
Citation: Dai, Z.; Ding, W.; Min, Q.;

Gu, C.; Yao, B.; Shen, X. M-E-AWA: A

Novel Task Scheduling Approach

Based on Weight Vector Adaptive

Updating for Fog Computing.

Processes 2023, 11, 1053. https://

doi.org/10.3390/pr11041053

Academic Editors: Mengchu Zhou

and Jie Zhang

Received: 10 January 2023

Revised: 28 March 2023

Accepted: 29 March 2023

Published: 31 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

processes

Article

M-E-AWA: A Novel Task Scheduling Approach Based on
Weight Vector Adaptive Updating for Fog Computing
Zhiming Dai 1,2 , Weichao Ding 1,*, Qi Min 1, Chunhua Gu 1,*, Baohua Yao 3 and Xiaohan Shen 1

1 School of Information Science and Engineering, East China University of Science and Technology, Shanghai
200237, China; daizm@gench.edu.cn (Z.D.); minqi@mail.ecust.edu.cn (Q.M.); 15615753615@163.com (X.S.)

2 School of Information Technology, Shanghai Jian Qiao University, Shanghai 201306, China
3 Shanghai Institute of Civil Defense Science, Shanghai 200020, China; 13764474005@139.com
* Correspondence: weich@ecust.edu.cn (W.D.); chgu@ecust.edu.cn (C.G.)

Abstract: Task offloading and real-time scheduling are hot topics in fog computing. This paper
aims to address the challenges of complex modeling and solving multi-objective task scheduling in
fog computing environments caused by widely distributed resources and strong load uncertainties.
Firstly, a task unloading model based on dynamic priority adjustment is proposed. Secondly, a
multi-objective optimization model is constructed for task scheduling based on the task unloading
model, which optimizes time delay and energy consumption. The experimental results show that
M-E-AWA (MOEA/D with adaptive weight adjustment based on external archives) can effectively
handle multi-objective optimization problems with complex Pareto fronts and reduce the response
time and energy consumption costs of task scheduling.

Keywords: fog computing; task scheduling; multi-objective evolutionary algorithm; MOEA/D

1. Introduction

As more and more devices are connected to the network in the IoT environment, a vast
amount of data must be processed fast and on a large scale. In addition, 5G technology may
provide the whole IoT system with increased transmission speed, decreased power usage,
and decreased latency. The typical cloud-based centralized service architecture inhibits
the correct operation of high-demand applications and services during data processing
due to long transmission distances and unpredictable networks [1]. Fog computing is a
distributed computing architecture that can process, store, and intelligently control data.
Having high-density computing and storage devices deployed in the fog layer close to the
user greatly reduces the latency of traditional cloud computing and also gives support
for user mobility, which alleviates the huge burden of cloud computing for massive data
processing [2,3].

As a distributed service architecture, the distribution of resources and load status be-
tween fog nodes is uneven when there are numerous service requests. This makes modeling
difficult and finding an optimal way to schedule tasks challenging [4]. The key to improv-
ing the performance of fog computing services is to provide an efficient and reasonable task
scheduling strategy based on the characteristics of the fog computing environment [5,6].
At present, fog computing task scheduling algorithms are generally divided into three
categories: static scheduling algorithms [7], heuristic scheduling algorithms [8,9], and meta-
heuristic scheduling algorithms [10]. The characteristic of a static scheduling algorithm is
that it is independent of the state and accessibility of system resources. To start scheduling,
detailed information about tasks must be obtained, and the state and accessibility of system
resources cannot be changed once the task is submitted to the system [11]. The goal of a
heuristic scheduling algorithm is to find the approximate optimal solution to the current
problem in a reasonable amount of time, which has significant advantages in solving all
kinds of complex single objective optimization problems. A metaheuristic algorithm can

Processes 2023, 11, 1053. https://doi.org/10.3390/pr11041053 https://www.mdpi.com/journal/processes

https://doi.org/10.3390/pr11041053
https://doi.org/10.3390/pr11041053
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/processes
https://www.mdpi.com
https://orcid.org/0000-0002-7886-3573
https://doi.org/10.3390/pr11041053
https://www.mdpi.com/journal/processes
https://www.mdpi.com/article/10.3390/pr11041053?type=check_update&version=1

Processes 2023, 11, 1053 2 of 18

avoid the defects of a heuristic algorithm in solving multi-objective optimization problems
by combining a random search strategy with a local optimal strategy [12]. In addition to
the above three methods, neural network-related technology [13,14] has also been applied
to task scheduling in fog computing in recent years. However, due to the problems of too
many algorithm parameters and poor anti-interference, it is often difficult to extend it to
the actual application environment [15].

In real-world applications, where it is difficult to obtain accurate information about
task complexity and node resource availability, a local plus random mutation metaheuristic
algorithm is more effective in solving task scheduling problems with multiple conflicting
goals. Additionally, task scheduling in fog computing is inherently NP-hard, and scalability,
as well as resource utilization rate, are critical factors to consider. A metaheuristic algorithm
is, therefore, suitable for solving such complex multi-objective optimization problems. This
paper presents a study of fog computing task scheduling based on the MOEA/D optimization
algorithm, which addresses the problems of existing task offloading, model construction,
and algorithm research in three parts from the perspective of the trade-off between resource
supply and demand. The specific contributions of this study are as follows:

1. Firstly, a task offloading model based on multi-decision information is proposed to
determine the task offloading nodes based on multiple attributes; secondly, based on the
task offloading model, the time delay and energy consumption in the task scheduling
process of fog computing are analyzed to establish a multi-objective task scheduling
model for fog computing, which provides a model based on multiple objectives.

2. To solve the problem of the uneven distribution of solutions acquired by the MOEA/D
algorithm in the presence of a complex Pareto frontier, a multi-objective evolutionary
algorithm M-E-AWA that dynamically adjusts the weight vector is presented. Second,
we offer an external archive-based weight updating method, which employs an
external archive to preserve the previous weights and this external archive to guide
the weight vector update when a zero term appears in the new subproblem.

3. On the basis of the multi-objective scheduling model and the enhanced evolutionary
algorithm, we propose a task scheduling approach based on M-E-AWA for solving
the multi-objective scheduling model. A priority-based task scheduling strategy is
designed to analyze multiple time stamps of tasks and establish the urgent priority
of each task and use this priority to determine the order of task execution. Secondly,
the tasks are converted into individuals conforming to evolutionary specifications
through coding and decoding operations and are solved using genetic algorithms to
obtain optimal solutions through a series of evolutionary processes such as population
selection and mutation.

Section 2 of this paper proposes a multi-objective task scheduling model for fog
computing. Section 3 presents the M-E-AWA algorithm proposed in this paper. Section 4
verifies the validity of the algorithm via experiments, and Section 5 provides the conclusion.

2. Model
2.1. Task Scheduling Model with Adaptive Priority Adjustment

This section proposes a task scheduling model based on adaptive priority adjustment.
By considering the waiting time and generation time of tasks, the urgency degree is sorted
out and grouped to ensure faster execution of high-priority tasks.

Here, j is defined to represent the priority level of task i; j = 1 means high priority, j =
2 means medium priority, and j = 3 means low priority; and three buffers, B1, B2 and B3,
are provided for the fog server to temporarily store the high, medium, and low priority
tasks. For example, at i = 1 and j = 1, it means that the first task is stored in B1. From a
global perspective, tasks in B1, B2 and B3 are scheduled sequentially. From a local point of
view, tasks in the same buffer are scheduled by polling. However, some tasks cannot be
completed in one slice and need to wait for the next round to execute the rest using other
slices. In this case, because of the dynamics and uncertainty of the task, it is necessary to

Processes 2023, 11, 1053 3 of 18

mark the urgency level of the task. Here, emeij is used to represent the urgency degree of
taskij, as defined in Equation (1):

emeij =

{
λ1

ω1timewai+1
timerem

+ λ2timecom, timewai < 0
ξ

ω2timewai+timerem+timecom
, timewai ≥ 0

(1)

λ1, λ2, and ξ are experienced values. Several experiments have shown that the values
of λ1 = 1/3, λ2 = 2/3, and ξ = 0.85 result in the most efficient task scheduling. timewai refers
to the waiting time, when timewai < 0, it means that the task has not been completed within
the specified time, and timewai is the timeout time; When timewai > 0, it indicates that the
task has been completed within the specified time, and timewai represents the available time.
timerem is the remaining time of the task and a higher value shows that more time is left,
resulting in lower urgency for completing the task. timecom is the task’s generation time. To
consider the generation time’s weight of the expired task, it needs to be factored in ω1 and
ω2 are two variable parameters whose definitions are presented in Equations (2) and (3):

ω1 =


0.5 |timewai| < thr1
1 thr1 ≤ |timewai| < 2thr1
2 2thr1 ≤ |timewai|

(2)

ω2 =


0.4 |timewai| < thr2
0.65 thr2 ≤ |timewai| < 2thr2
1 2the2 ≤ |timewai|

(3)

where thr1 and thr2 are two defined thresholds that satisfy thr1 < thr2.
A task scheduling strategy based on priority first sets buffers and distinguishes the

priorities of buffers. Then the task is iterated over, and the priority with the highest urgency
value is placed in the high priority buffer. Because the priorities of the three buffers are dif-
ferent, the time slices allocated in each buffer are different. The buffer with a higher priority
is preferentially executed, and the execution time slices are proportional to the priority.

2.2. Multi-Objective Task Scheduling Model

This section provides an analysis of the task scheduling process in fog computing. The
distribution of nodes in fog computing is highly scattered, resulting in unequal resource
distribution owing to some regions being too sparse while others too dense. As a result,
constructing a task scheduling model presents several challenges that require balancing
multiple factors to avoid modeling bias while ensuring the desired effect [16–18]. In this
paper, we propose a task offloading model based on multi-decision information, and select
three computational objectives, namely transmission time, processing time, and energy
consumption for the task scheduling model [19]. We adopt a fog computing architecture
that prioritizes efficiency as the primary target. With the current hardware conditions, the
transmission delay caused by the transmission medium is getting smaller, leading to more
attention on the electrical energy problem during task processing. Efficient processing of
tasks in fog computing is vital to ensure that the energy consumption of the data processing
center does not exponentially increase with task volume [20,21]. We divide the time cost
into two parts, transmission time and processing time. The transmission time calculation is
directly proportional to the quality of medium transmission, with high-quality transmission
resulting in a shorter transmission time. Processing time, on the other hand, relates directly
to the computing resources available in fog computing. c allows us to highlight the
critical points of our proposed task scheduling model. For the convenience of subsequent
studies, it is assumed here that the data transmission during resource scheduling and
computation result return is not limited by communication bandwidth and that the global
communication consumption is relatively stable. This section uses the computational
capacity of fog nodes as a measure to ensure that the allocated computational resources
can satisfy the consumption of the service device before the deadline of the task is reached,

Processes 2023, 11, 1053 4 of 18

which can reduce the task latency time and prevent task timeout. The relevant definitions
of fog computing task scheduling discussed in this paper are as follows:

1. Set the fog computing node Ff og =
{

f1, f2, . . . , f j
}

, where f j represents the j-th fog
node, 1 ≤ j ≤ m.

2. Set up a collection of tasks T = {t1, t2, . . . , tn}, n is the number of computational tasks,
where ti represents the i-th task, 1 ≤ i ≤ n.

3. Set the allocation matrix Xij = (xij), Task i is not assigned to fog node j if xij equals 0.
A value of 1 indicates that fog node j is assigned to task i.

4. The time cost associated with a task is represented by the matrix ET of m× n. ETij
represents the time spent by task ti on computation node f j.

5. The service cost of a computational task is represented by the matrix C of m× n. Cij
represents the cost of spending by task ti on computation node f j.

Table 1 explains the notation of the mathematical model.

Table 1. Mathematical notation.

Notation Description

F Fog node collection

U Collection of terminal equipment

T Mission collection

TSi Size of the ti

TAi Arrival time of the ti

γi,j Transmission rate

cri Size of task execution results

µj Processing speed of the j-th fog node f j

Φτ Time cost

ϕi,j Wireless interface parameters

Oi The size of the i-th result

uj Compute the price once at compute node f j

Transmission Time. T is used to represent the set of all tasks on the node, so the
completion time of set T includes: the transmission time when the task is unloaded to the
fog node, the transmission time when the processing result is returned to the user device,
and the delay time generated when the task interacts with the user device.

Given a task ti with a size of si, the calculation of the uplink transmission Ti,j ↑ of ti
unloaded to the j-th fog node is shown in Equation (4):

Ti,j ↑=
si

γi,j
(4)

where ri,j is the transmission rate of the wireless network interface, which can be deduced
from measurement [22,23]. Set cri as the size of the task execution result returned from the
fog node, and the calculation of the transmission time Ti,j ↓ from the calculation result f j to
the task ti is shown in Equation (5):

Ti,j ↓=
cri
γi,j

(5)

The Equation (6) shows how to figure out the time delay DelTi,j caused by sending
task i from the local transmission device to fog node f j: where TSi is the size of the current
transmitted task:

DelTi,j =
TSi
µj

(6)

Processes 2023, 11, 1053 5 of 18

The time delay DelT′i,j of returning the task to the local device after the task is processed
on the fog node is calculated as Equation (7), where Oi is the result size after the task is
processed:

DelT′i,j =
Oi
µj

(7)

To sum up, the calculation of the total transmission time needed to transmit task ti
between fog node f j and the end user is shown in Equation (8):

ETtrans
total =

m

∑
j=1

n

∑
i=1

(
Ti,j ↑ +Ti,j ↓ +DelTi,j + DelT′i,j

)
(8)

When fog computing schedules tasks, different fog nodes have different processing
abilities. In general, the fog nodes with more allocated resources will process tasks faster.
The processing time (CPU execution time) of task ti on fog node f j is set to be composed of
three parts: the time Subi,j when the i-th task is submitted to the j-th fog node, the waiting
time Waii,j of the i-th task on the j-th fog node, and the execution time Opei,j of the i-th
task on the j-th fog node. The first two times can be obtained directly at the fog node. The
calculation of the execution time Opei,j is shown in Formula (9), where µj is the processing
speed of f j in MIPS:

Opei,j =
li
µj

(9)

The calculation of total processing time is shown in Equation (10):

ETexe
total =

m

∑
j=1

n

∑
i=1

(
Subi,j + Waii,j + Opei,j

)
(10)

The more fog computing resources required to process the same number of tasks on a
node, the shorter the processing time, and the higher the computational power of the node,
the greater the computational cost. Therefore, reducing time costs while minimizing energy
consumption is crucial. A service level agreement (SLA) is a negotiated service quality
agreement between a provider and subscriber that primarily concerns measurable service
quality characteristics such as service, service time, and billing. The service level objective
(SLO) is a measure of subscriber satisfaction that is more punitive than the SLA and serves
as an internal objective to quantify service received from fog nodes, taking into ac-count
frequency, response events, and availability. The resource cost includes costs associated
with SLO violations and endpoint request processing by computing nodes. If V represents
the total penalty cost for SLO violation, the penalty function for SLO violation is computed
as shown in (11):

V =
q

∑
i

[
γi + η ×

(
tstop
i − tdeadline

i

)]
(11)

i is the serial number of SLO violation requests due to service timeout, q is the total
number of SLO violation requests, γi is the basic penalty cost of the i-th SLO violation
request, η is the penalty cost per unit time, which is generally caused by timeout, and tstop

i
is the actual response time of the i-th SLO violation request.

Equation (12) shows the calculation of average resource consumption processed on f j
with given task ti [24]:

Ci,j = uj · ETexe
i,j (12)

maxCi,j represents the resource consumption of each CPU cycle. In this section, it is
assumed that CPU resources are uniformly allocated to each current process on each server.
In other words, if a CPU is composed of multiple cores, the processes will be uniformly
allocated to each core.

Processes 2023, 11, 1053 6 of 18

The resources required to unload the task ti with the size of TSi to the fog node f j
(including the resource consumption caused by the time delay in the transmission process)
are calculated as shown in Equation (13), and ϕi,j is a constant related to the wireless
interface:

EPi,j ↑=
ϕi,j · TSi

γi,j
(13)

If Oi is set as the result data size of task ti, the resource consumption of the output
data from fog node f j to a user’s equipment (including the resource consumption caused
by the time delay in transmission) is calculated as shown in Equation (14):

EPi,j ↓=
ϕi,j ·Oi

γi,j
(14)

Therefore, the calculation of total resource consumption is expressed in Equation (15):

EPtotal =

(
m

∑
j=1

n

∑
i=1

(
Ci,j + EPi,j ↑ +EPi,j ↓

))
+ V (15)

3. Algorithm
3.1. Framework of M-E-AWA

In the fog computing task scheduling field, a multi-objective evolutionary algorithm
(M-E-AWA) based on adaptive distribution of weight vectors is proposed to address the
problem of balancing multi-objective conflict and optimizing the Pareto front, which is
complex and discontinuous. M-E-AWA first calculates the individual sparsity to determine
the population sparsity difference. Using this information, it dynamically adjusts the
weight vector to guide the adaptive evolution of the population. The M-E-AWA algorithm
framework is presented in Table 2. The algorithm initializes the variables in Step 1, calcu-
lates the ideal point and sparse difference of the current population in Step 2, and applies
evolutionary operators to new individual generations in Steps 3–7, including paternal
crossover and mutation. Step 8 calculates the sparse difference of the new population
before and after evolution. Step 9 adaptively adjusts the weight vector according to the
population sparsity; the final step describes the termination condition. The population
sparsity judgment and weight vector adaptive updating will be further described below.

Table 2. Pseudo code of M-E-AWA algorithm.

Input: Max iterations
Output: Optimal solution individuals x1, . . . , xN and function values FV1, . . . , FVN

Step 1. Initialize population pop, weight vector λ1, λ2, . . . , λN and neighborhood matrix
B(i) = {i1, . . . , iT}, P = 0, EW = [], Q;
Step 2. Calculate the ideal point z∗ = (z1

∗, . . . , z∗m) and sparse difference degree SL_D of the current
population;
The individuals in the population are traversed, and the evolution process is as follows:
Step 3. For each individual, randomly choose whether to use neighborhood for individual evolution guidance;
Step 4. Use crossover operator SBX for individual crossover operation;
Step 5. Use polynomial mutation operator for individual mutation operation;
Step 6. Update the reference point z;
Step 7. Update the optimal solution, if g

(
y
∣∣λi , z∗

)
≤ g

(
xj
∣∣λi , z∗

)
, then set xj = y, FV j = F(y);

Step 8. Calculate the difference of sparse diversity of populations before and after evolution:
dRate = |SL_D′ − SL_D|;
Step 9. If dRate is greater than the threshold T, the weight vector is updated adaptively; Otherwise, proceed to
step 10;
Step 10. Repeat steps 2–9 above until the maximum number of iterations Max is reached.

3.2. Judgment of Population Sparsity

This paper determines individual sparsity based on a fast and effective non-dominated
solution pruning method proposed by kukkonen and DEB (2006) [25] and proposes a
population sparsity difference estimation method based on individual sparsity. Firstly, Q

Processes 2023, 11, 1053 7 of 18

individuals with the largest and smallest individual sparsities are selected according to
Formula (16), and then the population sparsity difference SL_D is obtained according to
Formula (17). Where i represents the i-th neighbor, and the calculation of sparsity requires
computing the distance and product of the M neighbors of the j-th individual.

SL
(

indj, pop
)
=

m

∏
i=1

L
NN j

i
2 (16)

SL_D =

Q
∑

i=1
ŜL−

Q
∑

i=1

∨
SL

Q
, 2Q < N (17)

In this paper, we utilize the population sparse difference estimation method to im-
plement the population adjustment strategy. Specifically, the sparse population difference
SL_D is used to adjust the weight vector. Prior to an individual’s adjustment in the pop-
ulation, the current population difference is compared to that of the previous generation.
If the difference exceeds a pre-determined value, then the population will be adjusted
accordingly. By utilizing this approach, we can avoid unnecessary resource consumption
and excessive parameter settings that may exist in the original algorithm.

3.3. Adaptive Updating of Weight Vector

The weight vector is calculated according to the generated individual and the optimal
solution in MOEA/D-AWA [26]. When facing the zero term subproblem, MOEA/D-AWA
obtains the weight vector by adding and adjusting parameters, but this method cannot
express the generation significance of the weight vector. In order to make the generated
weight vector more uniform and improve the quality of the solution, this paper proposes
a method to generate weights based on the historical archive. The previously removed
weights are stored in the external archive. When generating the weights corresponding to
the zero-term subproblem, the generation process is guided according to the information
in the external archive, so as to ensure that the newly generated weight vector is more
consistent with the population distribution characteristics and promote the subsequent
solution to be more uniform. The generation of the weight vector is shown in Formula
(18). When ∏m

j=1

(
f sp
j − z∗j

)
= 0 = 0, the weight vector generation method proposed in

this paper discards a parameter ε in the MOEA/D-AWA algorithm and adds an item We
i ,

which is the previously removed weight vector stored in the external archive.

λsp =

1
2

 1
f sp
1 −z∗1

∑m
k=1

1
f sp
1 −z∗k

+ We
1

, . . . ,
1
2

 1
f sp
m −z∗m

∑m
k=1

1
f sp
1 −z∗k

+ We
nus


m

∏
j=1

(
f sp
j − z∗j

)
= 0

(18)

The weight vector update method based on the external archive is employed to adjust the
population, ensuring that the generated weight vector complies with the distribution law of
the population and thereby ensuring uniformity in the resulting solutions. The weight vector
updating process during population evolution occurs as follows: First, the deletion operation
is performed by inputting the population and the required number of adjustments. Next, the
sparsity of individual population is calculated and the corresponding individuals are deleted
in the appropriate area while simultaneously adding the deleted individual’s corresponding
weight vector to the EW for use as reference information for future weight vector generation.
Second, the addition operation is performed by inputting the population to be adjusted, the
required adjustment quantity, the optimal solution, and the weight external archive EW. Next,
the area to be added is identified based on the population’s sparsity, new individuals are added

Processes 2023, 11, 1053 8 of 18

to the area, and a different weight generation scheme is used depending on the characteristics
of the generated individuals when adding the corresponding weight vector.

4. Experiments and Results
4.1. Algorithm Performance Verification Experimental Setup

This section uses the PlatEMO framework for experiments. PlatEMO is an open-source
and free MATLAB-based platform for evolutionary multi-objective optimization that can
be run in any operating system that supports MATLAB.

To demonstrate the performance of the proposed algorithm, three sets of comparison
experiments are set up in this section.

In the first set, the MOEA/D, NSGA-II, NSGA-III, and MOEAPSL algorithms are
selected as the comparison algorithms and compared with the M-E-AWA algorithm on the
DTLZ1 to DTLZ6 datasets.

The second set chooses the MOEA/D-AWA algorithm as the comparison algorithm
and conducts experiments on the complex Pareto datasets IMOP1 and IMOP3 to test the
performance of the M-E-AWA algorithm on the complex datasets.

The third set chose the MOEA/D-AWA algorithm as the comparison algorithm and
designed an experiment to test the efficiency of population adjustment by comparing the
number of adjustments of the M-E-AWA algorithm with the MOEA/D-AWA algorithm in
order at 10,000, 15,000, and 20,000 evolutionary generations, respectively.

The evolutionary parameters of the algorithms in the comparison experiments were
set the same except for the change in the evolutionary algebra of the algorithm used to
perform the population sparse differences: the population size N was 300, the evolutionary
algebra T was 10,000, and the genetic operators were random selection, simulated binary
crossover, and polynomial variation, respectively. To show the rigor of the experiments,
each experiment was run 30 times, and the results obtained were averaged.

The experiment uses IGD (inverted generational distance) and HV as multi-objective
evaluation indexes.

4.2. Experimental Results and Analysis

In this section, comparative experiments and result analysis are performed. Tables 3–5
show the performance of M-E-AWA and the comparison algorithm on IGD evaluation
metrics for different numbers of targets, and Tables 6–8 show the performance of M-E-AWA
and the comparison algorithm on HV evaluation metrics for different numbers of targets.

Table 3. Comparison of IGD values between M-E-AWA and contrast algorithms on DTLZ1–
DTLZ6(The target number is 8).

Problem M M-E-AWA MOEAD NSGAII

DTLZ1 8 4.4291 × 10−1 (4.03 × 10−1) 8.2955 × 10−1 (6.17 × 10−1) 3.1165 × 101 (9.37 × 100)
DTLZ2 8 5.8866 × 10−1 (5.91 × 10−2) 4.1397 × 10−1 (4.10 × 10−2) 1.5629 × 100 (2.77 × 10−1)
DTLZ3 8 1.5775 × 101 (9.12 × 100) 2.1418 × 101 (9.86 × 100) 9.6284 × 102 (1.84 × 102)
DTLZ4 8 4.3454 × 10−1 (1.06 × 10−1) 8.6529 × 10−1 (9.90 × 10−2) 1.4744 × 100 (1.63 × 10−1)
DTLZ5 8 5.9679 × 10−2 (1.54 × 10−2) 2.7225 × 10−1 (8.30 × 10−5) 4.5730 × 10−1 (1.70 × 10−1)
DTLZ6 8 2.7903 × 10−1 (1.54 × 10−1) 4.1497 × 10−1 (7.48 × 10−1) 7.7771 × 100 (7.35 × 10−1)

Problem M NSGAIII MOEAPSL

DTLZ1 8 1.6624 × 100 (8.74 × 10−1) 2.2977 × 101 (4.52 × 100)
DTLZ2 8 4.2607 × 10−1 (3.88 × 10−2) 1.3682 × 100 (1.38 × 10−1)
DTLZ3 8 6.0302 × 101 (2.11 × 101) 1.9829 × 102 (1.40 × 101)
DTLZ4 8 4.7731 × 10−1 (8.26 × 10−2) 9.6292 × 10−1 (1.31 × 10−1)
DTLZ5 8 2.2922 × 10−1 (4.40 × 10−2) 8.6811 × 10−1 (1.69 × 10−1)
DTLZ6 8 4.7466 × 100 (9.73 × 10−1) 7.4268 × 10−1 (6.02 × 10−1)

Processes 2023, 11, 1053 9 of 18

Table 4. Comparison of IGD values between M-E-AWA and contrast algorithms on DTLZ1–
DTLZ6(The target number is 10).

Problem M M-E-AWA MOEAD NSGAII

DTLZ1 10 6.0764 × 10−1 (5.83 × 10−1) 7.1777 × 10−1 (3.78 × 10−1) 3.5617 × 101 (1.71 × 101)
DTLZ2 10 6.5076 × 10−1 (5.47 × 10−2) 5.1433 × 10−1 (5.83 × 10−2) 1.4143 × 100 (1.66 × 10−1)
DTLZ3 10 1.2979 × 101 (5.79 × 100) 2.1555 × 101 (9.69 × 100) 9.3831 × 102 (2.49 × 102)
DTLZ4 10 6.1660 × 10−1 (7.93 × 10−2) 8.9900 × 10−1 (6.11 × 10−2) 1.4922 × 100 (1.19 × 10−1)
DTLZ5 10 7.0864 × 10−2 (7.02 × 10−3) 2.7223 × 10−1 (7.79 × 10−5) 5.3538 × 10−1 (1.64 × 10−1)
DTLZ6 10 2.4692 × 10−1 (2.43 × 10−1) 3.2992 × 10−1 (2.35 × 10−1) 7.7899 × 100 (5.50 × 10−1)

Problem M NSGAIII MOEAPSL

DTLZ1 10 2.4867 × 100 (7.74 × 10−1) 2.1557 × 101 (1.11 × 101)
DTLZ2 10 4.9281 × 10−1 (3.92 × 10−2) 1.7235 × 100 (1.69 × 10−1)
DTLZ3 10 8.7370 × 101 (3.24 × 101) 2.1605 × 102 (1.11 × 101)
DTLZ4 10 5.5091 × 10−1 (5.86 × 10−2) 1.5496 × 100 (1.51 × 10−1)
DTLZ5 10 2.3942 × 10−1 (3.83 × 10−2) 8.5802 × 10−1 (1.77 × 10−1)
DTLZ6 10 6.0815 × 100 (6.61 × 10−1) 1.0980 × 100 (8.12 × 10−1)

Table 5. Comparison of IGD values between M-E-AWA and contrast algorithms on DTLZ1–
DTLZ6(The target number is 15).

Problem M M-E-AWA MOEAD NSGAII

DTLZ1 15 4.0954 × 10−1 (2.46 × 10−1) 1.1793 × 100 (7.28 × 10−1) 4.4001 × 101 (1.91 × 101)
DTLZ2 15 9.9356 × 10−1 (3.96 × 10−2) 9.4064 × 10−1 (4.50 ×10−2) 1.3856 × 100 (1.14 × 10−1)
DTLZ3 15 1.1870 × 101 (6.93 × 100) 2.6347 × 101 (1.43 × 101) 8.0812 × 102 (1.83 × 102)
DTLZ4 15 9.9511 × 10−1 (6.54 × 10−2) 9.9052 × 10−1 (2.96 × 10−2) 1.5103 × 100 (9.09 × 10−2)
DTLZ5 15 2.0677 × 10−1 (1.94 × 10−2) 2.5736 × 10−1 (1.68 × 10−1) 7.3628 × 10−1 (3.16 × 10−1)
DTLZ6 15 2.2747 × 10−1 (4.28 × 10−2) 4.9940 × 10−1 (3.57 × 10−1) 8.1212 × 100 (6.06 × 10−1)

Problem M NSGAIII MOEAPSL

DTLZ1 15 1.0025 × 100 (6.69 × 10−1) 5.6511 × 100 (1.07 × 101)
DTLZ2 15 7.5887 × 10−1 (2.19 × 10−2) 1.9864 × 100 (2.14 × 10−1)
DTLZ3 15 2.9381 × 101 (1.22 × 101) 2.3105 × 102 (1.75 × 101)
DTLZ4 15 7.7430 × 10−1 (1.32 × 10−2) 1.9075 × 100 (1.59 × 10−1)
DTLZ5 15 3.0013 × 10−1 (5.73 × 10−2) 1.0706 × 100 (2.64 × 10−1)
DTLZ6 15 3.2375 × 100 (7.60 × 10−1) 2.0772 × 100 (1.36 × 100)

Table 6. Comparison of HV values between M-E-AWA and contrast algorithms on DTLZ1–
DTLZ6(The target number is 8).

Problem M M-E-AWA MOEAD NSGAII

DTLZ1 8 3.5458 × 10−1 (3.62 × 10−1) 1.2144 × 10−1 (1.99 × 10−1) 0.0000 × 100 (0.00 × 100)
DTLZ2 8 7.2299 × 10−1 (5.04 × 10−2) 8.1531 × 10−1 (6.83 × 10−2) 1.5631 × 10−3 (4.00 × 10−3)
DTLZ3 8 0.0000 × 100 (0.00 × 100) 0.0000 × 100 (0.00 × 100) 0.0000 × 100 (0.00 × 100)
DTLZ4 8 8.8075 × 10−1 (9.12 × 10−2) 4.1038 × 10−1 (1.26 × 10−1) 8.8923 × 10−5 (3.19 × 10−4)
DTLZ5 8 1.0017 × 10−1 (9.66 × 10−3) 9.0912 × 10−2 (1.75 × 10−4) 8.4771 × 10−3 (1.78 × 10−2)
DTLZ6 8 8.7927 × 10−2 (1.66 × 10−2) 4.7607 × 10−2 (4.32 × 10−2) 0.0000 × 100 (0.00 × 100)

Problem M NSGAIII MOEAPSL

DTLZ1 8 5.6497 × 10−3 (3.07 × 10−2) 0.0000 × 100 (0.00 × 100)
DTLZ2 8 8.3894 × 10−1 (3.19 × 10−2) 4.2415 × 10−4 (1.54 × 10−3)
DTLZ3 8 0.0000 × 100 (0.00 × 100) 0.0000 × 100 (0.00 × 100)
DTLZ4 8 8.1086 × 10−1 (8.12 × 10−2) 3.6243 × 10−2 (7.58 × 10−2)
DTLZ5 8 3.8384 × 10−2 (2.14 × 10−2) 0.0000 × 100 (0.00 × 100)
DTLZ6 8 0.0000 × 100 (0.00 × 100) 6.6868 × 10−2 (4.10 × 10−2)

Processes 2023, 11, 1053 10 of 18

Table 7. Comparison of HV values between M-E-AWA and contrast algorithms on DTLZ1–
DTLZ6(The target number is 10).

Problem M M-E-AWA MOEAD NSGAII

DTLZ1 10 3.1212 × 10−1 (3.58 × 10−1) 8.1261 × 10−2 (1.38 × 10−1) 0.0000 × 100 (0.00 × 100)
DTLZ2 10 7.9919 × 10−1 (4.16 × 10−2) 7.8331 × 10−1 (8.26 × 10−2) 2.7457 × 10−3 (6.85 × 10−3)
DTLZ3 10 0.0000 × 100 (0.00 × 100) 0.0000 × 100 (0.00 × 100) 0.0000 × 100 (0.00 × 100)
DTLZ4 10 8.8557 × 10−1 (5.14 × 10−2) 4.5787 × 10−1 (9.18 × 10−2) 4.4690 × 10−4 (2.07 × 10−3)
DTLZ5 10 9.0859 × 10−2 (2.25 × 10−4) 9.9513 × 10−2 (1.91 × 10−3) 2.3753 × 10−3 (8.64 × 10−3)
DTLZ6 10 7.5849 × 10−2 (3.45 × 10−2) 4.5833 × 10−2 (4.12 × 10−2) 0.0000 × 100 (0.00 × 100)

Problem M NSGAIII MOEAPSL

DTLZ1 10 0.0000 × 100 (0.00 × 100) 9.2380 × 10−3 (5.05 × 10−2)
DTLZ2 10 7.9111 × 10−1 (4.99 × 10−2) 1.2855 × 10−5 (5.07 × 10−5)
DTLZ3 10 0.0000 × 100 (0.00 × 100) 0.0000 × 100 (0.00 × 100)
DTLZ4 10 7.4365 × 10−1 (1.18 × 10−1) 3.0533 × 10−5 (1.35 × 10−4)
DTLZ5 10 9.2770 × 10−3 (1.45 × 10−2) 0.0000 × 100 (0.00 × 100)
DTLZ6 10 0.0000 × 100 (0.00 × 100) 5.1471 × 10−2 (4.58 × 10−2)

Table 8. Comparison of HV values between M-E-AWA and contrast algorithms on DTLZ1–
DTLZ6(The target number is 15).

Problem M M-E-AWA MOEAD NSGAII

DTLZ1 15 3.2311 × 10−1 (2.50 × 10−1) 5.6578 × 10−2 (1.48 × 10−1) 0.0000 × 100 (0.00 × 100)
DTLZ2 15 2.4345 × 10−1 (4.20 × 10−2) 2.5775 × 10−1 (5.54 × 10−2) 7.2152 × 10−3 (9.69 × 10−3)
DTLZ3 15 7.3166 × 10−6 (4.01 × 10−5) 0.0000 × 100 (0.00 × 100) 0.0000 × 100 (0.00 × 100)
DTLZ4 15 4.4725 × 10−1 (7.58 × 10−2) 3.4450 × 10−1 (3.56 × 10−2) 2.5591 × 10−3 (1.18 × 10−2)
DTLZ5 15 9.1957 × 10−2 (2.00 × 10−4) 8.6435 × 10−2 (2.18 × 10−2) 4.7512 × 10−4 (2.29 × 10−3)
DTLZ6 15 9.1972 × 10−2 (2.53 × 10−4) 4.7385 × 10−2 (4.37 × 10−2) 0.0000 × 100 (0.00 × 100)

Problem M NSGAIII MOEAPSL

DTLZ1 15 1.2245 × 10−1 (2.65 × 10−1) 5.6172 × 10−1 (1.50 × 10−1)
DTLZ2 15 6.5685 × 10−1 (3.69 × 10−2) 0.0000 × 100 (0.00 × 100)
DTLZ3 15 0.0000 × 100 (0.00 × 100) 0.0000 × 100 (0.00 × 100)
DTLZ4 15 7.8394 × 10−1 (2.33 × 10−2) 0.0000 × 100 (0.00 × 100)
DTLZ5 15 7.8891 × 10−2 (1.47 × 10−2) 0.0000 × 100 (0.00 × 100)
DTLZ6 15 0.0000 × 100 (0.00 × 100) 2.4254 × 10−2 (4.09 × 10−2)

4.2.1. Comparative Analysis of Multi-Algorithm Conventional Data Sets

Shown in this section are data comparisons of the M-E-AWA algorithm with the
classical MOEA/D, MOEA/D-AWA, and NSGA-III algorithms. As shown in Tables 3–7,
the algorithm proposed in this paper has the smallest IGD and the largest HV value on
the data sets DTLZ2, DTLZ3, DTLZ5, and DTLZ6 compared to the other algorithms, so
the uniformity and convergence of the solutions obtained by the M-E-AWA algorithm on
these data sets are better than the comparison algorithms. Since DTLZ1 and DTLZ3 have
the property of testing the convergence performance of the algorithms, it indicates that the
solutions of M-E-AWA are closer to the real Pareto frontier than the solutions of MOEA/D,
MOEA/D-AWA, and NSGA-III algorithms. The performance of this algorithm is slightly
worse on two data sets, DTLZ2 and DTLZ4. The DTLZ2 and DTLZ4 test functions are
designed to test the diversity of the algorithms, so the distributivity of the M-E-AWA
algorithm needs further improvement.

4.2.2. Comparative Analysis of Algorithms on Complex Pareto Frontier Dataset

This section compares M-E-AWA to MOEA/D-AWA using complex Pareto on the
datasets IMOP1 and IMOP2. Figure 1a displays the results of the M-E-AWA algorithm
against MOEA/D-AWA on the IMOP1 dataset, which is a complex dataset with spikes.

Processes 2023, 11, 1053 11 of 18

The solution distribution of the M-E-AWA algorithm is shown in red, while the distribution
of the solutions of the MOEA/D-AWA algorithm is shown in grey. It can be seen that the
improved algorithm is more efficient, with a slightly more uniform solution distribution
compared to the MOEA/D-AWA algorithm. Figure 1b shows the comparison of the CPF
results between the M-E-AWA algorithm and the MOEA/D-AWA on the IMOP2 dataset.
The solution distribution of the improved algorithm is displayed in blue, while the solution
distribution of the MOEA/D-AWA algorithm is shown in grey. It can be observed that
the present algorithm fits the PF better and has a more uniform solution distribution than
the MOEA/D-AWA algorithm within the same number of iterations. Additionally, this
paper observes CPFs of both algorithms when lengthening the number of iterations and
experimentally demonstrates that MOEA/D-AWA can achieve similar results after about
30,000 iterations. These further highlights that the improved algorithm proposed in this
paper reduces the time complexity of the original algorithm and speeds up the evolution.

Processes 2023, 11, x FOR PEER REVIEW 12 of 19

this paper reduces the time complexity of the original algorithm and speeds up the evolu-

tion.

(a) (b)

Figure 1. Comparison of MOEA/D-AWA and M-E-AWA on complex datasets. ((a) Comparison of

MOEA/D-AWA and M-E-AWA on IOMP1. (b) Comparison of MOEA/D-AWA and M-E-AWA on

IMOP2).

4.2.3. Comparison of the Number of Adjustments under Different Iterations

The experiments in this section mainly serve to verify the superiority of the im-

proved algorithm M-E-AWA over the original algorithm in terms of the number of itera-

tions required to change the weights adaptively for increasing numbers of iterations. As

depicted in Figures 2–4, at the maximum number of evolutionary generations of 10,000,

15,000, and 20,000, the MOEA/D-AWA algorithm increases proportionally to the maxi-

mum number of iterations. However, this algorithm merely adjusts based on the popu-

lation characteristics of the dataset without significant interference from changes in the

number of iterations. This highlights that the weight adjustment efficiency of this algo-

rithm is higher than that of the original algorithm.

Figure 2. Comparison of weight adaptive adjustment times of M-E-AWA and MOEA/D-AWA al-

gorithms when the maximum number of iterations is 10,000.

0

5

10

15

20

25

30

DTLZ1 DTLZ2 DTLZ3 DTLZ4 DTLZ5 DTLZ6

N
u

m
b

er
 o

f
ad

ju
st

m
en

ts

Comparison of the number of adaptive adjustments of weights

for different algorithms at 10,000 iterations

MOEA/D-AWA MOEA/D-E-AWA

Figure 1. Comparison of MOEA/D-AWA and M-E-AWA on complex datasets. ((a) Comparison of
MOEA/D-AWA and M-E-AWA on IOMP1. (b) Comparison of MOEA/D-AWA and M-E-AWA on
IMOP2).

4.2.3. Comparison of the Number of Adjustments under Different Iterations

The experiments in this section mainly serve to verify the superiority of the improved
algorithm M-E-AWA over the original algorithm in terms of the number of iterations
required to change the weights adaptively for increasing numbers of iterations. As depicted
in Figures 2–4, at the maximum number of evolutionary generations of 10,000, 15,000, and
20,000, the MOEA/D-AWA algorithm increases proportionally to the maximum number of
iterations. However, this algorithm merely adjusts based on the population characteristics
of the dataset without significant interference from changes in the number of iterations.
This highlights that the weight adjustment efficiency of this algorithm is higher than that of
the original algorithm.

4.3. Experimental Setup for Algorithm Validation

The convergence and distribution of the solution set by the M-E-AWA algorithm on
the IMOP1 and IMOP2 data sets, having complex Pareto fronts, were analyzed to verify its
effectiveness. Additionally, a simulation experiment was conducted in a fog computing
environment using 5, 10, 15, and 20 fog nodes to solve the multi-objective optimization of
the task scheduling model. Table 9 presents the clock rate and available memory size [27,28]
of each CPU in the 20 simulated fog nodes that were utilized to perform tasks during the
experiment. Table 10 illustrates the main parameter settings of the M-E-AWA algorithm,
which includes population size (PS), CPU time (CT), neighbor size (T), crossover probability
(α), and mutation probability (β).

Processes 2023, 11, 1053 12 of 18

Processes 2023, 11, x FOR PEER REVIEW 12 of 19

this paper reduces the time complexity of the original algorithm and speeds up the evolu-

tion.

(a) (b)

Figure 1. Comparison of MOEA/D-AWA and M-E-AWA on complex datasets. ((a) Comparison of

MOEA/D-AWA and M-E-AWA on IOMP1. (b) Comparison of MOEA/D-AWA and M-E-AWA on

IMOP2).

4.2.3. Comparison of the Number of Adjustments under Different Iterations

The experiments in this section mainly serve to verify the superiority of the im-

proved algorithm M-E-AWA over the original algorithm in terms of the number of itera-

tions required to change the weights adaptively for increasing numbers of iterations. As

depicted in Figures 2–4, at the maximum number of evolutionary generations of 10,000,

15,000, and 20,000, the MOEA/D-AWA algorithm increases proportionally to the maxi-

mum number of iterations. However, this algorithm merely adjusts based on the popu-

lation characteristics of the dataset without significant interference from changes in the

number of iterations. This highlights that the weight adjustment efficiency of this algo-

rithm is higher than that of the original algorithm.

Figure 2. Comparison of weight adaptive adjustment times of M-E-AWA and MOEA/D-AWA al-

gorithms when the maximum number of iterations is 10,000.

0

5

10

15

20

25

30

DTLZ1 DTLZ2 DTLZ3 DTLZ4 DTLZ5 DTLZ6

N
u

m
b

er
 o

f
ad

ju
st

m
en

ts

Comparison of the number of adaptive adjustments of weights

for different algorithms at 10,000 iterations

MOEA/D-AWA MOEA/D-E-AWA

Figure 2. Comparison of weight adaptive adjustment times of M-E-AWA and MOEA/D-AWA
algorithms when the maximum number of iterations is 10,000.

Processes 2023, 11, x FOR PEER REVIEW 13 of 19

Figure 3. Comparison of weight adaptive adjustment times of M-E-AWA and MOEA/D-AWA al-

gorithms when the maximum number of iterations is 15,000.

Figure 4. Comparison of weight adaptive adjustment times of M-E-AWA and MOEA/D-AWA al-

gorithms when the maximum number of iterations is 20,000.

4.3. Experimental Setup for Algorithm Validation

The convergence and distribution of the solution set by the M-E-AWA algorithm on

the IMOP1 and IMOP2 data sets, having complex Pareto fronts, were analyzed to verify

its effectiveness. Additionally, a simulation experiment was conducted in a fog compu-

ting environment using 5, 10, 15, and 20 fog nodes to solve the multi-objective optimiza-

tion of the task scheduling model. Table 9 presents the clock rate and available memory

size [27,28] of each CPU in the 20 simulated fog nodes that were utilized to perform tasks

during the experiment. Table 10 illustrates the main parameter settings of the M-E-AWA

algorithm, which includes population size (PS), CPU time (CT), neighbor size (T), cross-

over probability (α), and mutation probability (β).

0

5

10

15

20

25

30

35

40

DTLZ1 DTLZ2 DTLZ3 DTLZ4 DTLZ5 DTLZ6

N
u

m
b

er
 o

f
ad

ju
st

m
en

ts

Comparison of the number of adaptive adjustments of weights

for different algorithms at 15,000 iterations

MOEA/D-AWA MOEA/D-E-AWA

0

5

10

15

20

25

30

35

40

45

50

DTLZ1 DTLZ2 DTLZ3 DTLZ4 DTLZ5 DTLZ6

N
u

m
b

er
 o

f
ad

ju
st

m
en

ts

Comparison of the number of adaptive adjustments of weights

for different algorithms at 20,000 iterations

MOEA/D-AWA MOEA/D-E-AWA

Figure 3. Comparison of weight adaptive adjustment times of M-E-AWA and MOEA/D-AWA
algorithms when the maximum number of iterations is 15,000.

Table 9. The j-th column represents the data information when the number of fog nodes is j.

FNj 1 2 3 4 5 6 7 8 9 10

CPU clock rate 1.25 1.00 0.83 1.00 0.83 1.25 0.90 0.77 1.11 1.00
Available memory size 1.0 0.9 1.4 1.5 1.4 1.0 1.2 0.9 1.0 1.2

FNj 11 12 13 14 15 16 17 18 19 20

CPU clock rate 0.77 1.11 1.00 0.90 1.25 0.83 0.83 1.00 1.25 1.00
Available memory size 1.2 1.1 1.0 0.8 1.2 1.4 1.2 1.5 1.0 0.8

Processes 2023, 11, 1053 13 of 18

Processes 2023, 11, x FOR PEER REVIEW 13 of 19

Figure 3. Comparison of weight adaptive adjustment times of M-E-AWA and MOEA/D-AWA al-

gorithms when the maximum number of iterations is 15,000.

Figure 4. Comparison of weight adaptive adjustment times of M-E-AWA and MOEA/D-AWA al-

gorithms when the maximum number of iterations is 20,000.

4.3. Experimental Setup for Algorithm Validation

The convergence and distribution of the solution set by the M-E-AWA algorithm on

the IMOP1 and IMOP2 data sets, having complex Pareto fronts, were analyzed to verify

its effectiveness. Additionally, a simulation experiment was conducted in a fog compu-

ting environment using 5, 10, 15, and 20 fog nodes to solve the multi-objective optimiza-

tion of the task scheduling model. Table 9 presents the clock rate and available memory

size [27,28] of each CPU in the 20 simulated fog nodes that were utilized to perform tasks

during the experiment. Table 10 illustrates the main parameter settings of the M-E-AWA

algorithm, which includes population size (PS), CPU time (CT), neighbor size (T), cross-

over probability (α), and mutation probability (β).

0

5

10

15

20

25

30

35

40

DTLZ1 DTLZ2 DTLZ3 DTLZ4 DTLZ5 DTLZ6

N
u

m
b

er
 o

f
ad

ju
st

m
en

ts

Comparison of the number of adaptive adjustments of weights

for different algorithms at 15,000 iterations

MOEA/D-AWA MOEA/D-E-AWA

0

5

10

15

20

25

30

35

40

45

50

DTLZ1 DTLZ2 DTLZ3 DTLZ4 DTLZ5 DTLZ6

N
u

m
b

er
 o

f
ad

ju
st

m
en

ts

Comparison of the number of adaptive adjustments of weights

for different algorithms at 20,000 iterations

MOEA/D-AWA MOEA/D-E-AWA

Figure 4. Comparison of weight adaptive adjustment times of M-E-AWA and MOEA/D-AWA
algorithms when the maximum number of iterations is 20,000.

Table 10. Parameters Table.

Parameter
Parameter Type

1 2 3

PS 50 80 100
CT 0.1 0.2 0.25
T 2 5 10
α 0.8 0.85 0.9
β 0.05 0.1 0.2

The experiment uses latency and execution time, SLA violation rate and service cost
as evaluation metrics.

The experiments use latency and execution time, and SLA violation rate as evaluation
metrics. A brief description of these metrics follows:

1. Execution time: The completion time of the task, TrealF, is the most intuitive reflection
of the speed of the algorithm execution.

2. Delay Time: Delay time is the difference between the completion time of a task and
the time it is expected to be completed. The longer the delay, the worse the execution.
The calculation is shown in Equation (19)

Tdelay = TrealF − TexpF (19)

3. SLA violation rate: The task in the formula represents the set of tasks, taski is to
represent the ith task; TASK represents all tasks submitted by the user to generate
SLA violations. Indicates the proportion of tasks that have generated SLA violations
in the scheduling process for all tasks submitted by users, The calculation is shown in
Equations (20) and (21).

DER =

|Task|
∑

i=1
tde f
i

|Task| (20)

taskde f
i =

{
1 tsta

i == ab or t f t
i > tdl

i
0 otherwise

(21)

Processes 2023, 11, 1053 14 of 18

4. Service cost: the resources consumed by the algorithm during its operation, which
mainly contain the resources consumed by transmission, delay, processing, and other
processes as well as the energy consumption due to SLO violation; the calculation
formula is shown in (22).

COST = Cexe + Ctrans + V (22)

4.4. Experimental Results and Analysis

In the fog computing multi-objective task scheduling model constructed in Section 2,
the model uses three objectives: transmission time, processing time, and resource cost, to es-
tablish a multi-objective problem. In this section, the M-E-AWA algorithm and comparison
algorithm are applied to the scheduling model for simulation experiments. The comparison
algorithms include the classic round-robin scheduling algorithm (CRRSA) [29] and the
simple genetic algorithm (SGA) [30,31]. The experiment is divided into two parts: the first
part is to compare the delay time and execution time; the second part is the experiment
comparing the violation rate and service cost.

4.4.1. Time Delay and Total Execution Time

By setting different numbers of fog computing nodes, the execution time and delay
time of each algorithm are compared with those of other algorithms. Figures 5 and 6
show the execution and delay times (time in seconds) obtained using different scheduling
algorithms. As shown in Figure 5, the advantage of the M-E-AWA method increases as the
number of fog computing nodes increases, indicating that the increase in computing nodes
can enhance the performance of resource allocation in the face of the same number of tasks,
and therefore the algorithm becomes more and more efficient. As shown in Figure 6, when
the number of computing nodes is small, the M-E-AWA algorithm can better represent
the advantage with the same available resources because its own good distribution can
better handle the same number of tasks and use the evaluation function to evaluate the
performance of the solutions in each solution set, while with the increase in the number
of computing nodes, since the number of tasks always remains at a fixed amount, this
algorithm’s advantage is decreasing.

Processes 2023, 11, x FOR PEER REVIEW 15 of 19

4.4. Experimental Results and Analysis

In the fog computing multi-objective task scheduling model constructed in Section 2,

the model uses three objectives: transmission time, processing time, and resource cost, to

establish a multi-objective problem. In this section, the M-E-AWA algorithm and com-

parison algorithm are applied to the scheduling model for simulation experiments. The

comparison algorithms include the classic round-robin scheduling algorithm (CRRSA)

[29] and the simple genetic algorithm (SGA) [30,31]. The experiment is divided into two

parts: the first part is to compare the delay time and execution time; the second part is the

experiment comparing the violation rate and service cost.

4.4.1. Time Delay and Total Execution Time

By setting different numbers of fog computing nodes, the execution time and delay

time of each algorithm are compared with those of other algorithms. Figures 5 and 6

show the execution and delay times (time in seconds) obtained using different schedul-

ing algorithms. As shown in Figure 5, the advantage of the M-E-AWA method increases

as the number of fog computing nodes increases, indicating that the increase in compu-

ting nodes can enhance the performance of resource allocation in the face of the same

number of tasks, and therefore the algorithm becomes more and more efficient. As

shown in Figure 6, when the number of computing nodes is small, the M-E-AWA algo-

rithm can better represent the advantage with the same available resources because its

own good distribution can better handle the same number of tasks and use the evaluation

function to evaluate the performance of the solutions in each solution set, while with the

increase in the number of computing nodes, since the number of tasks always remains at

a fixed amount, this algorithm’s advantage is decreasing.

Figure 5. Comparison of total execution time.

0

10

20

30

40

50

60

5 10 15 20

E
x
ec

u
ti

o
n

ti

m
e

(s
)

Number of fog nodes

Comparison of execution time of different scheduling

algorithms with different number of fog nodes

SGA CRRSA MOEA/D-E-AWA

Figure 5. Comparison of total execution time.

Processes 2023, 11, 1053 15 of 18Processes 2023, 11, x FOR PEER REVIEW 16 of 19

Figure 6. Comparison of delay time.

4.4.2. Violation Rate and Service Cost

As shown in Figure 7, the overall violation rate of M-E-AWA is lower than that of

CRRSA and SGA, mainly because the optimization of multiple objectives is considered in

the M-E-AWA algorithm, which has a better performance in obtaining the optimal solu-

tion and effectively shortens the response time, thus reducing the violation rate of SLO.

In addition, as the number of fog computing nodes increases, the capacity of M-E-AWA

to handle the task is greatly enhanced, and the growth rate of violations is slowing down.

As shown in Figure 8, the overall service cost of M-E-AWA is also lower than other

comparative methods. The main reason is that the overall violation rate of the assignment

strategy in this paper is lower, which leads to a decrease in the service cost, thus effec-

tively reducing the overall service cost.

Figure 7. Comparison of Violation Rate.

0

1

2

3

4

5

6

5 10 15 20

d
el

ay
 t

im
e

(s
)

Numbers of fog nodes

Delay time comparison of different scheduling algorithms

with different number of fog nodes

SGA CRRSA MOEA/D-E-AWA

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

5 10 15 20

V
io

la
ti

o
n

ra

te

Number of fog nodes

Comparison of violation rates of different scheduling

algorithms with different numbers of fog nodes

SGA CSSRA MOEA/D-E-AWA

Figure 6. Comparison of delay time.

4.4.2. Violation Rate and Service Cost

As shown in Figure 7, the overall violation rate of M-E-AWA is lower than that of
CRRSA and SGA, mainly because the optimization of multiple objectives is considered in
the M-E-AWA algorithm, which has a better performance in obtaining the optimal solution
and effectively shortens the response time, thus reducing the violation rate of SLO. In
addition, as the number of fog computing nodes increases, the capacity of M-E-AWA to
handle the task is greatly enhanced, and the growth rate of violations is slowing down. As
shown in Figure 8, the overall service cost of M-E-AWA is also lower than other comparative
methods. The main reason is that the overall violation rate of the assignment strategy in
this paper is lower, which leads to a decrease in the service cost, thus effectively reducing
the overall service cost.

Processes 2023, 11, x FOR PEER REVIEW 16 of 19

Figure 6. Comparison of delay time.

4.4.2. Violation Rate and Service Cost

As shown in Figure 7, the overall violation rate of M-E-AWA is lower than that of

CRRSA and SGA, mainly because the optimization of multiple objectives is considered in

the M-E-AWA algorithm, which has a better performance in obtaining the optimal solu-

tion and effectively shortens the response time, thus reducing the violation rate of SLO.

In addition, as the number of fog computing nodes increases, the capacity of M-E-AWA

to handle the task is greatly enhanced, and the growth rate of violations is slowing down.

As shown in Figure 8, the overall service cost of M-E-AWA is also lower than other

comparative methods. The main reason is that the overall violation rate of the assignment

strategy in this paper is lower, which leads to a decrease in the service cost, thus effec-

tively reducing the overall service cost.

Figure 7. Comparison of Violation Rate.

0

1

2

3

4

5

6

5 10 15 20

d
el

ay
 t

im
e

(s
)

Numbers of fog nodes

Delay time comparison of different scheduling algorithms

with different number of fog nodes

SGA CRRSA MOEA/D-E-AWA

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

5 10 15 20

V
io

la
ti

o
n

ra

te

Number of fog nodes

Comparison of violation rates of different scheduling

algorithms with different numbers of fog nodes

SGA CSSRA MOEA/D-E-AWA

Figure 7. Comparison of Violation Rate.

Processes 2023, 11, 1053 16 of 18Processes 2023, 11, x FOR PEER REVIEW 17 of 19

Figure 8. Comparison of Service Cost.

To sum up, based on the established multi-objective task scheduling model, the

M-E-AWA algorithm performs well when the number of fog nodes increases. When

dealing with the two task scheduling goals of execution time and service cost, it can make

the two goals reach the optimal value at the same time.

5. Conclusions

In this paper, aiming at the problem that multi-objective conflict is difficult to bal-

ance and the Pareto front to the optimization model is complex and discontinuous in the

fog computing task scheduling field, a multi-objective optimization model of task

scheduling with dynamic priority adjustment is constructed, and a multi-objective evo-

lutionary algorithm M-E-AWA based on weight vector adaptive update is proposed to

solve the multi-objective task scheduling model. The experimental results show that the

M-E-AWA algorithm outperforms the metrics on several data sets and demonstrates the

tuning efficiency of the M-E-AWA algorithm compared to the original algorithm.

M-E-AWA algorithm can deal with the multi-objective optimization problem with a

complex Pareto front and has great advantages in the indicators of total computing time

and service cost of task scheduling. With the increase in the number of tasks, the

M-E-AWA method can achieve the purpose of dimensionality reduction based on its

decomposition idea, so that it can still maintain the advantages of high computing effi-

ciency when solving the high-dimensional tasks. The subsequent two issues are still an

issue:

1. The task scheduling model proposed in this paper, in order to simplify the problem

model when calculating the time cost, ignores that there are still some uncertainties

in task scheduling in fog computing and should consider turning the uncertainties

into intermediate parameters to establish an objective multi-objective task schedul-

ing model for fog computing, which can make the solution results more accurate

and more consistent with the actual environment.

2. The improved algorithm M-E-AWA proposed in this paper outperforms the original

algorithm in a complex Pareto environment, while the calculation of population

sparsity requires the calculation of individuals sequentially due to the inclusion of

population sparsity judgment in it. Although the experiment proves to be able to

significantly reduce the update frequency of the algorithm, the time complexity of

the algorithm increases when the number of individuals in the population increases

dramatically. Based on this, new judgment methods need to be considered later that

0
20
40
60
80

100
120
140
160
180
200

5 10 15 20

S
er

v
ic

e
 c

o
st

Number of fog nodes

Service cost comparison of different scheduling algorithms

with different number of fog nodes

SGA CSSRA MOEA/D-E-AWA

Figure 8. Comparison of Service Cost.

To sum up, based on the established multi-objective task scheduling model, the M-
E-AWA algorithm performs well when the number of fog nodes increases. When dealing
with the two task scheduling goals of execution time and service cost, it can make the two
goals reach the optimal value at the same time.

5. Conclusions

In this paper, aiming at the problem that multi-objective conflict is difficult to balance
and the Pareto front to the optimization model is complex and discontinuous in the fog com-
puting task scheduling field, a multi-objective optimization model of task scheduling with
dynamic priority adjustment is constructed, and a multi-objective evolutionary algorithm
M-E-AWA based on weight vector adaptive update is proposed to solve the multi-objective
task scheduling model. The experimental results show that the M-E-AWA algorithm out-
performs the metrics on several data sets and demonstrates the tuning efficiency of the
M-E-AWA algorithm compared to the original algorithm. M-E-AWA algorithm can deal
with the multi-objective optimization problem with a complex Pareto front and has great
advantages in the indicators of total computing time and service cost of task scheduling.
With the increase in the number of tasks, the M-E-AWA method can achieve the purpose of
dimensionality reduction based on its decomposition idea, so that it can still maintain the
advantages of high computing efficiency when solving the high-dimensional tasks. The
subsequent two issues are still an issue:

1. The task scheduling model proposed in this paper, in order to simplify the problem
model when calculating the time cost, ignores that there are still some uncertainties
in task scheduling in fog computing and should consider turning the uncertainties
into intermediate parameters to establish an objective multi-objective task scheduling
model for fog computing, which can make the solution results more accurate and
more consistent with the actual environment.

2. The improved algorithm M-E-AWA proposed in this paper outperforms the original
algorithm in a complex Pareto environment, while the calculation of population
sparsity requires the calculation of individuals sequentially due to the inclusion of
population sparsity judgment in it. Although the experiment proves to be able to
significantly reduce the update frequency of the algorithm, the time complexity of
the algorithm increases when the number of individuals in the population increases
dramatically. Based on this, new judgment methods need to be considered later

Processes 2023, 11, 1053 17 of 18

that can make the frequency of population updates and the time consumed decrease
simultaneously and reduce the time complexity.

Author Contributions: Conceptualization, W.D. and C.G.; Methodology, Z.D.; Software, Z.D. and
Q.M.; Validation, Z.D., Q.M. and X.S.; Formal analysis, Q.M. and B.Y.; Investigation, X.S.; Resources,
Q.M. and B.Y.; Data curation, B.Y. and X.S.; Writing—original draft, Z.D. and Q.M.; Writing—review
& editing, W.D.; Visualization, X.S. and B.Y.; Supervision, C.G.; Project administration, W.D.; Fund-
ing acquisition, W.D. and C.G. All authors have read and agreed to the published version of the
manuscript.

Funding: This work was sponsored by the Nature Science Foundation of Shanghai, China, 23ZR1414900;
Shanghai Sailing Program, China, 20YF1410900; Shanghai Science and Technology Innovation Ac-
tion Plan, China, 22ZR1416500; Shanghai Science and Technology Innovation Action Plan, China,
20dz1201400.

Data Availability Statement: The data presented in this study are available in the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Al-Sarawi, S.; Anbar, M.; Abdullah, R.; Al Hawari, A.B. Internet of things market analysis forecasts, 2020–2030. In Proceedings of

the 2020 Fourth World Conference on Smart Trends in Systems, Security and Sustainability (WorldS4), London, UK, 27–28 July
2020; IEEE: Piscataway, NJ, USA, 2020; pp. 449–453.

2. Amiri, A.; Zdun, U.; Van Hoorn, A. Modeling and empirical validation of reliability and performance trade-offs of dynamic
routing in service-and cloud-based architectures. IEEE Trans. Serv. Comput. 2021, 15, 3372–3386. [CrossRef]

3. Syed, S.A.; Rashid, M.; Hussain, S.; Azim, F.; Zahid, H.; Umer, A.; Waheed, A.; Zareei, M.; Vargas-Rosales, C. QoS Aware and
Fault Tolerance Based Software-Defined Vehicular Networks Using Cloud-Fog Computing. Sensors 2022, 2022, 401. [CrossRef]

4. Hoseiny, F.; Azizi, S.; Shojafar, M.; Tafazolli, R. Joint QoS-aware and Cost-efficient Task Scheduling for Fog-Cloud Resources in a
Volunteer Computing System. ACM Trans. Internet Technol. 2020, 21, 1–21. [CrossRef]

5. Pallewatta, S.; Kostakos, V.; Buyya, R. QoS-aware placement of microservices-based IoT applications in Fog computing environ-
ments. Future Gener. Comput. Syst. FGCS 2022, 131, 121–136. [CrossRef]

6. Lenuwat, P.; Boon-Itt, S. Information technology management and service performance management capabilities: An empirical
study of the service supply chain management process. J. Adv. Manag. Res. 2022, 19, 55–77. [CrossRef]

7. Alizadeh, M.R.; Khajehvand, V.; Rahmani, A.M.; Akbari, E. Task scheduling approaches in fog computing: A systematic review.
Int. J. Commun. Syst. 2020, 33, e4583. [CrossRef]

8. Liu, Y.; Lee, M.J.; Zheng, Y. Adaptive multi-resource allocation for cloudlet-based mobile cloud computing system. IEEE Trans.
Mob. Comput. 2015, 15, 2398–2410. [CrossRef]

9. Li, K. Heuristic Computation Offloading Algorithms for Mobile Users in Fog Computing. ACM Trans. Embed. Comput. Syst. 2021,
20, 3426852. [CrossRef]

10. Hoang, D.; Dang, T.D. FBRC: Optimization of task scheduling in fog-based region and cloud. In Proceedings of the 2017 IEEE
Trustcom/BigDataSE/ICESS, Sydney, NSW, Australia, 1–4 August 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1109–1114.

11. Lu, H.; Gu, C.; Luo, F.; Ding, W.; Liu, X. Optimization of lightweight task offloading strategy for mobile edge computing based on
deep reinforcement learning. Future Gener. Comput. Syst. 2020, 102, 847–861. [CrossRef]

12. Hosseinioun, P.; Kheirabadi, M.; Tabbakh, S.R.K.; Ghaemi, R. A new energy-aware tasks scheduling approach in fog computing
using hybrid meta-heuristic algorithm. J. Parallel Distrib. Comput. 2020, 143, 88–96. [CrossRef]

13. Bitam, S.; Zeadally, S.; Mellouk, A. Fog computing job scheduling optimization based on bees swarm. Enterp. Inf. Syst. 2018, 12,
373–397. [CrossRef]

14. Pei, S.; Wu, Y.; Qiu, M. Neural Network Compression and Acceleration by Federated Pruning. In Proceedings of the 20th
International Conference on Algorithm and Architecture for Parallel Processing (ICA3PP 2020), New York, NY, USA, 2–4 October
2020; pp. 1–10.

15. Lu, H.; Gu, C.; Luo, F.; Ding, W.; Zheng, S.; Shen, Y. Optimization of Task Offloading Strategy for Mobile Edge Computing Based
on Multi-Agent Deep Reinforcement Learning. IEEE Access 2020, 8, 202573–202584. [CrossRef]

16. Pei, S.; Wu, Y.; Guo, J.; Qiu, M. Neural Network Pruning by Recurrent Weights for Finance Market. ACM Trans. Internet Technol.
2022, 22, 1–23. [CrossRef]

17. Alabbadi, A.A.; Abulkhair, M.F. Multi-Objective Task Scheduling Optimization in Spatial Crowdsourcing. Algorithms 2021, 14, 77.
[CrossRef]

18. Nikseresht, M. MOGATS: A multi-objective genetic algorithm-based task scheduling for heterogeneous embedded systems. Int. J.
Embed. Syst. 2021, 14, 171–184. [CrossRef]

19. Ali, I.M.; Sallam, K.M.; Moustafa, N.; Chakraborty, R.; Ryan, M.; Choo, K.K.R. An Automated Task Scheduling Model using
Non-Dominated Sorting Genetic Algorithm II for Fog-Cloud Systems. IEEE Trans. Cloud Comput. 2020, 10, 2294–2308. [CrossRef]

http://doi.org/10.1109/TSC.2021.3098178
http://doi.org/10.3390/s22010401
http://doi.org/10.1145/3418501
http://doi.org/10.1016/j.future.2022.01.012
http://doi.org/10.1108/JAMR-01-2021-0039
http://doi.org/10.1002/dac.4583
http://doi.org/10.1109/TMC.2015.2504091
http://doi.org/10.1145/3426852
http://doi.org/10.1016/j.future.2019.07.019
http://doi.org/10.1016/j.jpdc.2020.04.008
http://doi.org/10.1080/17517575.2017.1304579
http://doi.org/10.1109/ACCESS.2020.3036416
http://doi.org/10.1145/3433547
http://doi.org/10.3390/a14030077
http://doi.org/10.1504/IJES.2021.113811
http://doi.org/10.1109/TCC.2020.3032386

Processes 2023, 11, 1053 18 of 18

20. Chatzikonstantinou, C.; Konstantinidis, D.; Dimitropoulos, K.; Daras, P. Recurrent neural network pruning using dynamical
systems and iterative fine-tuning. Neural Netw. 2021, 143, 475–488. [CrossRef] [PubMed]

21. Guo, X. Multi-objective task scheduling optimization in cloud computing based on fuzzy self-defense algorithm. AEJ Alex. Eng. J.
2021, 60, 5603–5609. [CrossRef]

22. Zhang, Q.; Li, H. MOEA/D: A Multi-objective Evolutionary Algorithm Based on Decomposition. IEEE Trans. Evol. Comput. 2007,
11, 712–731. [CrossRef]

23. Yadav, A.K.; Mandoria, H.L. Study of task scheduling algorithms in the cloud computing environment: A review. Int. J. Comput.
Sci. Inf. Technol. 2017, 8, 462–468.

24. Zhang, C.; Gao, L.; Li, X.; Shen, W.; Zhou, J.; Tan, K.C. Resetting Weight Vectors in MOEA/D for Multiobjective Optimization
Problems with Discontinuous Pareto Front. IEEE Trans. Cybern. 2021, 99, 1–14. [CrossRef] [PubMed]

25. Kukkonen, S.; Deb, K. A Fast and Effective Method for Pruning of Non-Dominated Solutions in Many-Objective Problems; Parallel
Problem Solving from Nature-PPSN IX; Springer: Berlin/Heidelberg, Germany, 2006; pp. 553–562.

26. Ma, X.; Yu, Y.; Li, X.; Qi, Y.; Zhu, Z. A survey of weight vector adjustment methods for decomposition-based multi-objective
evolution algorithms. IEEE Trans. Evol. Comput. 2020, 24, 634–649. [CrossRef]

27. Wang, Y.; Sun, Y.; Sun, Y. Task scheduling algorithm in cloud computing based on fairness load balance and minimum completion
time. In Proceedings of the 2015 4th National Conference on Electrical, Electronics and Computer Engineering, Xi’an, China,
12–13 December 2015; Atlantis Press: Amsterdam, The Netherlands, 2015; pp. 836–842.

28. Abualigah, L. A novel hybrid antlion optimization algorithm for multi-objective task scheduling problems in cloud computing
environments. Clust. Comput. 2021, 24, 205–223. [CrossRef]

29. Pradhan, P.; Behera, P.K.; Ray, B.N.B. Modified round robin algorithm for resource allocation in cloud computing. Procedia Comput.
Sci. 2016, 85, 878–890. [CrossRef]

30. Moggridge, P.; Helian, N.; Sun, Y.; Lilley, M.; Veneziano, V.; Eaves, M. Revising max-min for scheduling in a cloud computing
context. In Proceedings of the 2017 IEEE 26th International Conference on Enabling Technologies: Infrastructure for Collaborative
Enterprises (WETICE), Poznan, Poland, 21–23 June 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 125–130.

31. Agarwal, N.; Shrivastava, N.; Pradhan, M.K. Ananya Algorithm: A Simple and New Optimization Algorithm for Engineering
Optimization. In Proceedings of the 2021 4th Biennial International Conference on Nascent Technologies in Engineering (ICNTE),
Mumbai, India, 15–16 January 2021.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1016/j.neunet.2021.07.001
http://www.ncbi.nlm.nih.gov/pubmed/34280607
http://doi.org/10.1016/j.aej.2021.04.051
http://doi.org/10.1109/TEVC.2007.892759
http://doi.org/10.1109/TCYB.2021.3062949
http://www.ncbi.nlm.nih.gov/pubmed/33877994
http://doi.org/10.1109/TEVC.2020.2978158
http://doi.org/10.1007/s10586-020-03075-5
http://doi.org/10.1016/j.procs.2016.05.278

	Introduction
	Model
	Task Scheduling Model with Adaptive Priority Adjustment
	Multi-Objective Task Scheduling Model

	Algorithm
	Framework of M-E-AWA
	Judgment of Population Sparsity
	Adaptive Updating of Weight Vector

	Experiments and Results
	Algorithm Performance Verification Experimental Setup
	Experimental Results and Analysis
	Comparative Analysis of Multi-Algorithm Conventional Data Sets
	Comparative Analysis of Algorithms on Complex Pareto Frontier Dataset
	Comparison of the Number of Adjustments under Different Iterations

	Experimental Setup for Algorithm Validation
	Experimental Results and Analysis
	Time Delay and Total Execution Time
	Violation Rate and Service Cost

	Conclusions
	References

