [33]. The MeO value of pectin is
affected by the source of pectin as well as by the MO determination method [35]. The MO
content of pectin derived from Vietnamese seagrasses indicated a low-methoxyl pectin
with a MO value of less than 7%.
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The EW was used to calculate the AUA content and the degree of esterification
(DE). Figure 2C shows the EW values of pectin isolated from H. ovalis, T. hemprichii, and
E. acoroides. The result showed that pectin from H. ovalis had the highest EW value (1928.6),
followed by E. acoroides (1480.5) and T. hemprichii (1253.4). The EW of Vietnamese seagrass
pectin is significantly higher than that of pectin isolated from other sources such as red
and white grapefruit peel (624 and 749, respectively), Azanza garckeama fruit (813.64), and
orange peel powder (381–485) [10,29,38]. The EW values of pectin are highly dependent
on pectin material source and extraction method [10]. The gelation ability of Vietnamese
seagrass pectin with a high equivalent weight is expected to be great.

The analysis of pectin DE is presented in Figure 2D. The result showed that pectin DE
significantly depended on the seagrass species. T. hemprichii possessed the highest pectin DE
value (43.31%), followed by H. ovalis and E. acoroides, with 33.25% and 27.18%, respectively.
These findings revealed that Vietnamese seagrass pectin is a low-methyl-esterified pectin,
with less than 50% DE [35]. However, the DE of these species is significantly higher
than that of previously reported seagrass-derived pectin, such as pectin from Z. marina
(7.9%) and P. iwatensis (10.2%) [16], whereas these values are significantly lower than those
measured for terrestrial plant-derived pectins, which are estimated to be in the range of
50–76% [39–41]. These DE values suggest that this pectin may have more sophisticated
physicochemical properties in comparison to other types of pectin. A high-DE pectin can
hasten the gelation setting process, but its water solubility is low [29].

The MW distribution of Vietnamese seagrass pectin was evaluated by size-exclusion
chromatography (SEC), as shown in Figure 3. The physicochemical characterization of
the examined pectins is summarized in Table 1. The highest average MW was found for
pectin isolated from T. hemprichii (173 kDa), followed by those from E. acoroides (127 kDa)
and H. ovalis (56.6 kDa). In particular, for E. acoroides pectin, we observed a shoulder that
corresponded to a high MW region (170 kDa), which indicates a broad polydispersity
index (PDI) of this pectin. The results confirmed that the average MW of pectin strongly
depends on the source of the crude materials. Indeed, the MW of pectin from these
seagrass species was found to be similar to the average MW of pectin from apple, citrus,
and dragon fruit (with MW of 144 kDa, 138 kDa and 88 kDa, respectively) [42], whereas
it is significantly lower than those of pectin from fresh white cabbage (351 kDa), carrot
(827 kDa), onion (900 kDa), sweet pepper (571 kDa), and the seagrass Phyllospadix iwatensis
(325.45 kDa) [15,41]. Some species possess pectin with a MW lower than 100 kDa, such as
Zostera marina (62 kDa) and Zostera caespitosa (77.2 kDa) [14,43].

Processes 2023, 11, x FOR PEER REVIEW 8 of 13 
 

 

examined pectins is summarized in Table 1. The highest average MW was found for pectin 
isolated from T. hemprichii (173 kDa), followed by those from E. acoroides (127 kDa) and H. 
ovalis (56.6 kDa). In particular, for E. acoroides pectin, we observed a shoulder that corre-
sponded to a high MW region (170 kDa), which indicates a broad polydispersity index 
(PDI) of this pectin. The results confirmed that the average MW of pectin strongly depends 
on the source of the crude materials. Indeed, the MW of pectin from these seagrass species 
was found to be similar to the average MW of pectin from apple, citrus, and dragon fruit 
(with MW of 144 kDa, 138 kDa and 88 kDa, respectively) [42], whereas it is significantly 
lower than those of pectin from fresh white cabbage (351 kDa), carrot (827 kDa), onion 
(900 kDa), sweet pepper (571 kDa), and the seagrass Phyllospadix iwatensis (325.45 kDa) 
[15,41]. Some species possess pectin with a MW lower than 100 kDa, such as Zostera marina 
(62 kDa) and Zostera caespitosa (77.2 kDa) [14,43].  

 
Figure 3. GPC curves of Vietnamese seagrass pectin. 

Table 1. Summary of the physicochemical characterization of pectins extracted from the examined 
Vietnamese seagrasses. 

Pectin 
Extraction 
Yields 
(%) 

MW  
(kDa) 

Total Carbohydrate 
(%) 

AUA 
(%) 

MeO 
(%) 

EW DE 
(%) 

H. ovalis 19.14 56.6 29.43 79.4 3.26 1928.6 33.25 
T. hemprichii 20.04 173 24.68 65.5 6.15 1253.4 43.31 
E. acoroides 24.15 127 27.28 68.1 4.65 1480.5 27.18 

The functional groups of Vietnamese seagrass pectin were determined using FTIR 
spectroscopy, as shown in Figure 4. The spectra revealed that the absorption bands of the 
three types of seagrass pectin were similar. The broad bands at 3127–3417 cm−1 were as-
signed to the asymmetric stretching of hydroxyl groups [44]. The stretching vibration of 
the double-bond region is responsible for the bands at 1500 to 1800 cm−1. The intense bands 
at 1596–1662 cm−1 correspond to the carboxyl (COO−) group [45]. The O-CH3 groups in the 
polysaccharide chains are represented by the bands at 952–953 cm−1. Differences in the 
FTIR data of the extracted pectins were observed in the bands at 1200–900 cm−1 [46], which 
were attributed to the C–O–C glycosidic linkage and the C–C vibrational modes. This find-
ing confirmed the presence of saccharide molecules in the extracted samples. 

Figure 3. GPC curves of Vietnamese seagrass pectin.



Processes 2023, 11, 1054 8 of 12

Table 1. Summary of the physicochemical characterization of pectins extracted from the examined
Vietnamese seagrasses.

Pectin Extraction Yields
(%)

MW
(kDa)

Total Carbohydrate
(%)

AUA
(%)

MeO
(%) EW DE

(%)

H. ovalis 19.14 56.6 29.43 79.4 3.26 1928.6 33.25
T. hemprichii 20.04 173 24.68 65.5 6.15 1253.4 43.31
E. acoroides 24.15 127 27.28 68.1 4.65 1480.5 27.18

The functional groups of Vietnamese seagrass pectin were determined using FTIR
spectroscopy, as shown in Figure 4. The spectra revealed that the absorption bands of
the three types of seagrass pectin were similar. The broad bands at 3127–3417 cm−1 were
assigned to the asymmetric stretching of hydroxyl groups [44]. The stretching vibration of
the double-bond region is responsible for the bands at 1500 to 1800 cm−1. The intense bands
at 1596–1662 cm−1 correspond to the carboxyl (COO−) group [45]. The O-CH3 groups in
the polysaccharide chains are represented by the bands at 952–953 cm−1. Differences in
the FTIR data of the extracted pectins were observed in the bands at 1200–900 cm−1 [46],
which were attributed to the C–O–C glycosidic linkage and the C–C vibrational modes.
This finding confirmed the presence of saccharide molecules in the extracted samples.
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3.3. Antioxidant Activity

Figure 5 depicts the antioxidant activity of pectins extracted from the Vietnamese
seagrass species, including total antioxidant capacity, ferric reducing antioxidant power
(FRAP), and DPPH radical scavenging activity. The total antioxidant capacity and ferric
reducing activity revealed that all seagrass pectins possessed different levels of activity
(see Figure 5A,B). The strongest total antioxidant capacity was determined for E. acoroides
pectin (32.72 mg/g), followed by T. hemprichii pectin (15.53 mg/g) and H. ovalis pectin
(12.67 mg/g), while H. ovalis pectin had the greatest FRAP activity, corresponding to
1151.56 mg/g, followed by E. acoroides and T. hemprichii pectins, with values of 726.89 mg/g
and 599.14 mg/g, respectively.



Processes 2023, 11, 1054 9 of 12
Processes 2023, 11, x FOR PEER REVIEW 10 of 13 
 

 

 
Figure 5. Total antioxidant capacity calculated in milligram of ascorbic acid per gram of pectin sam-
ple (A), ferric reducing antioxidant power (FRAP) activity (B), DPPH radical scavenging activity (C) 
of Vietnamese seagrass pectins. 

4. Conclusions 
In this work, pectin from the three Vietnamese seagrass species E. acoroides, T. 

hemprichii, and H. ovalis were examined. The results revealed that the seagrasses have a 
high pectin content ranging from 19.14 to 24.15%. A physicochemical characterization in-
cluding the determination of the content of anhydrouronic acid, the equivalent weight, 
the methoxyl content, the degree of esterification, and the average molecular weight was 
carried out. The results showed that seagrass pectin is a low-methoxyl pectin. In the eval-
uation of the antioxidant activity, these pectins exhibited a high activity. These findings 
suggest that Vietnamese seagrasses have the potential to be developed as a biomaterial 
material for further applications in functional food. This could involve conducting clinical 
trials to evaluate the efficacy of seagrass pectin to help promote the sustainable utilization 
of marine resources. 

Author Contributions: Conceptualization, P.D.T.; methodology, P.D.T.; software, C.T.T.H. and 
D.T.T.; validation, P.D.T., C.T.T.H. and D.T.T.; investigation, C.T.T.H.; writing—original draft prep-
aration, P.D.T.; writing—review and editing, P.D.T. and T.-D.N.; supervision, P.D.T.; project admin-
istration, P.D.T.; funding acquisition, P.D.T. All authors have read and agreed to the published ver-
sion of the manuscript. 

Funding: This research was funded by Vietnam Academy of Science and Technology, grant number 
VAST06.06/20-21. 

Data Availability Statement: Not applicable. 

H. o
va

lis

T. h
em

pri
ch

ii

E. a
co

roi
de

s
0

10

20

30

40

To
ta

l a
nt

io
xi

da
nt

 c
ap

ac
ity 0

500

1000

FR
A

P 
(m

g/
g)

0

10

20

30

40

50

D
PP

H
 s

ca
ve

ng
in

g 
(%

)

A

B

C

Figure 5. Total antioxidant capacity calculated in milligram of ascorbic acid per gram of pectin sample
(A), ferric reducing antioxidant power (FRAP) activity (B), DPPH radical scavenging activity (C) of
Vietnamese seagrass pectins.

A DPPH radical scavenging assay was also carried out to test the ability of the an-
tioxidant compounds to function as proton radical scavengers or hydrogen donors [47].
Figure 5C shows the DPPH radical scavenging activity of the Vietnamese seagrass pectin.
H. ovalis pectin had the highest DPPH radical scavenging activity (33.36%), followed by E.
acoroides pectin (30.16%) and T. hemprichii pectin (21.98%). The result revealed a high antiox-
idant activity of Vietnamese seagrass pectin, which was attributed to the abundant presence
of -OH and -COOH groups of galacturonic acid in the polysaccharide chains [48,49]. The
result is agreement with previous reports [50,51]. The low-etherified pectin of the eelgrass
Z. marina showed antioxidant activity superior to that of two antioxidant medicines, mil-
dronat and empoxipin [51]. Another study found that the sulfated polysaccharide fractions
extracted from H. ovalis seagrass had good antioxidant activity [36]. The Vietnamese sea-
grass pectin outperformed the DPPH radical scavenging activity of vegetable and apple
pectins, which were found in the range of 10–30% [41,52]. The varying antioxidant activity
of pectin could be attributed to differences in their molecular weight and galacturonic
acid content. Although the mechanism is not fully understood, polysaccharides with a
low molecular weight and a high uronic acid content have been shown to increase the
antioxidant activity [31,53]. These findings suggest that pectin extracted from the three
examined Vietnamese seagrasses could be used as potential antioxidants.

4. Conclusions

In this work, pectin from the three Vietnamese seagrass species E. acoroides, T. hemprichii,
and H. ovalis were examined. The results revealed that the seagrasses have a high pectin
content ranging from 19.14 to 24.15%. A physicochemical characterization including the
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determination of the content of anhydrouronic acid, the equivalent weight, the methoxyl
content, the degree of esterification, and the average molecular weight was carried out.
The results showed that seagrass pectin is a low-methoxyl pectin. In the evaluation of
the antioxidant activity, these pectins exhibited a high activity. These findings suggest
that Vietnamese seagrasses have the potential to be developed as a biomaterial material
for further applications in functional food. This could involve conducting clinical trials
to evaluate the efficacy of seagrass pectin to help promote the sustainable utilization of
marine resources.
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