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Despite the availability of numerous neat polymers, polymer composites offer a wide
range of advantages over traditional materials such as metals, ceramics, and neat polymers.
Polymer (matrix) composites consist of a base polymeric material and another material
with different properties such as mechanical strength. Traditionally, polymer composites
were developed to enhance mechanical functions. A prime example is fiber-reinforced
plastic or polymer (FRP) [1] which has a polymer matrix with fibrous minor components
such as fiberglass, carbon fibers, fibers made of engineering plastics, or other natural fibers.
It is used in applications that require enhanced mechanical strength such as helmets, tennis
rackets, and fishing rods.

With the increasing need for new demands to address the challenges that we face, poly-
mer composites offer a vast number of potential solutions. Composites can be developed
by compounding polymers with minor components with various properties, including
size (macro [2], micro [2,3], or nano [4,5]), shape (fiber [1], sheet, chunk [3], or changing
shape [6]), phase (gas [7], supercritical fluid [8], liquid [9], or solid [3]), rheology [3,8],
rigidity [2] (flexible, soft, or hard), mechanical strengths [2] (toughness, abrasion, ductility,
or yielding), surface properties [10] (surface tension, attraction, or repulsion), optics [11]
(polarization, transparency or color), thermal stability [12,13] (flammability, thermal decom-
position [3], or molecular weight change), biocompatibility/biodegradability [14], phase
behavior (crystallization, melting, sol–gel transition, or glass transition), density, electrical
properties [15,16] (resistance, dielectric [7], conductive, or capacitance [7]), magnetism [11],
and chemical properties [17] (corrosion, reaction, or modification). By combining various
candidate materials using different processes, composites can offer a huge number of
functions, making them a versatile solution to many challenges.

The challenges we face today include climate change, greenhouse gas emissions,
plastic pollution, accumulated waste, a lack of enough energy or resources, unfavorable
conditions for farming or fishing, new virus outbreaks, space exploration, and other various
human needs. Developing new materials and processes that provide desired functions
while spending less time and consuming fewer resources of materials and energy is critical
in addressing these challenges. Thus, the development of polymer composites provides a
viable and sustainable solution to these challenges.

The following are examples of the uses of polymer composites for challenging applica-
tions. In the aerospace industry [18,19], they are used to create lightweight, high-strength
components such as wings, fuselages, engine parts, and space suits that must withstand
extreme temperatures and pressures and radiation yet show durability or/and flexibility.
The automotive industry [20] uses composites to produce body panels, bumpers, and
interior components with reduced weight, improved fuel efficiency, enhanced safety, and
sustainability. Energy applications [21] such as wind turbine blades, solar panels, and fuel
cells require composites that can handle high mechanical stresses and chemical attacks
while improving efficiency and durability. In the automotive/energy industry, developing
a composite to construct fuel tanks [22] for fuel cell vehicles, which can withstand high
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pressure and remain light, is a challenging task. Marine applications [23] require corrosion-
resistant composites such for boat hulls, decks, and masts that should resist chemical
attacks from ions and marine organism growth but be environmentally benign. Medical
applications [24] use composites to create biocompatible implants, prosthetics, and surgical
instruments that require strength, flexibility, and biocompatibility/biodegradability. In
sports and recreation [25], composites are used to create lightweight and durable compo-
nents such as skis, tennis rackets, and bicycle frames that can handle high temperature
fluctuations, mechanical imparts, and wear and tear. Polymer composites also play an
essential role in electronic displays [26], including transparent displays that are made of
polymeric films and circuits. These displays require high resolutions, and circuits must be
hidden by employing nanowires or transparent electrodes. This reduces the amount of
material required to fabricate electronic displays compared with traditional liquid crystal
display (LCD) or organic light emitting diode (OLED) displays. The industry of foams
benefits from polymer composites as well. Physical foaming plastics with smart (active)
polymeric fibers improve foamability [27], which enhances insulation and reduces heating
energy. Composites can also be developed to address plastic pollution [28] by compounding
biodegradable plastics, where one serves as the matrix, and the other has a spherical [29] or
fibrous [30] structure that improves mechanical strength.

In recent years, the field of polymer composites has shown significant advancements.
New types of raw materials have been discovered, and researchers have developed methods
to compound different materials, to shape them into new forms, to fabricate composites
using novel processes, and to characterize new materials. These advancements have led
to the development of composites with advanced functions, capable of addressing the
challenges that we face in the early 21st century. This Special Issue aimed to provide an
up-to-date overview of those recent advances in polymer composites. Furthermore, the
papers in this Special Issue highlight the importance of sustainability in the development
of polymer composites. Advances in sustainability will be critical to ensuring that polymer
composites can continue to address the challenges of the 21st century in a way that is
responsible and sustainable.

Conflicts of Interest: The author declares no conflict of interest.
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