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Abstract: The management of the supply chain for enterprise-wide operations generally consists of
strategic, tactical, and operational decision stages dependent on one another and affecting various
time scales. Their integration usually leads to multiscale models that are computationally intractable.
The design and operation of energy hubs faces similar challenges. Renewable energies are challenging
to model due to the high level of intermittency and uncertainty. The multiscale (i.e., planning and
scheduling) energy hub systems that incorporate renewable energy resources become more challeng-
ing to model due to an integration of the multiscale and high level of intermittency associated with
renewable energy. In this work, a mixed-integer programming (MILP) superstructure is proposed for
clustering shape-based time series data featuring multiple attributes using a multi-objective optimiza-
tion approach. Additionally, a data-driven statistical method is used to represent the intermittent
behavior of uncertain renewable energy data. According to these methods, the design and operation
of an energy hub with hydrogen storage was reformulated following a two-stage stochastic modeling
technique. The main outcomes of this study are formulating a stochastic energy hub optimization
model which comprehensively considers the design and operation planning, energy storage system,
and uncertainties of DRERs, and proposing an efficient size reduction approach for large-sized
multiple attributes demand data. The case study results show that normal clustering is closer to
the optimal case (full scale model) compared with sequence clustering. In addition, there is an im-
provement in the objective function value using the stochastic approach instead of the deterministic.
The present clustering algorithm features many unique characteristics that gives it advantages over
other clustering approach and the straightforward statistical approach used to represent intermittent
energy, and it can be easily incorporated into various distributed energy systems.

Keywords: clustering algorithm; multiscale; supply chain; computational complexity; energy hub

1. Introduction

Time is organized in terms of years, months, days, and hours. Each time term is
distinguished by scale and combined to form the multiscale phenomena that is part of our
daily life. This is an outcome of multiscale dynamics in the solar system [1]. Conventionally,
most modeling approaches focus on a mono-scale perspective. When the macroscale
behavior of a system is the focal point, the microscale is modeled applying constitutive
interactions. On the other hand, if the microscale is the subject matter, one assumes that
not a compelling thing occurs at a macroscale level. Accordingly, multiscale modeling
helps to manage the restrictions of both methods (macro- and microscale) by targeting the
efficiency of macroscale modeling while preserving the precision of microscale modeling
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altogether. However, the simultaneous use of several scales and preceptive levels leads to
more complex modeling approaches [1].

The integration of a supply chain’s decision level is extremely important for improving
investment returns. Planning and scheduling are generally performed separately even
though they are interdependent. The integration of planning (e.g., design) and scheduling
(e.g., operation) improves the decision-level management resulting in lower net costs. Yet,
large-scale problems are formed as a result of different time scales integration that are
typically computationally intractable. In order to address this problem, various modeling
and solution approaches have been proposed (e.g., Yilmaz et al. 2019 [2]). The majority
are problem-specific and are only valid for short-time timeframes. Accordingly, clustering
arises as an effective and appropriate approach to deal with this type of problem by
means of grouping similar inputs such as supply, demand, and price together. Input
parameters typically are made up of multiple attributes such as the concurrent electricity
and heat demand. This approach can significantly reduce the model size combined with
the improved computational performance while maintaining solution accuracy.

The task of clustering is to discover the structure in sets of unlabeled data by means
of grouping it into uniform groups. Particularly, the similarity of the within-group-object
(i.e., within one cluster) is minimized while the between-group-object dissimilarity is maxi-
mized (i.e., between different clusters). An effective clustering can be measured by a high
similarity/uniformity within group objects as well as a high dissimilarity/heterogeneity
amongst groups. Objects (i.e., events, measurements) are commonly characterized by
elements or vectors in a multidimensional space where every dimension identifies a specific
quantifiable attribute (variable) that describes the object. Thus, an arranged set of objects
could be represented conceptually as an m × n matrix. The symbols m and n denote the
rows (one per object) and columns (one per attribute), respectively.

Energy hub models can be applied to different spatial scales, (e.g., from a single
building to a large geographic region) as well as time scales. Particularly, energy hub
modeling could be applied to different time scales from long-term planning (e.g., designing
and sizing the energy conversion and storage units) to medium- or short-term planning
(scheduling and operation).

Many studies have addressed the optimal scheduling and planning of energy hub
systems. For example, [3] studied the daily scheduling of an energy hub including dif-
ferent generation and storage technologies. Ma et al. [4], proposed a deterministic MILP
model aiming to minimize the daily operating costs (including electricity/gas and carbon
emissions costs) of an energy hub. Lu et al. [5],) proposed a multi-objective optimization
framework for the optimal operation of energy hub components considering uncertain
households’ behaviors. Taqvi et al. [6] carried out a study to determine the rooftop re-
newable energy potential for the optimal designing of an EV charging infrastructure
using a multi-energy hub approach, but this study did not consider energy storage and
a multiscale approach for size reduction. A recent study [7] investigated the effect of the
demand response and the impact of carbon trading on a multi-objective optimization model
that considered the operation cost, energy utilization efficiency, and consumption rate of
renewable energy.

In addition, energy hub network operation has been explored in several studies; how-
ever, few studies have carried out the design and operation of urban energy systems based
on the energy hub concept. Koltsaklis et al. in 2014 [8] studied the optimal design and
operation of distributed energy systems (DESs), but the study did not consider renewable
energy technologies. Maroufmashat, Sattari, et al. [9], proposed a deterministic model
for the design and operation of DESs in urban areas including renewable energy sources.
Economic and environmental considerations were investigated, but renewable resource
uncertainties were not addressed. Mukherjee et al. [10], proposed a stochastic programming
approach for the planning and operation of a power-to-gas energy hub. The study focused
on assessing the benefits of power-to-gas energy storage while accounting for the uncer-
tainty of fuel cell vehicles, refueling hydrogen, and the electricity price. Kotzur et al. [11]
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employed time series aggregation (based on clustering algorithms) to the cluster demand,
wind speed, and solar irradiance. The study shows that the application of clustering
methods in energy hub optimization significantly reduces the model complexity. A mixed-
integer linear programming model for offshore energy hubs was developed by [12]. They
used different aggregation, clustering, and time sampling to address the multi-timescale
aspects without reducing the actual demand data, however, the uncertainty of offshore
wind was not considered. In 2023, Amry et al. [13], developed a strategy to carry out the
optimal sizing for an EV workplace charging station considering PV and flywheel energy
storage systems; nevertheless, the work did not consider the uncertainty associated with
solar energy.

The aforementioned studies did not consider uncertainty in the distributed renew-
able energy sources (DRESs) which could lead to inaccurate decisions. Zhang et al. [14],
developed a two-stage stochastic model for the optimal design and operation of combined
cooling, heat, and power (CCHP) units. The study considered the uncertainties of loads
and solar irradiation in different seasons, but it did not include energy storage systems
(ESS). f et al. [15] developed a stochastic model for the operation and scheduling of energy
hubs considering the DRES’s uncertainties. The stochastic scenarios were generated us-
ing a Monte Carlo simulation and were reduced using the k-means clustering algorithm.
However, only three scenarios per uncertain feature were considered in the optimization.

1.1. Research Gap and Contribution

The current literature covers several aspects of energy hub modeling such as the design,
operation, greenhouse gas (GHG) emissions minimization, DRESs, ESS, renewable energy
uncertainty, and demand size reduction. However, no studies have combined all features
into a single model formulation. Accordingly, there is a knowledge gap that demands
the development of a comprehensive stochastic optimization model that considers design
and operation planning, ESS, and the DRES’s uncertainties. In addition, there is a need
to apply an efficient reduction size to large-sized multi-attribute demand data used as an
input to stochastic energy hub modeling. In other words, the main novelty of this work
is to combine all the research aspects into one model and present a general and practical
framework to solve different types of multiscale energy systems with multiple attributes.
Table 1 summarizes the research aspect of previous energy hubs, the research gap, and the
current research contribution.

Table 1. Literature review summary on energy hub optimization problems, the research gap, and the
current research contribution.

Study Year
Research Aspects

Optimal
Design

Optimal
Operation

(GHG) Emission
Saving DRERs ESSs Uncertainty of

Renewable Energy
Demand size

Reduction

[3] 2016
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study focused on assessing the benefits of power-to-gas energy storage while accounting 
for the uncertainty of fuel cell vehicles, refueling hydrogen, and the electricity price. 
Kotzur et al. [11] employed time series aggregation (based on clustering algorithms) to 
the cluster demand, wind speed, and solar irradiance. The study shows that the applica-
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study focused on assessing the benefits of power-to-gas energy storage while accounting 
for the uncertainty of fuel cell vehicles, refueling hydrogen, and the electricity price. 
Kotzur et al. [11] employed time series aggregation (based on clustering algorithms) to 
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study focused on assessing the benefits of power-to-gas energy storage while accounting 
for the uncertainty of fuel cell vehicles, refueling hydrogen, and the electricity price. 
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study focused on assessing the benefits of power-to-gas energy storage while accounting 
for the uncertainty of fuel cell vehicles, refueling hydrogen, and the electricity price. 
Kotzur et al. [11] employed time series aggregation (based on clustering algorithms) to 
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study focused on assessing the benefits of power-to-gas energy storage while accounting 
for the uncertainty of fuel cell vehicles, refueling hydrogen, and the electricity price. 
Kotzur et al. [11] employed time series aggregation (based on clustering algorithms) to 
the cluster demand, wind speed, and solar irradiance. The study shows that the applica-
tion of clustering methods in energy hub optimization significantly reduces the model 
complexity. A mixed-integer linear programming model for offshore energy hubs was 
developed by [12]. They used different aggregation, clustering, and time sampling to ad-
dress the multi-timescale aspects without reducing the actual demand data, however, the 
uncertainty of offshore wind was not considered. In 2023, Amry et al. [13]., developed a 
strategy to carry out the optimal sizing for an EV workplace charging station considering 
PV and flywheel energy storage systems; nevertheless, the work did not consider the un-
certainty associated with solar energy. 
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ble energy sources (DRESs) which could lead to inaccurate decisions. Zhang et al. [14],de-
veloped a two-stage stochastic model for the optimal design and operation of combined 
cooling, heat, and power (CCHP) units. The study considered the uncertainties of loads 
and solar irradiation in different seasons, but it did not include energy storage systems 
(ESS). f et al. [15]developed a stochastic model for the operation and scheduling of energy 
hubs considering the DRES’s uncertainties. The stochastic scenarios were generated using 
a Monte Carlo simulation and were reduced using the k-means clustering algorithm. 
However, only three scenarios per uncertain feature were considered in the optimization. 

1.1. Research Gap and Contribution 
The current literature covers several aspects of energy hub modeling such as the de-

sign, operation, greenhouse gas (GHG) emissions minimization, DRESs, ESS, renewable 
energy uncertainty, and demand size reduction. However, no studies have combined all 
features into a single model formulation. Accordingly, there is a knowledge gap that de-
mands the development of a comprehensive stochastic optimization model that considers 
design and operation planning, ESS, and the DRES’s uncertainties. In addition, there is a 
need to apply an efficient reduction size to large-sized multi-attribute demand data used 
as an input to stochastic energy hub modeling. In other words, the main novelty of this 
work is to combine all the research aspects into one model and present a general and 
practical framework to solve different types of multiscale energy systems with multiple 
attributes. Table 1 summarizes the research aspect of previous energy hubs, the research 
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study focused on assessing the benefits of power-to-gas energy storage while accounting 
for the uncertainty of fuel cell vehicles, refueling hydrogen, and the electricity price. 
Kotzur et al. [11] employed time series aggregation (based on clustering algorithms) to 
the cluster demand, wind speed, and solar irradiance. The study shows that the applica-
tion of clustering methods in energy hub optimization significantly reduces the model 
complexity. A mixed-integer linear programming model for offshore energy hubs was 
developed by [12]. They used different aggregation, clustering, and time sampling to ad-
dress the multi-timescale aspects without reducing the actual demand data, however, the 
uncertainty of offshore wind was not considered. In 2023, Amry et al. [13]., developed a 
strategy to carry out the optimal sizing for an EV workplace charging station considering 
PV and flywheel energy storage systems; nevertheless, the work did not consider the un-
certainty associated with solar energy. 

The aforementioned studies did not consider uncertainty in the distributed renewa-
ble energy sources (DRESs) which could lead to inaccurate decisions. Zhang et al. [14],de-
veloped a two-stage stochastic model for the optimal design and operation of combined 
cooling, heat, and power (CCHP) units. The study considered the uncertainties of loads 
and solar irradiation in different seasons, but it did not include energy storage systems 
(ESS). f et al. [15]developed a stochastic model for the operation and scheduling of energy 
hubs considering the DRES’s uncertainties. The stochastic scenarios were generated using 
a Monte Carlo simulation and were reduced using the k-means clustering algorithm. 
However, only three scenarios per uncertain feature were considered in the optimization. 
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mands the development of a comprehensive stochastic optimization model that considers 
design and operation planning, ESS, and the DRES’s uncertainties. In addition, there is a 
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study focused on assessing the benefits of power-to-gas energy storage while accounting 
for the uncertainty of fuel cell vehicles, refueling hydrogen, and the electricity price. 
Kotzur et al. [11] employed time series aggregation (based on clustering algorithms) to 
the cluster demand, wind speed, and solar irradiance. The study shows that the applica-
tion of clustering methods in energy hub optimization significantly reduces the model 
complexity. A mixed-integer linear programming model for offshore energy hubs was 
developed by [12]. They used different aggregation, clustering, and time sampling to ad-
dress the multi-timescale aspects without reducing the actual demand data, however, the 
uncertainty of offshore wind was not considered. In 2023, Amry et al. [13]., developed a 
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PV and flywheel energy storage systems; nevertheless, the work did not consider the un-
certainty associated with solar energy. 
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ble energy sources (DRESs) which could lead to inaccurate decisions. Zhang et al. [14],de-
veloped a two-stage stochastic model for the optimal design and operation of combined 
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a Monte Carlo simulation and were reduced using the k-means clustering algorithm. 
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features into a single model formulation. Accordingly, there is a knowledge gap that de-
mands the development of a comprehensive stochastic optimization model that considers 
design and operation planning, ESS, and the DRES’s uncertainties. In addition, there is a 
need to apply an efficient reduction size to large-sized multi-attribute demand data used 
as an input to stochastic energy hub modeling. In other words, the main novelty of this 
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study focused on assessing the benefits of power-to-gas energy storage while accounting 
for the uncertainty of fuel cell vehicles, refueling hydrogen, and the electricity price. 
Kotzur et al. [11] employed time series aggregation (based on clustering algorithms) to 
the cluster demand, wind speed, and solar irradiance. The study shows that the applica-
tion of clustering methods in energy hub optimization significantly reduces the model 
complexity. A mixed-integer linear programming model for offshore energy hubs was 
developed by [12]. They used different aggregation, clustering, and time sampling to ad-
dress the multi-timescale aspects without reducing the actual demand data, however, the 
uncertainty of offshore wind was not considered. In 2023, Amry et al. [13]., developed a 
strategy to carry out the optimal sizing for an EV workplace charging station considering 
PV and flywheel energy storage systems; nevertheless, the work did not consider the un-
certainty associated with solar energy. 

The aforementioned studies did not consider uncertainty in the distributed renewa-
ble energy sources (DRESs) which could lead to inaccurate decisions. Zhang et al. [14],de-
veloped a two-stage stochastic model for the optimal design and operation of combined 
cooling, heat, and power (CCHP) units. The study considered the uncertainties of loads 
and solar irradiation in different seasons, but it did not include energy storage systems 
(ESS). f et al. [15]developed a stochastic model for the operation and scheduling of energy 
hubs considering the DRES’s uncertainties. The stochastic scenarios were generated using 
a Monte Carlo simulation and were reduced using the k-means clustering algorithm. 
However, only three scenarios per uncertain feature were considered in the optimization. 

1.1. Research Gap and Contribution 
The current literature covers several aspects of energy hub modeling such as the de-

sign, operation, greenhouse gas (GHG) emissions minimization, DRESs, ESS, renewable 
energy uncertainty, and demand size reduction. However, no studies have combined all 
features into a single model formulation. Accordingly, there is a knowledge gap that de-
mands the development of a comprehensive stochastic optimization model that considers 
design and operation planning, ESS, and the DRES’s uncertainties. In addition, there is a 
need to apply an efficient reduction size to large-sized multi-attribute demand data used 
as an input to stochastic energy hub modeling. In other words, the main novelty of this 
work is to combine all the research aspects into one model and present a general and 
practical framework to solve different types of multiscale energy systems with multiple 
attributes. Table 1 summarizes the research aspect of previous energy hubs, the research 
gap, and the current research contribution. 
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study focused on assessing the benefits of power-to-gas energy storage while accounting 
for the uncertainty of fuel cell vehicles, refueling hydrogen, and the electricity price. 
Kotzur et al. [11] employed time series aggregation (based on clustering algorithms) to 
the cluster demand, wind speed, and solar irradiance. The study shows that the applica-
tion of clustering methods in energy hub optimization significantly reduces the model 
complexity. A mixed-integer linear programming model for offshore energy hubs was 
developed by [12]. They used different aggregation, clustering, and time sampling to ad-
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and solar irradiation in different seasons, but it did not include energy storage systems 
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a Monte Carlo simulation and were reduced using the k-means clustering algorithm. 
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mands the development of a comprehensive stochastic optimization model that considers 
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study focused on assessing the benefits of power-to-gas energy storage while accounting 
for the uncertainty of fuel cell vehicles, refueling hydrogen, and the electricity price. 
Kotzur et al. [11] employed time series aggregation (based on clustering algorithms) to 
the cluster demand, wind speed, and solar irradiance. The study shows that the applica-
tion of clustering methods in energy hub optimization significantly reduces the model 
complexity. A mixed-integer linear programming model for offshore energy hubs was 
developed by [12]. They used different aggregation, clustering, and time sampling to ad-
dress the multi-timescale aspects without reducing the actual demand data, however, the 
uncertainty of offshore wind was not considered. In 2023, Amry et al. [13]., developed a 
strategy to carry out the optimal sizing for an EV workplace charging station considering 
PV and flywheel energy storage systems; nevertheless, the work did not consider the un-
certainty associated with solar energy. 

The aforementioned studies did not consider uncertainty in the distributed renewa-
ble energy sources (DRESs) which could lead to inaccurate decisions. Zhang et al. [14],de-
veloped a two-stage stochastic model for the optimal design and operation of combined 
cooling, heat, and power (CCHP) units. The study considered the uncertainties of loads 
and solar irradiation in different seasons, but it did not include energy storage systems 
(ESS). f et al. [15]developed a stochastic model for the operation and scheduling of energy 
hubs considering the DRES’s uncertainties. The stochastic scenarios were generated using 
a Monte Carlo simulation and were reduced using the k-means clustering algorithm. 
However, only three scenarios per uncertain feature were considered in the optimization. 

1.1. Research Gap and Contribution 
The current literature covers several aspects of energy hub modeling such as the de-

sign, operation, greenhouse gas (GHG) emissions minimization, DRESs, ESS, renewable 
energy uncertainty, and demand size reduction. However, no studies have combined all 
features into a single model formulation. Accordingly, there is a knowledge gap that de-
mands the development of a comprehensive stochastic optimization model that considers 
design and operation planning, ESS, and the DRES’s uncertainties. In addition, there is a 
need to apply an efficient reduction size to large-sized multi-attribute demand data used 
as an input to stochastic energy hub modeling. In other words, the main novelty of this 
work is to combine all the research aspects into one model and present a general and 
practical framework to solve different types of multiscale energy systems with multiple 
attributes. Table 1 summarizes the research aspect of previous energy hubs, the research 
gap, and the current research contribution. 
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study focused on assessing the benefits of power-to-gas energy storage while accounting 
for the uncertainty of fuel cell vehicles, refueling hydrogen, and the electricity price. 
Kotzur et al. [11] employed time series aggregation (based on clustering algorithms) to 
the cluster demand, wind speed, and solar irradiance. The study shows that the applica-
tion of clustering methods in energy hub optimization significantly reduces the model 
complexity. A mixed-integer linear programming model for offshore energy hubs was 
developed by [12]. They used different aggregation, clustering, and time sampling to ad-
dress the multi-timescale aspects without reducing the actual demand data, however, the 
uncertainty of offshore wind was not considered. In 2023, Amry et al. [13]., developed a 
strategy to carry out the optimal sizing for an EV workplace charging station considering 
PV and flywheel energy storage systems; nevertheless, the work did not consider the un-
certainty associated with solar energy. 

The aforementioned studies did not consider uncertainty in the distributed renewa-
ble energy sources (DRESs) which could lead to inaccurate decisions. Zhang et al. [14],de-
veloped a two-stage stochastic model for the optimal design and operation of combined 
cooling, heat, and power (CCHP) units. The study considered the uncertainties of loads 
and solar irradiation in different seasons, but it did not include energy storage systems 
(ESS). f et al. [15]developed a stochastic model for the operation and scheduling of energy 
hubs considering the DRES’s uncertainties. The stochastic scenarios were generated using 
a Monte Carlo simulation and were reduced using the k-means clustering algorithm. 
However, only three scenarios per uncertain feature were considered in the optimization. 
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sign, operation, greenhouse gas (GHG) emissions minimization, DRESs, ESS, renewable 
energy uncertainty, and demand size reduction. However, no studies have combined all 
features into a single model formulation. Accordingly, there is a knowledge gap that de-
mands the development of a comprehensive stochastic optimization model that considers 
design and operation planning, ESS, and the DRES’s uncertainties. In addition, there is a 
need to apply an efficient reduction size to large-sized multi-attribute demand data used 
as an input to stochastic energy hub modeling. In other words, the main novelty of this 
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study focused on assessing the benefits of power-to-gas energy storage while accounting 
for the uncertainty of fuel cell vehicles, refueling hydrogen, and the electricity price. 
Kotzur et al. [11] employed time series aggregation (based on clustering algorithms) to 
the cluster demand, wind speed, and solar irradiance. The study shows that the applica-
tion of clustering methods in energy hub optimization significantly reduces the model 
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developed by [12]. They used different aggregation, clustering, and time sampling to ad-
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certainty associated with solar energy. 
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and solar irradiation in different seasons, but it did not include energy storage systems 
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hubs considering the DRES’s uncertainties. The stochastic scenarios were generated using 
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study focused on assessing the benefits of power-to-gas energy storage while accounting 
for the uncertainty of fuel cell vehicles, refueling hydrogen, and the electricity price. 
Kotzur et al. [11] employed time series aggregation (based on clustering algorithms) to 
the cluster demand, wind speed, and solar irradiance. The study shows that the applica-
tion of clustering methods in energy hub optimization significantly reduces the model 
complexity. A mixed-integer linear programming model for offshore energy hubs was 
developed by [12]. They used different aggregation, clustering, and time sampling to ad-
dress the multi-timescale aspects without reducing the actual demand data, however, the 
uncertainty of offshore wind was not considered. In 2023, Amry et al. [13]., developed a 
strategy to carry out the optimal sizing for an EV workplace charging station considering 
PV and flywheel energy storage systems; nevertheless, the work did not consider the un-
certainty associated with solar energy. 

The aforementioned studies did not consider uncertainty in the distributed renewa-
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energy uncertainty, and demand size reduction. However, no studies have combined all 
features into a single model formulation. Accordingly, there is a knowledge gap that de-
mands the development of a comprehensive stochastic optimization model that considers 
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study focused on assessing the benefits of power-to-gas energy storage while accounting 
for the uncertainty of fuel cell vehicles, refueling hydrogen, and the electricity price. 
Kotzur et al. [11] employed time series aggregation (based on clustering algorithms) to 
the cluster demand, wind speed, and solar irradiance. The study shows that the applica-
tion of clustering methods in energy hub optimization significantly reduces the model 
complexity. A mixed-integer linear programming model for offshore energy hubs was 
developed by [12]. They used different aggregation, clustering, and time sampling to ad-
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study focused on assessing the benefits of power-to-gas energy storage while accounting 
for the uncertainty of fuel cell vehicles, refueling hydrogen, and the electricity price. 
Kotzur et al. [11] employed time series aggregation (based on clustering algorithms) to 
the cluster demand, wind speed, and solar irradiance. The study shows that the applica-
tion of clustering methods in energy hub optimization significantly reduces the model 
complexity. A mixed-integer linear programming model for offshore energy hubs was 
developed by [12]. They used different aggregation, clustering, and time sampling to ad-
dress the multi-timescale aspects without reducing the actual demand data, however, the 
uncertainty of offshore wind was not considered. In 2023, Amry et al. [13]., developed a 
strategy to carry out the optimal sizing for an EV workplace charging station considering 
PV and flywheel energy storage systems; nevertheless, the work did not consider the un-
certainty associated with solar energy. 

The aforementioned studies did not consider uncertainty in the distributed renewa-
ble energy sources (DRESs) which could lead to inaccurate decisions. Zhang et al. [14],de-
veloped a two-stage stochastic model for the optimal design and operation of combined 
cooling, heat, and power (CCHP) units. The study considered the uncertainties of loads 
and solar irradiation in different seasons, but it did not include energy storage systems 
(ESS). f et al. [15]developed a stochastic model for the operation and scheduling of energy 
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work is to combine all the research aspects into one model and present a general and 
practical framework to solve different types of multiscale energy systems with multiple 
attributes. Table 1 summarizes the research aspect of previous energy hubs, the research 
gap, and the current research contribution. 

Table 1. Literature review summary on energy hub optimization problems, the research gap, and 
the current research contribution. 

Study Year 

Research Aspects 

Optimal 
Design 

Optimal 
Operation 

(GHG) 
Emission 

Saving 
DRERs ESSs 

Uncertainty of 
Renewable En-

ergy 

Demand size 
Reduction 

[3] 2016        
[16] 2017        
[7] 2023        
[17] 2018        
[4] 2017        
[5] 2020        
[8] 2014        
[18] 2016        
([9] 2016        
[19] 2017        

[18] 2016

Processes 2023, 11, x FOR PEER REVIEW 3 of 29 
 

 

study focused on assessing the benefits of power-to-gas energy storage while accounting 
for the uncertainty of fuel cell vehicles, refueling hydrogen, and the electricity price. 
Kotzur et al. [11] employed time series aggregation (based on clustering algorithms) to 
the cluster demand, wind speed, and solar irradiance. The study shows that the applica-
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uncertainty of offshore wind was not considered. In 2023, Amry et al. [13]., developed a 
strategy to carry out the optimal sizing for an EV workplace charging station considering 
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study focused on assessing the benefits of power-to-gas energy storage while accounting 
for the uncertainty of fuel cell vehicles, refueling hydrogen, and the electricity price. 
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and solar irradiation in different seasons, but it did not include energy storage systems 
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study focused on assessing the benefits of power-to-gas energy storage while accounting 
for the uncertainty of fuel cell vehicles, refueling hydrogen, and the electricity price. 
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study focused on assessing the benefits of power-to-gas energy storage while accounting 
for the uncertainty of fuel cell vehicles, refueling hydrogen, and the electricity price. 
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study focused on assessing the benefits of power-to-gas energy storage while accounting 
for the uncertainty of fuel cell vehicles, refueling hydrogen, and the electricity price. 
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study focused on assessing the benefits of power-to-gas energy storage while accounting 
for the uncertainty of fuel cell vehicles, refueling hydrogen, and the electricity price. 
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study focused on assessing the benefits of power-to-gas energy storage while accounting 
for the uncertainty of fuel cell vehicles, refueling hydrogen, and the electricity price. 
Kotzur et al. [11] employed time series aggregation (based on clustering algorithms) to 
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study focused on assessing the benefits of power-to-gas energy storage while accounting 
for the uncertainty of fuel cell vehicles, refueling hydrogen, and the electricity price. 
Kotzur et al. [11] employed time series aggregation (based on clustering algorithms) to 
the cluster demand, wind speed, and solar irradiance. The study shows that the applica-
tion of clustering methods in energy hub optimization significantly reduces the model 
complexity. A mixed-integer linear programming model for offshore energy hubs was 
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study focused on assessing the benefits of power-to-gas energy storage while accounting 
for the uncertainty of fuel cell vehicles, refueling hydrogen, and the electricity price. 
Kotzur et al. [11] employed time series aggregation (based on clustering algorithms) to 
the cluster demand, wind speed, and solar irradiance. The study shows that the applica-
tion of clustering methods in energy hub optimization significantly reduces the model 
complexity. A mixed-integer linear programming model for offshore energy hubs was 
developed by [12]. They used different aggregation, clustering, and time sampling to ad-
dress the multi-timescale aspects without reducing the actual demand data, however, the 
uncertainty of offshore wind was not considered. In 2023, Amry et al. [13]., developed a 
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PV and flywheel energy storage systems; nevertheless, the work did not consider the un-
certainty associated with solar energy. 
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study focused on assessing the benefits of power-to-gas energy storage while accounting 
for the uncertainty of fuel cell vehicles, refueling hydrogen, and the electricity price. 
Kotzur et al. [11] employed time series aggregation (based on clustering algorithms) to 
the cluster demand, wind speed, and solar irradiance. The study shows that the applica-
tion of clustering methods in energy hub optimization significantly reduces the model 
complexity. A mixed-integer linear programming model for offshore energy hubs was 
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study focused on assessing the benefits of power-to-gas energy storage while accounting 
for the uncertainty of fuel cell vehicles, refueling hydrogen, and the electricity price. 
Kotzur et al. [11] employed time series aggregation (based on clustering algorithms) to 
the cluster demand, wind speed, and solar irradiance. The study shows that the applica-
tion of clustering methods in energy hub optimization significantly reduces the model 
complexity. A mixed-integer linear programming model for offshore energy hubs was 
developed by [12]. They used different aggregation, clustering, and time sampling to ad-
dress the multi-timescale aspects without reducing the actual demand data, however, the 
uncertainty of offshore wind was not considered. In 2023, Amry et al. [13]., developed a 
strategy to carry out the optimal sizing for an EV workplace charging station considering 
PV and flywheel energy storage systems; nevertheless, the work did not consider the un-
certainty associated with solar energy. 

The aforementioned studies did not consider uncertainty in the distributed renewa-
ble energy sources (DRESs) which could lead to inaccurate decisions. Zhang et al. [14],de-
veloped a two-stage stochastic model for the optimal design and operation of combined 
cooling, heat, and power (CCHP) units. The study considered the uncertainties of loads 
and solar irradiation in different seasons, but it did not include energy storage systems 
(ESS). f et al. [15]developed a stochastic model for the operation and scheduling of energy 
hubs considering the DRES’s uncertainties. The stochastic scenarios were generated using 
a Monte Carlo simulation and were reduced using the k-means clustering algorithm. 
However, only three scenarios per uncertain feature were considered in the optimization. 
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energy uncertainty, and demand size reduction. However, no studies have combined all 
features into a single model formulation. Accordingly, there is a knowledge gap that de-
mands the development of a comprehensive stochastic optimization model that considers 
design and operation planning, ESS, and the DRES’s uncertainties. In addition, there is a 
need to apply an efficient reduction size to large-sized multi-attribute demand data used 
as an input to stochastic energy hub modeling. In other words, the main novelty of this 
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attributes. Table 1 summarizes the research aspect of previous energy hubs, the research 
gap, and the current research contribution. 

Table 1. Literature review summary on energy hub optimization problems, the research gap, and 
the current research contribution. 

Study Year 

Research Aspects 

Optimal 
Design 

Optimal 
Operation 

(GHG) 
Emission 

Saving 
DRERs ESSs 

Uncertainty of 
Renewable En-

ergy 

Demand size 
Reduction 

[3] 2016        
[16] 2017        
[7] 2023        
[17] 2018        
[4] 2017        
[5] 2020        
[8] 2014        
[18] 2016        
([9] 2016        
[19] 2017        

[14] 2019 X X X X

Processes 2023, 11, x FOR PEER REVIEW 3 of 29 
 

 

study focused on assessing the benefits of power-to-gas energy storage while accounting 
for the uncertainty of fuel cell vehicles, refueling hydrogen, and the electricity price. 
Kotzur et al. [11] employed time series aggregation (based on clustering algorithms) to 
the cluster demand, wind speed, and solar irradiance. The study shows that the applica-
tion of clustering methods in energy hub optimization significantly reduces the model 
complexity. A mixed-integer linear programming model for offshore energy hubs was 
developed by [12]. They used different aggregation, clustering, and time sampling to ad-
dress the multi-timescale aspects without reducing the actual demand data, however, the 
uncertainty of offshore wind was not considered. In 2023, Amry et al. [13]., developed a 
strategy to carry out the optimal sizing for an EV workplace charging station considering 
PV and flywheel energy storage systems; nevertheless, the work did not consider the un-
certainty associated with solar energy. 

The aforementioned studies did not consider uncertainty in the distributed renewa-
ble energy sources (DRESs) which could lead to inaccurate decisions. Zhang et al. [14],de-
veloped a two-stage stochastic model for the optimal design and operation of combined 
cooling, heat, and power (CCHP) units. The study considered the uncertainties of loads 
and solar irradiation in different seasons, but it did not include energy storage systems 
(ESS). f et al. [15]developed a stochastic model for the operation and scheduling of energy 
hubs considering the DRES’s uncertainties. The stochastic scenarios were generated using 
a Monte Carlo simulation and were reduced using the k-means clustering algorithm. 
However, only three scenarios per uncertain feature were considered in the optimization. 
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study focused on assessing the benefits of power-to-gas energy storage while accounting 
for the uncertainty of fuel cell vehicles, refueling hydrogen, and the electricity price. 
Kotzur et al. [11] employed time series aggregation (based on clustering algorithms) to 
the cluster demand, wind speed, and solar irradiance. The study shows that the applica-
tion of clustering methods in energy hub optimization significantly reduces the model 
complexity. A mixed-integer linear programming model for offshore energy hubs was 
developed by [12]. They used different aggregation, clustering, and time sampling to ad-
dress the multi-timescale aspects without reducing the actual demand data, however, the 
uncertainty of offshore wind was not considered. In 2023, Amry et al. [13]., developed a 
strategy to carry out the optimal sizing for an EV workplace charging station considering 
PV and flywheel energy storage systems; nevertheless, the work did not consider the un-
certainty associated with solar energy. 

The aforementioned studies did not consider uncertainty in the distributed renewa-
ble energy sources (DRESs) which could lead to inaccurate decisions. Zhang et al. [14],de-
veloped a two-stage stochastic model for the optimal design and operation of combined 
cooling, heat, and power (CCHP) units. The study considered the uncertainties of loads 
and solar irradiation in different seasons, but it did not include energy storage systems 
(ESS). f et al. [15]developed a stochastic model for the operation and scheduling of energy 
hubs considering the DRES’s uncertainties. The stochastic scenarios were generated using 
a Monte Carlo simulation and were reduced using the k-means clustering algorithm. 
However, only three scenarios per uncertain feature were considered in the optimization. 

1.1. Research Gap and Contribution 
The current literature covers several aspects of energy hub modeling such as the de-

sign, operation, greenhouse gas (GHG) emissions minimization, DRESs, ESS, renewable 
energy uncertainty, and demand size reduction. However, no studies have combined all 
features into a single model formulation. Accordingly, there is a knowledge gap that de-
mands the development of a comprehensive stochastic optimization model that considers 
design and operation planning, ESS, and the DRES’s uncertainties. In addition, there is a 
need to apply an efficient reduction size to large-sized multi-attribute demand data used 
as an input to stochastic energy hub modeling. In other words, the main novelty of this 
work is to combine all the research aspects into one model and present a general and 
practical framework to solve different types of multiscale energy systems with multiple 
attributes. Table 1 summarizes the research aspect of previous energy hubs, the research 
gap, and the current research contribution. 
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study focused on assessing the benefits of power-to-gas energy storage while accounting 
for the uncertainty of fuel cell vehicles, refueling hydrogen, and the electricity price. 
Kotzur et al. [11] employed time series aggregation (based on clustering algorithms) to 
the cluster demand, wind speed, and solar irradiance. The study shows that the applica-
tion of clustering methods in energy hub optimization significantly reduces the model 
complexity. A mixed-integer linear programming model for offshore energy hubs was 
developed by [12]. They used different aggregation, clustering, and time sampling to ad-
dress the multi-timescale aspects without reducing the actual demand data, however, the 
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strategy to carry out the optimal sizing for an EV workplace charging station considering 
PV and flywheel energy storage systems; nevertheless, the work did not consider the un-
certainty associated with solar energy. 

The aforementioned studies did not consider uncertainty in the distributed renewa-
ble energy sources (DRESs) which could lead to inaccurate decisions. Zhang et al. [14],de-
veloped a two-stage stochastic model for the optimal design and operation of combined 
cooling, heat, and power (CCHP) units. The study considered the uncertainties of loads 
and solar irradiation in different seasons, but it did not include energy storage systems 
(ESS). f et al. [15]developed a stochastic model for the operation and scheduling of energy 
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a Monte Carlo simulation and were reduced using the k-means clustering algorithm. 
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study focused on assessing the benefits of power-to-gas energy storage while accounting 
for the uncertainty of fuel cell vehicles, refueling hydrogen, and the electricity price. 
Kotzur et al. [11] employed time series aggregation (based on clustering algorithms) to 
the cluster demand, wind speed, and solar irradiance. The study shows that the applica-
tion of clustering methods in energy hub optimization significantly reduces the model 
complexity. A mixed-integer linear programming model for offshore energy hubs was 
developed by [12]. They used different aggregation, clustering, and time sampling to ad-
dress the multi-timescale aspects without reducing the actual demand data, however, the 
uncertainty of offshore wind was not considered. In 2023, Amry et al. [13]., developed a 
strategy to carry out the optimal sizing for an EV workplace charging station considering 
PV and flywheel energy storage systems; nevertheless, the work did not consider the un-
certainty associated with solar energy. 

The aforementioned studies did not consider uncertainty in the distributed renewa-
ble energy sources (DRESs) which could lead to inaccurate decisions. Zhang et al. [14],de-
veloped a two-stage stochastic model for the optimal design and operation of combined 
cooling, heat, and power (CCHP) units. The study considered the uncertainties of loads 
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Table 1. Cont.

Study Year
Research Aspects

Optimal
Design

Optimal
Operation

(GHG) Emission
Saving DRERs ESSs Uncertainty of

Renewable Energy
Demand size

Reduction

Research gap Combined all research aspects of the analysis into one model.

Current work
contribution

• Developing a stochastic optimization which comprehensively considers the design and operation planning, energy storage systems, and
uncertainties of DRERs;

• Applying an efficient size-reduction approach to large-sized multiple attributes demand data which can be used as an input to the stochastic
energy hub model.

1.2. Research Problem

Typically, planning and scheduling are both performed separately even though they
are interdependent. However, the integration between these different time scales is the key
to improving the efficiency and profit margins, as the integration of planning (e.g., design)
and scheduling (i.e., operation) improves decision level management which results in
lower net costs. However, the computational tractability arising from this integration
makes it difficult to solve. For example, a very large and intractable problem will be
formed if different time scales of the multiscale energy hub model are converted to the
shortest planning period (i.e., detailed scheduling over a long duration). While relaxing
some constraints, employing surrogate models, or using an averaging method, these might
lead to infeasible operations (i.e., since detailed schedules cannot be obtained to meet the
planned production targets) or an inaccurate system design [11,21].

An energy hub modeling approach can establish controllable and flexible energy due
to the ability to integrate different types of DRESs and energy storage system (ESSs) [22].
Using DRESs in the energy sector can alleviate the impact of greenhouse gas emissions from
other sectors (e.g., agriculture, industry, transportation) and play a key role in pathways
towards deep decarbonization [23]. However, due to the uncertainty and variability of
DRESs (e.g., solar photovoltaic and wind turbine), the advantages of energy hub systems
to supply flexible power could be limited and diminished [24]. Therefore, modeling the
energy hub by considering the uncertainties associated with these sources is crucial.

1.3. Research Motivations and Goals

This study attempts to address the following challenges (multiscale decision making,
uncertainty and variability in DRERs) associated with energy hubs by:

1. Applying unique general mathematical programming-based clustering methods to
reduce the multiple attribute demand data size that has the ability to attain nor-
mal and sequence clustering, change the internal clustering measure, and tune
attribute weights.

2. Proposing a statistical method that models the uncertain behavior of renewable
energy sources.

3. Formulating the energy hub system as a two-stage stochastic optimization.

The first goal of the present work was to overcome the problem associated with
integrating different scales of an energy hub model by adopting a generic clustering
approach. The goal of the clustering approach was to represent the days in a year that
exhibit a similar trajectory with a reduced-sized typical day candidate (i.e., representative)
of the operating year. A sufficient number of representative curves mean the representatives
are able to provide a close enough solution to the full size (high in accuracy) model while
also maintaining solution tractability.

The second goal of this work was to develop a two-stage stochastic optimization model
for the design and operation of an energy hub system with hydrogen storage. A hydrogen
storage system was selected due to its flexibility in offering different energy recovery
pathways. For instance, hydrogen can be used to produce electricity through a fuel-cell,
supplied for the hydrogen demand to a hydrogen vehicle, injected and distributed into the
existing natural gas infrastructure. Two case studies are considered to optimally design
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and operate the energy hub model, one without restriction on green-house gas (GHG)
emissions, and another restricting the GHG emissions. A Weibull distribution statistical
method was implemented to generate stochastic wind speed scenarios from wind speed
data. To test the clustering efficiency, the cluster results were applied to the developed
energy hub model and compared with the energy hub when the whole set of data was
used. At the end of this paper, the efficiency of the stochastic approach was assessed.

2. Methods: Clustering Algorithms and Stochastic Scenario Generation

The first aim of this work was tackling the problem arising from the integration of
different supply chain decision levels by developing a generic clustering method.

The goal was to decrease the model size by means of switching the annual days with
regular days characteristic of the operational year. Even though clustering has been exten-
sively used in several applications, demand patterns clustering has been weakly analyzed.
For instance, demand patterns are particularly complex due to their multidimensional
nature comprising shape (e.g., hourly demand curves trajectory), while time regularly
exhibits diverse attributes (e.g., the energy hub’s parallel heat and electricity demand).
Figure 1 shows a conceptual schematic of the proposed clustering approach application
to the multiscale decision-making problem. This analysis is based on a mathematical
programming approach. For instance, the clustering algorithm for multidimensional at-
tributes is formulated by applying mixed-integer programming (MIP) methods. Due to
the complexity of the MILP clustering model, a heuristic size reduction derived from the
full-scale MILP clustering approach was proposed to tackle computational issues.
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Figure 1. Clustering approach application to the multiscale decision-making problem.

The time-series data comprised the clustering algorithm proposed in the present work.
Clustering has drawn significant attention given its potential processing applications for
big data. The algorithm clusters demand data considered the trajectories-time and shape-
similarity at once. Hence, the time-series data clustering could help with reducing the
processing difficulties of multiscale modeling. For instance, the least absolute value method
L1-norm [25–29] was applied to quantify the similarity and preserve the model’s linearity
while showcasing the generality of the algorithm.
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The proposed clustering approach was an extension of the work previously proposed
by [21] which included the clustering of multi-attributes as an alternative to the traditional
single attribute. The weighting method has been selected as a multi-objective optimization
approach [30] to cope with the problem’s multiple-attribute nature (see Figure 2 that
illustrates a bi-objective problem’s Pareto front).
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Figure 2. Illustration of Pareto frontier. The utopia point (OF∗) corresponds to the optimum of
both objective functions 1 and 2. However, there is typically no feasible solution at utopia point as
demonstrated in the figure.

2.1. General Algorithm Formulation

The clustering approach aims at allocating days to clusters with the least dissimilarity.
Accordingly, the load curves set given in D (days) and H (hours) were collected in C clusters.
Multiple attributes, denoted by index a, were considered within the model formulation.
This can be expressed in the following general form:

minZ = ∑
a

wa IAEa (1)

s.t. ∑C
c=1 xd,c = 1, ∀d (2)

where Z is the multi-objective performance criteria function to be minimized, and IAEa
(Integral Absolute Error) denotes the L1-norm employed to measure similarity in the ath

attribute. Equation (1) shows the multi-objective performance criteria of different attributes
a as a weighted function, with wa as attribute a’s weighting factor (wa ≥ 0, ∑

a
wa = 1). In

contrast, Equation (2) represents the constraint for the day assignment where every single
day of the year must be allocated to a curves c cluster. The binary variable xd,c indicates
the binary variable allocating loads for day d joining cluster c. The IAE formulation can be
expressed as follows:

IAE =
∫ b

a
|L(t)− C(t)|dt (3)
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where L(t) and C(t) represent the load and clustered curves, respectively. Furthermore,
Equation (4) results from employing the trapezoidal rule to Equation (3) as follows:

IAEa =
∆
2
∗∑D

d=1 ∑H−1
h=1 ADa,d,h + ADa,d,h+1, ∀a (4)

where ADa,d,h denotes the absolute difference between the clustered curve c and load curve
l for the hth hour of d day for attribute a, which can be defined as follows:

ADa,d,h ≥
∣∣DLa,d,h − Da,c,h

∣∣× xd,c, ∀a, h, d, c, DLa,d,h (5)

DLa,d,h Dnotes a’s attribute demand load for hour h in the dth day, Da,c,h is the repre-
sentative demand of attribute a for the hth hour in the c cluster. It is worth noticing that the
model can be adapted to different performance criteria. For instance, the L2 norm can be
easily implemented in place of the L1 norm by incorporating the Euclidean distance shown
in Equation (3).

Additionally, the demand data could be sequentially clustered by incorporating a
constraints set according to the string property concept [31]. Sequence clustering could
assist with maintaining flexible operations, such as for cases arising where similar continu-
ous operations are preferred to minimize the change-mode or set ups costs. Consequently,
the constraints sets are included to integrate the time-dimension sequencing into the
clustering model:

xd+1,1 ≤ xd,1, ∀d < D (6)

xd+1,c ≤ xd,c + xd,c−1, ∀d < D, c > 1 (7)

xD,c ≤ xD−1,c + xD−1,c−1, ∀c > 1 (8)

Equations (7)–(9) control the initial, intermediate, and final sequence clusters, respectively.
The proposed general formulation provides the same platform to perform sequence

and normal clustering because it is built on the same algorithmic structure. Neverthe-
less, the model is an MINLP given the multiplication of variable Da,c,h and xd,c (shown
in Equation (5)) and the absolute value. Hence, the absolute function is linearized by
applying linearization methods on the absolute function [32]. Furthermore, the bilin-
ear term (Da,c,h xd,c) is further linearized by incorporating an extra continuous variable
(RVa,h,d,c = Da,c,h ∗ xd,c) called the relaxation variable, through a set of constraints [33].
Further details on the linearization approach can be found in [21]. In summary, the model
for normal clustering is made up by (1)–(3), whereas sequence clustering is denoted by
(1)–(3), and (6)–(8).

2.2. Multiple Attributes Heuristic Algorithm for Size-Reduction

Given the complexity of the proposed clustering approach, the goal in this subsection
was proposing a heuristic size-reduction algorithm to handle the issue. The present MILP
model can be also applied to long timeframe planning, including multiple attributes. How-
ever, the linearity and programming basis of the full-scale clustering model was kept by the
heuristic modeling framework. As shown, the clustering model was namely composed of
two variable types: continuous (ADa,d,h,RVa,h,d,c, and Da,c,h), and discrete (day assignment
binary variable xd,c). Accordingly, the algorithm decomposed the original problem into a
master problem and subproblem. The master problem was an MIP that solves complex
variables such as day assignment (xd,c) and fixes them to given feasible integers. The
subproblem was Linear Programming (LP) that solves the resulting continuous cluster
curves problem (Dn

a,c,h) using the master problem’s fixed integer variable values.
In the master problem, the initial guess clusters were fixed while the optimization

algorithm solved for the day assignment (xd,c). Then, the master problem’s solution was
used to initialize the subproblem to find a solution for the cluster curves. Hence, turning
the problem into a simple linear programming. The algorithm worked on an iterative
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structure comparing the upper and lower bound solutions until the differences were within
the acceptable range. This structure has been used earlier, and denotes a suitable solution
method to deal with large-scale mathematical models [34,35]. It is worth mentioning that
the objective function upper and lower bounds were obtained from solving the master
problem and subproblem, respectively.

Figure 3a,b shows the multiple attributes heuristic algorithm flow diagram. For
instance, Figure 3a illustrates the algorithm execution for a given weight factor combination
and each number of clusters. In addition, it shows the execution of the proposed algorithm
for a given weight factor to construct the Pareto frontier. After every scenario of a given
weight factor has been considered, the procedure moves to the following weight factor
repeating the steps until all weight factors are considered.
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On the other hand, Figure 3b shows the execution of the proposed algorithm for each
initial guess scenario. This procedure is given as follows:

1. Initialization: Set the number of initial guess scenarios N.
2. Generate random initial guess clusters scenarios: The scenarios are generated using

random uniform distribution between the minimum and maximum demand of each
hour for every attribute in the entire demand curve

{
Dn=1

a,c,h, Dn=2
a,c,h, . . . , Dn=N

a,c,h

}
.

3. Initial scenario: Consider scenario n = 1.
4. Master problem solution: Solve for the day assignment (xd,c) given fixed cluster

curves to obtain the upper bound objective function
(
Zn

UB
)

iter.
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5. Subproblem solution: Solve for cluster curves
(

Dn
a,c,h ) given fixed day assignment

(xd,c) from the master problem and obtain the objective function lower bound
(
Zn

LB
)

iter.
6. Convergency check: If

∣∣(Zn
UB
)

iter −
(
Zn

LB
)

iter

∣∣ ≤ Tolerance go to 7. Otherwise, imple-

ment cluster curves
(

Dn
a,c,h

)
iter+1

obtained from subproblem as starting point to solve

master problem. Repeat steps 4–6 and iterate until convergence is achieved.
7. Next scenario: Record n scenario solution and consider next scenario. Repeat steps

4–6 until all scenarios have been considered. Then move to next step.
8. Scenario with minimum objective function: A cluster solution corresponds to the

minimum objective function value (minZn). The model can be used for both normal
clustering (1)–(2) and (4)–(5), or sequence clustering (1)–(2), (4)–(5), and (6)–(8). The
common formulation can be applied to multiple attributes problems. The models
were formulated in the General Algebraic Modeling System (GAMS) [36]. The total
number of continuous and binary variables for the full-scale clustering model with
2 attributes was given as 2× 24[D(1 + C) + C] and D× C, respectively. The variables
D and C denote the total number of days and clusters, respectively. Likewise, the total
number of binary variables in the master problem was given as D× C while the total
number of continuous variables in the subproblem was 2× 24[D + C].

The solution quality and time for the full-scale general clustering and size-reduction
heuristic algorithms for multi-attributes were examined. One can notice that the full-scale
clustering could tackle the entire year’s heat and electricity demand data using normal
clustering. For instance, for one year of demand data, no solution was returned after 48 h
of CPU time. On the other hand, when using sequence clustering, the solution time was
reasonable for the one-year data. In sequence clustering, there were extra sets of constraints
that reduced the feasible region size, which resulted in shorter solution times.

For comparison purposes, the two proposed algorithms were tested using reduced
datasets (i.e., 20 days) of one year demand data. The runs included 4, 5, and 6 clusters
using 20-day demand data for the normal and 365-day demand data for the sequence
clustering, respectively (i.e., 6 runs in total). For all runs, the weight factor was set to 0.5 in
both attributes. Twenty-five initial guess scenarios were generated in each of the heuristic
formulation runs. Table 2 shows the optimal objective function value and solution time for
both clustering methods.

Table 2. Computational performance of heuristic and full-scale algorithms.

Objective Function (MWh) Solution Time (min)
Heuristic Formulation General Formulation Heuristic Formulation General Formulation

Normal clustering—20 days
4 10.836 10.836 1.05 50.25
5 9.192 9.192 1.23 148.03
6 8.356 8.340 1.38 434.75

Sequence clustering—365 days
4 469.144 469.144 149.58 469.86
5 430.696 430.969 500.42 2142.48
6 404.900 404.54 770.42 11,703.16

As shown in Table 2, the heuristic approach significantly reduced the CPU time com-
pared with the full-scale model solution. As the number of clusters increased, the heuristic
algorithm did not match the full-scale model’s objective function value. Nonetheless, the
difference was negligeable. For example, for 6 clusters, the IAE difference between the
heuristic and full-scale model was less than 1%. Therefore, the heuristic approach outper-
formed in terms of the solution time, especially for large datasets with close proximity to
the full-scale model’s solution form.

Accordingly, we implemented the heuristic approach to generate cluster curves for
the energy hub case study presented in Section 3.
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2.3. Uncertainty of Wind Speed Modeling

Unfortunately, wind speed is notoriously variable, varying substantially throughout
a day, from season to season, and even from year to year. Nonetheless, the Weibull
distribution was favorable for describing the wind speed fluctuation at any time interval
using two parameters [37]. This statistical tool reflected how often the winds of different
speeds could be seen at a location. This was a widely used method in both industry and
academia. Therefore, the Weibull distribution was used to fit one-year wind speed data [36].
The wind data corresponded to the measured wind speeds from the Waterloo region in
2018, collected from the National Solar Radiation Data Base [38]. The maximum likelihood
method (MLM) was used to fit a Weibull distribution to measured wind speed data [39].
Accordingly, the best-fit Weibull distribution of the available data was achieved. Figure 4
shows the best-fit Weibull distribution and variable wind speed probability. The probability
can be estimated as follows:

prob(v) =
k
c

(v
c

)k−1
exp
[
−
(v

c

)k
]

(9)

where v is the wind speed, k denotes the shape, and c is the scale.
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The Weibull distribution allows for estimating the probability of the wind speed
occurrence. Accordingly, stochastic scenarios can be generated as each scenario has an
occurrence probability (see Figure 5). The probability at which the wind speed is delimited
between two points is given as follows:

probs

(
vu

s > v > vl
s

)
=
∫ vu

s

vl
s

k
c

(v
c

)k−1
exp
[
−
(v

c

)k
]

dv = Φ(vu
s )−Φ

(
vl

s

)
(10)

where Φ is the cumulative distribution function, and vu
s and vl

s are the upper and lower
wind speed limits of each stochastic scenario (s). Accordingly, the inverse cumulative
Weibull distribution ( Φ−1) returns the wind speed at a given probability of occurrence.
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Additionally, the upper and lower wind speed limit of each stochastic scenario can be
calculated as follows:

Φ−1(prob[vs ≥ v]) = vs (11)
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In order to obtain scenarios with equivalent probabilities (i.e., matching areas under
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To avoid infinite values, Equation (13) is used to impose a 99% confidence interval
given that when s = S, Φ−1(1) = ∞. Figure 5 illustrates the fitted Weibull distribution
curve where each shaded area under the probability distribution function represents a
single stochastic scenario with the probability of (1/S).

3. Case Study: Multiple Attributes Clustering Application to Energy Hubs

The present case study illustrates the application of the clustering algorithms to energy
demand data including multiple attributes, and data-driven statistical methods to represent
the intermittent behavior of uncertain wind speed data. Additionally, the energy hub
design and operation were formulated as a multiscale model with multiple attributes. This
was done by agglomerating demand data with similar profiles and generating stochastic
scenarios for a two-stage stochastic model considering uncertainty in the wind data. In ad-
dition, the impact of clustering on the solution accuracy was investigated. It has previously
been determined that clustering considerably helps to reduce the computation time.
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The present case study evaluated the proposed sequence and normal clustering algo-
rithms’ outputs versus the full-size energy hub design and operating model under wind
speed uncertainty with multiple demand attributes. The energy hub is a strategic (long-
term) and medium-term decision level problem. The aim was to minimize the total annual
cost of designing (installing and sizing) and operating the energy hub while meeting the
energy demands. There are numerous models available in the literature for the energy hub
problem, from mathematical programming to heuristics. The present case study adopts
the [40] MILP model.

The present energy hub system aimed to minimize the annual operational and mainte-
nance cost, as well as the capital cost while meeting electricity and heat demands within
the units’ operating capacities and physical constraints.

In this paper, the authors consider both REDSs (Renewable Distributed Energy Sources)
and DERs (distributed energy resources) based on fossil fuels. The current energy hub
system includes a variety of conventional energy conversion technologies powered by
natural gas such as combined heat and power (CHP) units, boilers, and a non-conventional
energy conversion technology (i.e., wind turbines) powered by renewable energy resources.
Additionally, it utilizes a hydrogen production and storage system from electricity utilizing
an electrolyzer, hydrogen tank, and fuel cell as the ESS. We chose a hydrogen storage system
because it can play a role in both storing energy and supplying the hydrogen demand
for hydrogen vehicles. Figure 6 shows the energy hub layout with the considered energy
technologies and input data handling (wind speed, electricity, and heat demand).
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The optimization program decides the number of each unit and the respective capacity
within the energy hub system, as well as the operating points for the electrolyzers, hydrogen
tanks, fuel cells, boilers, and CHP generators at each time point. Particularly, in this paper,
the discrete size of each technology was considered in the optimization, which made this
work more realistic. The number and type of each technology chosen was a design decision
variable while the operating variables were related to how the energy hub units were
running. The main outputs of the optimization model can be summarized as follows:

1. Type and number of energy conversion and storage technologies within the hub.
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2. Design and operation of optimal energy hub under intermittent wind energy availabil-
ity, and based on multiple attributes aggregated demand data or full-size demand data.

3. Economiccostof thesystemincludingcapital, operationandmaintenance, andfuel consumption.
4. Environmental impact of the system through the GHG emissions.

Natural gas is the fuel for both: the boiler and CHP. As illustrated, the electricity
demand was met by means of the CHP generators, wind turbines, and fuel cell, whereas
heat is met by the boilers and CHPs. The list of the energy generation technologies and its
technical and economical properties are given in Table 3. This model is a general framework
for microgrid/energy hub systems where different technologies can easily be added or
removed, according to the problem that needs to be solved.

The mathematical model was formulated as a two-stage stochastic with recourse,
where the first-stage decisions decided the design of the system that included the number of
each unit and the respective capacity within the microgrid, while the second-stage decisions
planned the operation of the system including the operating points for the electrolyzer, fuel
cell, CHP units, and boilers at each time point. The two-stage stochastic recourse (we refer
to it as recourse problem, RP) formulation was basically a bi-level optimization formulation
whose inner optimization problem mimicked the second-stage planning process. Due to the
special structure, the two-stage stochastic programs could be naturally reformulated into
an equivalent single-level optimization problem. Therefore, the single level optimization
formulation of the RP for the design and operation of the energy hub system could be
directly written as follows:

Table 3. Technical and economic information about the energy conversion and storing technologies.

Unit Rated Capacity (kW) Input Energy Form Output Energy Form Efficiency Capital Cost
Operating and

Maintenance Cost
($/kW)

Boiler
[9]

530
kW fuel HHV kW heat

0.82 100 ($/kW) 0.027
300 0.9 120 ($/kW) 0.027
100 0.8 150 ($/kW) 0.027

CHP
[9]

300 kW fuel HHV
kW power 0.26 900 ($/kW) 0.016
kW heat 0.44

100 kW fuel HHV
kW power 0.35 1080 ($/kW) 0.016kW heat 0.5

60 kW fuel HHV
kW power 0.31 1200 ($/kW) 0.0111kW heat 0.56

wind turbine
[41]

20 kW available by air kW power 0.4 2200 ($/kW) 0.008
30 kW available by air kW power 0.42 1906 ($/kW) 0.008

Storing units
Electrolyzer

[9] 290 kW power kg of H2 0.0193 155,051$/unit 0.06

Fuel Cell
[42] 250 kg/h of H2 kW power 16.5 210,630$/unit 0.06

The detailed equations of the stochastic energy hub model are presented in Section S2
of the Supplementary Information.

Key case study inputs such as the heat and electricity demand in addition to the
number of cluster curves have been previously generated and can be found in Section S1
of the Supplementary Information. Moreover, the objective cost function was multiplied
by a parameter designated as γd (see Equation (14) for details) which allowed comparing
of the original demand dataset (i.e., one-year time horizon) and the clustered cases. The
parameter γd denotes the repetitions (frequency) for the dth day. The parameter γd is equal
to one when the original demand data is used, and equal to the number of days when
the representative cluster curves are used. For instance, if cluster 1 represents 45 days, its
corresponding parameter γd is equal to 45.

minCRF
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For future reference, the energy hub with hydrogen storage considering hourly electric-
ity and heat demand loads for an entire year (i.e., full-size) was designated as the original
model. On the other hand, the energy hub with hydrogen storage considering 4, 5, and
6 hourly load clusters (i.e., clusters regarded as days) was designated as the clustered model
(see Section S1 of the Supplementary Information for more details). Moreover, Table 4 lists
the weight factor combinations employed to construct the Pareto frontier.

Table 4. Weight factors for the multi-objective function.

Weight Factor Heat Electricity

1 0.8 0.2
2 0.7 0.3
3 0.6 0.4
4 0.5 0.5
5 0.4 0.6
6 0.3 0.7
7 0.2 0.8
8 0.1 0.9

This case study comprised four different scenarios. Each scenario considered a particu-
lar operating or environmental constraint under which the proposed clustering algorithms
and data-driven methods were tested and evaluated. Accordingly, the following four
subsections present the results and discussions of each of these scenarios.

3.1. Baseline Scenario

This case study considered the energy hub operation under unconstrained GHG
emissions. For instance, Figure 7 shows a comparison of the objective function values along
with their corresponding relative errors for the clustered and original models (optimal).
As shown in the figure, all clustered cases underestimated the objective function value
compared with the original case. The objective function values were closer to the original
model in normal clustering compared with sequence clustering. The clustered model’s
objective functional relative error (i.e., compared with the original model) ranged between
−4% and −10%. Moreover, the higher the clusters number, the better the quality of the
solution for both sequence and normal clustering. Thus, the solution gap between the
clustered and original case became smaller.

Regarding the relative errors, the average relative error of all weight factors (see Table 4)
is included in Figure 7. The errors were inversely proportional to the number of clusters.
The clustered model’s objective function values did not significantly vary as a function of
the weight factors due to symmetry similarity in the electricity and heat demands. The
bar chart (y-logarithmic scale) in Figure 7 displays the average solution time for all weight
factors of each clustered case run (4, 5, and 6 clusters) versus the original model solution
time. As shown in the figure, the clustered model significantly outperformed the original
model in terms of the solution time. The clustered model’s average solution time was two
orders of magnitudes smaller than the original model (i.e., ~7000 s).

In addition, we examined the effect of applying the multiscale clustering approach
for the demand data on the energy hub design. Figure 8 showcases the design decision
variables of each energy hub unit and the total installed heat generation and electrical
power capacity. This is presented for the clustered and original model for the weight factors
1, 4, and 8, using sequence and normal clustering. The figure illustrates that the higher the
clusters number was, the closer the design decision variables’ values between the clustered
and original model were. Likewise, the installed generation capacities followed similar
trends. It is worth noticing that overall, the weight factor 1 showed slightly better results
for normal clustering because it tended to better align with the heat demand. Due to the
high fluctuations in the heat demand, an improved design (i.e., closer to the original model)
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was attainable by prioritizing the heat demand, which minimized the errors caused by
cluster variability.
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As shown in Figure 8, the clustered cases’ installed capacity for power and heat gener-
ation are generally underestimated. Specifically, the power capacity was underestimated
by a lower margin than heat compared with the original model. This was because the total
heat production rate was allowed to exceed the demand (if necessary), whereas an equality
constraint was imposed on the power balance to satisfy the electricity demand. Generally,
changing the weight factors had a steady effect on the installed capacity of power and heat,
as the priority switched from heat to electricity. This could be the result of the heat and
electricity demand featuring similar symmetry throughout the whole horizon.

3.2. Environmental Scenario (CO2 Emissions Regulation)

The previous results showed that the optimization emphasized non-renewable energy
sources, and not a single wind turbine storing unit (e.g., electrolyzer and/or fuel cell)
was installed. This was the result of traditionally higher costs of renewables compared
with traditional fossil fuels. Nonetheless, renewables are cleaner alternatives which can be
integrated with current energy hubs and microgrid systems to mitigate GHG emissions
(i.e., CO2, CH4, NOx). To analyze the energy hub design under CO2 emission regulations, a
carbon constraint was introduced in the energy hub mathematical model as follows:

Em = ∑
s

βs

[
∑
d

γd

(
∑
u,h

(
δ ∗ b ∗ NGu

d,h,s

))]
≤ α (15)
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where Em is the annual CO2 emission mass generated by the energy hub, δ denotes
Ontario’s natural gas emission factor (0.187 kg/kWh), and α is the CO2 emissions limit.
Only emissions from the operation of fossil fuel units (boilers and CHP) were considered,
whereas emissions associated with renewable (i.e., wind turbines) and storage units were
considered negligeable. Renewable units’ emissions in the operation stage were negligible
compared to fossil fuel units.
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Figure 8. Design results comparison between original and clustered energy hub models.

A sensitivity analysis was performed to assess the effect of introducing carbon emis-
sions regulations. The analysis consisted of fixing the allowable annual CO2 emissions
of the energy hub. Accordingly, Figure 9 shows the energy hub’s total annual cost and
installed wind turbine units as a function of the CO2 emissions. The figure was generated
using the clustered model for 6 clusters and a weight factor of 4 (i.e., equal emphasis of
heat and electricity data) using normal and sequence clustering. Both conditions better
represented the entire year demand data as they featured lower IAE. The upper CO2 emis-
sion limit coincided with the lowest annual cost. At this point, the emission constraint was
inactive and the installed wind turbines were nil.

On the other hand, when α was reduced, the objective function (total annual cost)
increased and the optimization selected wind turbines. Accordingly, the greater the CO2
emissions reduction, the higher the number of installed wind turbines and objective func-
tion value. It is worth noticing that the results trend for both normal and sequence clustering
were nearly equivalent as a function of α. Nevertheless, at higher CO2 emission levels,
the sequence clustering tended to feature slightly lower objective function values and
fewer wind turbines. Conversely, at lower CO2 emission levels sequence clustering chose
to install higher numbers of wind turbines leading to total costs exceeding the normal
model solution.
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Figure 9. Effect of CO2 emissions regulation on the objective function (lines) and number of wind
turbines (square marker).

Likewise, at lower CO2 emission levels, the greater the number of recommended
storing units for sequence clustering were compared with normal clustering. Emission
reductions at high carbon levels slightly impacted the objective function value. Conversely,
further emission reductions at already low CO2 emission levels came with moderate cost
increases. These additional costs arose from the extra storage units required to help dispatch
wind power more efficiently.

3.3. GHG Emissions Constrained Scenario

This scenario assumed a 20% CO2 emissions reduction from the upper carbon limit
(i.e., baseline scenario when the emissions constraint is inactive). The effects of the weight
factors and clusters numbers over the objective function value as well as the relative errors
are illustrated in Figure 10. For instance, when the clusters were emphasized more on the
heat demand (at weight factor 1), the clustered model’s objective function values were
much closer to the original model. This was because the heat demand undergoes a higher
degree of variability among utilities. When clusters prioritize electricity demand in normal
clustering (at weight factor 8), the highest deviation or relative error takes place with
respect to the original model results. The proposed weighted clustering method allows
tuning and generating clusters that prioritize attributes over others.

There was no clear relationship between the weight factors 1 to 8 and solution quality.
Nonetheless, sequence clustering exhibited less variability as the priority switched from
heat to electricity. In addition, the average relative errors tended to converge. Normal
clustering showed slightly lower average errors than sequence clustering. The average
solution time for all weight factors of each cluster run (4, 5, and 6 clusters) along with
the original energy hub solution time are displayed in Figure 10. From the bar chart (y-
logarithmic scale), it is observed that the time required to solve the clustered cases was
notably lower than that of the original model. For instance, the original model’s solution
time (65,137 s) exceeded the clustered model’s average solution time by between an order
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of magnitude of 2 and 3 (i.e., 50 to 100 s). It is worth noticing that solving the problem
without CO2 emissions regulation (see Figure 7 for details) was significantly faster by an
order of magnitude of 1.
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Figure 10. Comparison between the original and clustered energy hub solutions in terms of solution
quality and time under the GHG emissions constraint.

On the other hand, once the GHG emissions constraint was active, the optimization
algorithm chose storing and wind turbine units to keep emissions within the desirable
target. Accordingly, additional non-zero variables (e.g., continuous variables associated
with power flow to/or from storing units, hydrogen flow rates, power directed from wind
turbines, and binary on/off variables for charging and discharging storing) were handled
by the optimization algorithm. This significantly increased the degree of complexity. Com-
paratively, there was no outstanding difference between the clustered cases with/without
an environmental constraint in terms of the solution time.

The effects of cluster numbers and weight factors on the design decision variables
under a GHG emissions constraint are displayed through Figures 11–13. For example,
Figure 11 shows a comparison between the original and clustered model fossil fuel units’
design variable values as a function of optimization runs for weight factors 1, 4, and 8. As
illustrated in the figure, the weight factors had no significant effect on the design decision
variable values. Like the previous scenarios, the higher the number of clusters, the closer
the solutions are to the original model (see Section S3.2 of the Supplementary Information
for more details). Furthermore, all optimized clustered scenarios avoided the selection of
CHP300 and boiler530 units. This aligned with the original model’s results, as these types
of units are the largest in size and are the greatest carbon emitters.
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Figure 12. Number of wind turbines suggested by the original and clustered models under the GHG
emissions constraint.
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Figure 13. Number of installed storing facilities suggested by the original and clustered models
under the GHG emissions constraint.

Figure 12 shows the number of wind turbines versus the clustered runs for the weight
factors 1, 4, and 8 (also the original model results). As illustrated in the figure, the larger the
number of clusters was, the smaller the gap was in the number of wind turbines between
the clustered and original model results. It is also worth noticing that at the weight factor 8
for 4- and 5-normal clustering, the number of wind turbines was overestimated by a larger
margin. This was explained by the high error in the objective function value as illustrated
in Figure 10.

Figure 13 shows the storing units’ design decision variables’ values under the GHG
emissions constraint using both the clustered and original data. The bar chart shows that for
most clustered scenarios, the storing units were in very good agreement with the original
model. One can notice that some of the sequence clustering results were overestimating the
number of hydrogen tanks needed.

This scenario also discussed the operational/decision solution quality of the proposed
multiscale clustering approach of the demand data. Figures 14 and 15 illustrate the energy
hub’s utility production rates (clustered with weight factors 1, 4, and 8 and original model)
by fossil-powered and wind/storage units, respectively. Each unit’s utility production was
estimated by adding its corresponding production rate over the year. This was the sum-
mation of all products between the stochastic scenarios and their corresponding weighted
probability. Figure 14 shows that the clustered model’s utility production rates are in
very good agreement with those of the full-size original model. There was no significant
variation in the CHP units’ heat and electricity rates between the two models. Nevertheless,
the boilers’ heat rate relative error was high in sequence clustering.

Figure 15 clearly shows there is a large degree of error in the electricity rates from
wind turbines and fuel cells when comparing the clustered and original model results.
This deviation from the original model was accentuated in sequence clustering. Despite
the errors, the proposed clustering approach could still be considered as a powerful size-
reduction tool that was able to reduce the computational time considerably. For example,
the design decision variable values between both models were close. Similarly, the heat
and electricity production rates (see Figure S13 in the Supplementary Material) from the
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clustered model were in very good agreement with the original model results, whereas
their corresponding relative errors did not exceed 20%.
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3.4. Stochastic Energy Hub Formulation Assessment

The present section assesses the potential benefits of the proposed energy hub model
formulation to store energy under uncertain wind speed scenarios. Accordingly,
Figures 16 and 17 illustrate the average power transferred to electrolyzers (i.e., charging
power) and received from fuel cells in each stochastic scenario, respectively. Both figures
illustrate the results of the energy hub model with 6 normal clusters and a weight factor of
4. For simplicity purposes, the average hourly power over a year per scenario is displayed
(average power flow from each hour with respect to all days over a year of time per sce-
nario). As one could expect, Figure 17 demonstrates that the rate of charging (i.e., power
transferred to electrolyzers to produce hydrogen) is larger at higher wind speeds. This
means that more energy can be stored at a higher wind energy availability. An increase
in the scenario number denoted an increase in the wind speed. Additionally, at relatively
low demand times, the optimization algorithm decided to store more energy. Conversely,
Figure 17 clearly shows that the fuel cells’ discharge rate is inversely proportional to the
wind speed scenario number. Most discharged power occurred at peak demand.
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Figure 16. Average charging power per stochastic scenario.

To examine the stochastic programming method efficiency, the value of stochastic
solution (VSS) was calculated following [43]. The VSS helped in determining whether it
was advantageous fixing the stochastic model’s first-stage decision variables. This was
done based on the expected value problem (EV) solution. In other words, VSS represented
the extra cost the decision maker must pay for not considering uncertainty in the analysis
(stochasticity). To estimate the VSS, the solution to the EV must be determined first. In
the present study, the EV was represented by the deterministic energy hub solved that
considered the mean as the uncertain parameter (wind speed) value. In the next step, the
first-stage decision variables (design decision) obtained from the EV were fixed and used
as input parameters in the two-stage stochastic energy hub with the recourse problem (RP).
Then, the resultant RP was solved after fixing the first-stage decision variables, which was
the expected result of using the EV solution (EEV). The EEV provided the second-stage
decision variables solution once the first-stage decision variables were fixed. Accordingly,
the VSS could be defined as the difference between the EEV and RP.
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Figure 17. Average discharging power per stochastic scenario.

Table 5 shows the EV, EEV, and RP solutions to the energy hub problem with/without
the GHG emissions constraint. The results were obtained using 6-normal clusters with a
weight factor of 4 for the year demand data (i.e., better representative by featuring lower
IAE). The table clearly shows that when there was no environmental consideration, no
benefit was gained from using stochastic programming (i.e., VSS = 0). As previously
discussed, when the environmental constraint was inactive, neither the wind turbines
nor storing units were suggested to be installed; hence, all stochastic scenarios’ solutions
were identical.

Table 5. Objective function values for EV, EEV problem, and recourse problem (RP).

Objective Function Value:
Annual cost ($/year)

Results EV EEV RP VSS

without environmental consideration 379,411.5 379,411 379,411 0

with environmental consideration 438,717.6 455,561.6 440,729 14,832.7

In contrast, when the emission constraint was active, the VSS was estimated to be
14,832$/year (VSS = EEV-RP). The positive VSS value proved that considering uncertainty
in the energy hub modeling is beneficial. Although the EV (deterministic solution) featured
the lowest objective function value, deterministic modeling solutions are insufficient be-
cause they heavily rely on a relatively small segment of information (e.g., average wind
speed). This information does not sufficiently explain real events, such as the wind speed
behavior; therefore, they cannot be considered true representatives of real data (e.g., annual
wind data). As a result, it could be stated that the wind speed uncertainty has a significant
effect on the optimization solution once environmental constraints are considered in the
model’s formulation (as previously proven by the VSS value estimation).
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4. Conclusions

The present work targeted the integrated supply chain problem using a clustering
approach. Given the fact that employing shorter time periods (e.g., hours) to achieve
optimal decisions leads to larger and intractable integrated models, this work aimed to
decrease the model size by representing the yearly days by typical days representative of
the operating year. Accordingly, a mathematical programming approach was considered to
model the clustering problem with multiple attributes. Distinct attributes featured varying
scales or units, which turned the problem into a multi-objective optimization program.
Accordingly, the weighting method allowed for dealing with such problem. The present
clustering algorithm featured a unique characteristic that enabled attaining normal and
sequence clustering employing the same similarity measure. The proposed weighted
clustering method allowed tuning and generating clusters that prioritized some attributes
among others.

Although the developed approach is simple, the computation complexity of the
proposed clustering algorithm is obvious. A heuristic clustering approach was proposed to
tackle the computational tractability of the full-scale clustering model. It was found that the
larger the number of clusters employed was, the closer the solutions between the clustered
and original models were. Additionally, the consideration of uncertainty in the energy hub
modeling was proven to be beneficial, particularly when the environmental constraints were
included in the formulation. In addition, the heuristic approach remarkably outperformed
the full-scale model in terms of the solution time, usually by several orders of magnitude,
particularly for large datasets. Accordingly, it can be stated that employing the clustering
approach is an effective tool to reduce the model size while maintaining reasonable, accurate
results. The proposed multiscale clustering method is a trade-off between the computational
effort and data accuracy.

Future works can include the application of the proposed clustering approach to
different multiscale planning problems. The stochastic energy hub planning model can
be extended to include capacity expansion planning decisions to satisfy the multiple
attributes demand. It would be interesting to use forecasted demand data to plan energy
hub systems, as this case study was limited to implementing historical demand data
into multiscale modeling. Therefore, forecasting techniques can be employed to forecast
the future demands; the clustering approach will be applied to reduce the size of these
multiple attributes demands where they can be used as an input to the energy hub planning
or capacity expansion model. Another example for future work is that the multiscale
clustering approach can be applied to a superstructure modeling approach to design new
chemical or power plants. Therefore, instead of solving the superstructure model for a
1-day profile that represents the whole year, it can be solved for several representative days
that are more likely to reflect the real behavior of demand.
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